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A detailed account of the results of the numerical solution of the thermodynamic Bethe-ansatz

equations for the isotropic ferromagnetic S =
2 Heisenberg chain is presented. The extrapolation

procedure used in approximating the infinite set of coupled nonlinear integral equations is discussed.
The data for the truncated integral equations are analyzed in terms of a finite-string-size scaling.
Analytic expressions for the free energy and susceptibility for T~0 are obtained. All the results are
consistent with entropy S-(T/

~

J
~

)'~ atid

where W=ln(
~
J

~
/T), suggesting the existence of a marginal variable. The logarithmic corrections

reflect the analogy to the Kondo problem.

I. INTRODUCTION

The critical behavior of the isotropic, ferromagnetic
S = —, Heisenberg chain has been investigated previously

by several methods, which gave quite different results for
the critical exponents y of the susceptibility and a of the
specific heat. Bonner and Fisher' studied the thermo-
dynamic properties of rings of size up to 1V=11 and ob-
tained —a=0.45—0.5 and y 1.8 by extrapolation to
rings of infinite size. Baker, Rushbrooke, and Gilbert
computed the high-temperature-series expansion up to
tenth order and analyzed the energy and magnetic suscep-
tibility by means of Pade approximants, obtaining

y = 1.66+0.07. Kondo and Yamaji used a Green's-
function decoupling procedure taking one magnon self-
consistently into account, and obtained y =2 and —a = —,',
as expected from spin-wave theory. Monte Carlo simula-
tions for the Heisenberg chain were performed by Cullen
and Landau (y=1.32). More accurate Monte Carlo re-
sults were provided by Lyklema, ' who obtained
—a =0.3+0.1, y = 1.75+0.02, and, via finite-size scaling,
(y —1)/v= 1.01+0.01.

The above values for y, except that from Kondo and
Yamaji, s differ from the classical analog y, i

——2. More-
over, Lyklema's Monte Carlo data exclude a= —0.5, the
value expected from spin waves. In Ref. 3 Nagaoka's
Green's-function decoupling procedure was employed,
such that classical behavior at low T is expected. These
interesting results lead us to reanalyze the critical
behavior of the ferromagnetic chain by a different
method, namely the numerical solution of the thermo-
dynamic Bethe-ansatz equations. ' In contrast to other
methods, the Bethe ansatz provides the exact solution of
the problem. The main conclusions have been presented
in a recent paper. We obtained a= —0.49+0.02 and

y=2.00+0.02. The purpose of this paper is to present
more details of the calculation, as well as some analytical
expressions extracted from the thermodynamic Bethe-
ansatz equations.

The rest of the paper is organized as follows. In Sec. II
we restate the thermodynamic Bethe-ansatz equations for
the isotropic Heisenberg chain, ' as well as Takahashi's
solutions of these equations for T=O and oo. Using the
crossover between the strong- and weak-coupling regimes,
we define a correlation length. In Sec. III the numerical
procedure for obtaining the solution of the integral equa-
tions is discussed. The infinite set of integral equations is
truncated and actually only no (with no(280) coupled
nonlinear integral equations are solved. The results are
discussed in terms of a finite-string-size scaling in Sec. IV.
The data are consistent only if logarithmic corrections
that already appear in the correlation length are taken
seriously. This finding is supported by analytic expres-
sions extracted from the thermodynamic Bethe-ansatz
equations in Sec. V. A summary and discussion follows
in Sec. VI.

Our main results are that at low temperatures the entro-

py and susceptibility depend on T as

(1.2)

where W=ln(
~

J
~
/T), a is close to —, X1.042, and b is

of order of 1.
Recently Takahashi and Yamada' calculated the free

energy and susceptibility of the isotropic model by numer-
ically solving the thermodynamic Bethe-ansatz equations
of the planar XXZ model and extrapolating the anisotro-
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py to zero. They also concluded that a= ——, and y=2,
and the data are in excellent agreement with ours
throughout the whole temperature range (see Sec. III).

N
A =J g S; S;+i—, JN+—2Hg S,' (2.1)

with N sites and periodic boundary conditions in the limit
N~00. Here J is the (ferromagnetic) coupling constant
and the magnetic field H is along the z direction.

On the basis of Bethe's famous work, "Takahashi' and
Gaudin derived the thermodynamic Bethe-ansatz equa-
tions for the model (2.1). They consist of an infinite set of
nonlinearly coupled integral equations for functions
g„(A). The function iI„(A) characterizes a string excita-
tion of order n with real rapidity A. A string excitation
of order n represents a bound-magnon state of n mag-
nons. It is usual to define an energy function for the
string excitation, which is given by

11. THERMODYNAMIC BETHE-ANSATZ EQUATIONS

%e consider the isotropic quantum Heisenberg chain
for S=T,

1

e„(A}=2nH+ 2n!J!
A+n

(2.8)

Then we have g„=Oo for all n, i.e., no magnons,
S,/N= —,', and E/N= H. —This is the ferromagnetic
ground state.

At low but finite temperatures the functions e„(A) as a
function of A and n show crossovers between the asymp-
totic behaviors (2.7) and (2.8). For sufficiently large A the
driving term in (2.3) becomes negligible and we obtain
(2.7) for all n. If the string index is sufficiently large, the
effect of the driving term is again negligible, and the solu-
tion will be close to (2.7). For small A and n, on the other
hand, the driving term dominates and r)„(A) is given by
(2.2) equated to (2.8). For intermediate A and n we have a
crossover regime.

For small A and H and as a function of n, we define a
crossover index n, (T) by equating (2.8) with (2.7) inserted
into (2.2),

ln(1+g„)-lnrt„- e„/T,
and (2.3) reduces to a set of linear integral equations for
the potentials c.„. The solution can be obtained by Fourier
transformation:

e„(A)=T lniI„(A) . (2.2) !J!/n, =
z Tln[n, (n, +2)) Tin(n, +1) . (2.9)

There are several equivalent sets of integral equations
yielding the i)„(A). The most convenient representation
for a numerical solution is the recursion sequence

luis„=6 +in[(1+ il„ i)(1+iI„+i )]—2ir( J/T)5„, i6,
n = 1,2, 3, . . . , i)O=O (2.3)

Here we used that, at low T, n, gg1. For n ~ n, the solu-
tion is then closer to the one of a free spin, while for
n & n, the strong-coupling solution dominates. This
means that in thermal equilibrium the average number of
correlated spins is n, (T). In other words, n, (T) is the
correlation length of the system. Solving (2.9) iteratively
we obtain, for T«!J!,

where the center star denotes a convolution and

6 (A) = [4cosh( —,
' n.A)] (2.4)

lnln(! J!/T)
»(

I
J

I
/T)»'(! J!/T)

(2.10}

These equations are completed by the asymptotic condi-
tion

lim —luis„(A)
1

n —+tN n
J

2H
T O t (2.5)

and the free energy of the model is given by

P= —Jln2 —T f dA6(A)in[1+i)i(A)] . (2.6)

iI„=[sinh[(n + 1)XO]/sinhXO J
—1 . (2.7}

(b) As T~O the driving term dominates, such that
necessarily

We consider J= —1 throughout the rest of the paper.
The zero-temperature (strong-coupling) and high-

temperature (free-spin) solutions of the integral equations
have been explicitly obtained by Takahashi. In the criti-
cal region the solution is an interpolation between these
free-spin and zero-temperature limits. It is then useful to
restate the results known for these limits.

(a) In the high-temperature limit the driving term in
(2.3) can be neglected. It is the only explicit temperature
dependence the integral equations have. The solutions for
the q„are then constants fixed by the asymptotic condi-
tion (2.5) to be

corresponding to v= 1, with logarithmic corrections.
The logarithmic corrections in (2.10} resemble very

much the high-temperature results for the Kondo prob-
lem. Andrei, Furuya, and Lowenstein' have pointed out
that the thermodynamic Bethe-ansatz equations for the
Kondo problem are also given by (2.3), if the driving term
is replaced by

(2.11)

where To is the Kondo temperature and A ~& —1. Note
that for large A the driving term of the Heisenberg chain
asymptotically reduces to (2.11). In Sec. V we show that
! A! values smaller than a Ac&&1 do not contribute to

the temperature dependence of F at low T.

III. NUMERICAL PROCEDURE

In principle, an infinite number of integral equations
should be solved for every temperature with the asymptot-
ic field boundary condition (2.5). However, we have ar-
gued in Sec. II that for a sufficiently large string index the
solution for il„asymptotically approaches the free-spin
value (2.7). A good estimate of the free energy can then
be obtained by choosing an index no and replacing g„ for
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n & no by the asymptotical free-spin value, and then nu-
merically solving the system of no integral equations.
The procedure is repeated for several no and the result ex-
trapolated to no~ 00.

In order to get a reasonable estimate of the free energy
and its derivatives, the number of integral ixluations
solved, no, should be much larger than n, (T). This
means that we have to consider system sizes much larger
than the correlation length. The number of integral equa-
tions grows then when the temperature is lowered. For
the lowest temperatures, we consider no up to 280.

The integration interval for the convolution is the entire
real axis. As a result of the exponential de:rease of both
the kernel and the driving force, the integration simplifies
for large A values. At finite temperature the functions
rl„(A) asymptotically approach the free-spin solution for

~

A
~

~ ao, as discussed in Sec. II. Hence, we can find a
Ao such that we can replace i)„by (2.7) for

~

A
~

& Ao. Ao
depends on temperature and it must be chosen such that a
considerable enlargement of Ao does not affect the signifi-
cant figures of the derivatives of the free energy. In some
cases we considered several Ao values and extrapolated to
Ao~ ~. The results depend much stronger on no than on
Ap.

The set of integral equations has been solved iteratively.
Several iteration procedures have been employed, with dif-
ferent stability and convergence properties. The conver-
gence becomes very slow for large no, such that up to 104
iterations were needed for the lowest-temperature points.
The speed of convergence can be improved by choosing an
adequate initial set of functions. An interpolation be-

6.6l

6.5

XT

tween the strong-coupling solution for small A and n and
the free-spin solution for A and/or n large was found to
be the most appropriate starting point. The temperature
and field derivatives of the free energy were obtained nu-

merically.
In Fig. 1 we show a typical extrapolation to no~ ao foi'

the susceptibility for T=0.05. XT, calculated after each
iteration, is plotted as a function of the inverse of the
iteration number for several values of no. The iteration
has an arbitrary scale, since it depends on the initial set of
functions and the iteration procedure employed. For the
following discussion it is important to always use the
same procedure and initial conditions for a given tempera-
ture. The susceptibility eventually saturates at a value
which depends on no. These are plotted in the inset as a
function of 1/no. It is easy to see that the curves of gT
versus inverse iterations have an infiection point. The
tangential line to the curve at the inflection point inter-
sects the JT axis. We have also plotted these intersection
values in the inset. Both extrapolations to 1/no~0 agree
usually within 0.3%. A third criterion serves as a check:
The family of XT versus inverse iteration curves has an
envelope which when extrapolated cuts the XT axis (dot-
ted line).

The error bar attributed to the final XT value is chosen
to be larger than the scattering of the values obtained by
the three criteria. In most of the cases we added a (subjec-
tive) confidence error in order to account for possible sys-
tematic errors.

The dependence on no is much weaker for nondiverging
quantities like the free energy and entropy. In the case of
the entropy a plot similar to the inset of Fig. 1 has a
dependence of S on no of only 2—3%%uo. The values of IT
and S are given in Tables I and II with their respective er-
rors, which include the estimate for a systematic error.
Note that when derivatives are calculated as in Ref. 9 the
systematic errors cancel and smaller errors can be con-
sidered.

In Fig. 2 the temperature-dependent part of the free en-

ergy is plotted against r ~ . It is seen that for T~O it
asymptotically approaches a straight line. The same data
are shown in Fig. 3 together with the entropy data as a

TABLE I. Values of XT for various temperatures as obtained
by extrapolating no~ 00 with their respective errors.

XT

50'

( Iterations)

FIG. 1. XT as a function of inverse iterations for various no,
the number of solved integral equations. Iterations are in arbi-
trary units, since convergence depends on the employed pro-
cedure (we used 10 up to 10 iterations). The saturation values
(dots) and intersections with the XT axis of the tangent through
the inflection point of each curve (crosses) are shown in the inset
as function of 1/no. Envelop curve (dashed) intersects the XT
axis at the same point as the curves in the inset extrapolated to
no —+ 00. The data are for T=0.05.

0.100
0.070
0.0625
0.050
0.0375
0.030
0.025
0.020
0.016
0.0125
0.008 75
0.00625
0.0045

4.21 +0.02
5.26%0.02
5.69+0.01
6.61+0.03
8.15+0.04
9.57+0.06

11.00+0.07
12.98+0.08
15.55+0.15
19.15+0.20
26.25+0.20

35.3+0.4
47.0+0.4
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TABLE II. Values of S for various temperatures as obtained

by extrapolating no~ ~x). The error is 10 unless indicated. A
systematic confidence error {the same for all T) of 4X10
should be added.

0.100
0.070
0.050
0.030
0.020
0.015
0.010
0.007
0.005

0.3485
0.3069
0.2704
0.2209
0.1867
0.1651+0.0002
0.1380+0.0002
0.1175+0.0003
0.1010+0.0010

0,9
y 3l2

O. l 0.2

function T'/ Aga.in, both curves asymptotically ap-
proach straight lines. The solid and dashed lines corre-
spond to the fit given by Takahashi and Yamada' to
their data when analyzed in powers of T'/ . The agree-
ment is remarkably good. While our entropy data are
slightly below theirs, our values of F/T / h—ave a ten-
dency to be larger than those of Takahashi and Yamada.
The differences, although systematic, are within the error
bars.

It may be surprising that the data for F are more scat-
tered than the data for S. The computer program was
designed to calculate S with high precision. The integral
in (2.6) giving the free energy yields ln2 plus the small
temperature dependence shown in Fig. 2. The scattering
is due to errors in the fifth digit in the evaluation of ln2.
These errors cancel when we look for differences in the
free energy, as for the entropy, calculated in exactly the
same way.

The temperature range and the number of equations
considered by Takahashi and Yamada+ are essentially the
same as ours. They also do not @roue conclusively that
a= ——,

'
and y=2. Their data, as well as ours, are still

compatible with y=1.98 or y=2.02, and also a= —0.48
cannot be ruled out.

FIG. 3. —I/T {crosses) and 3 S/T' {dots) as a function

of T' '. Dashed and solid lines correspond to the fit given by
Takahashi and Yamada {Ref. 10) to their data. Differences are
within the error bars. For the scattering of the free-energy data
see text.

IV. FINITE-"STRING-SIZE" SCALING

In Sec. II we defined the correlation length n, as the
average number of bound spina in thermal equilibrium
and in Sec. III we showed the results of the numerical
solution of a system of no integral equations, where no is
larger than n, . In this way at most no spins can be corre-
lated. This is similar to considering a system of finite size
no larger than the correlation length. The variation of XT
as a function of no

' also resembles a dependence on finite
size. In view of this analogy Lyklema suggested analyz-
ing the data for finite no under the assumption of finite-
size scaling.

The finite-size scaling hypothesis for an ordinary criti-
cal quantity X yields'

X nx/vg(n 1/v(2 2 (4.1)

O.OI 5—

-F

0-005

(MO5 O.OI

T 3/2

O.OI5

FIG. 2. Low-temperature free energy as a function of T3 2.

The solid line is I' = —1.042T', which is approached asymp-
totically as T~O.

where n is the size of the system and x is the critical ex-
ponent associated with the intensive property X as T~T,
in the finite system. Here Q is a scaling function. In our
case T, =0. This causes an ambiguity when defining the
critical quantity, e.g., we may choose the susceptibility 7
or as well any power of T times X, T X. Following Ly-
klema we choose X to be the "Curie constant" XT, which
is a dimensionless quantity. The second difficulty arises
due to the logarithmic corrections we found in the corre-
lation length, (2.10). In the absence of a well-founded
theory we neglect the logarithms in a first approximation.

Assuming then that v=1, x =y —1=1, we have that
TXn(T)ln should be a universal function of nT. If the
finite-no data for XT obey this universal relation, then our
choice of y and v is consistent. However, for each tem-
perature the finite-no values for XT lie on different
curves. It is a family of almost parallel curves with a
spacing that is roughly logarithmic.
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In view of (2.9), which defines g given by n, T ln{n, + 1}
equated to 1, we have plott& TX„(T)/n against
nTln(n+1) in Fig. 4. All the points are close to one
curve. There is some scattering, which is not at random,
but systematic. The lower- T points lie below the curve,
while the high-temperature data are above. Other at-
tempts to impose logarithmic corrections on (4.1) that we
tried were less successful.

If we accept the result that TX„(T)/n is a universal
function of z =Tn ln(n +1},then for any fixed value of z
we have

XT
Ao

0.2,—

A 1 ln ln(1/T)
( )T' »(I/T)

%'e will get a similar dependence analytically in Sec. V.
We did not analyze the entropy data with finite-string-

size scaling, since its dependence on nn is much smaller
than it is for X. Also, the leading term of the entropy
does not have logarithmic corrections.

l0

V. ANALYTIC RESULTS

In this section we derive analytic expressions for X and
I' valid asymptotically as T~O. We first determine the
asymptotic behavior of ln[1+rli(A)] and then calculate
the free energy via (2.6). At low temperatures it is con-
venient to use the expression

Tnoln {no+ ()

FIG. 4. Finite-string-size scaling analysis of the susceptibili-
ty. no is the number of integral equations actually solved at
each T. For the scattering of the data, see text.

ln[1+r)i(A)]=2 +—g f dA'ln[l+r)~ (A')]4+1
m+1 m —1

(A —A') +(m +1) (A —A') +(m —1)
(5.1)

We divide the contributions to (5.1) into two parts: (a)

~

A
~

&A, (n), n &n, and (b) n &n,
(a) We expand for small fields, XO=H/T,

ln(1+ii~')=ln 1+
m(m+2)

2 2~J + o ~ ~ (5.3)

which is equivalent to (2.3). The second Lorentzian for
m =1 is to be interpreted as a delta function. The mag-
netic field has been incorporated into the boundary condi-
tions for the rl (A).

We noted in Sec. II that in the strong-coupling regime~ 00. Hence the strong-coupling regime does not con-
tribute to the integrals in (5.1). The leading contribution
is due to the free-spin solution for large n and/or A. We
make the following simplifying assumption, which does
not affect the leading temperature dependence but only
the amplitudes. We assume that g„(A)= oo for

i
A

~
&A, (n) and n &n, and elsewhere is given by (2.7).

This is equivalent to an abrupt crossover. The n-

dependent crossover rapidity is obtained via similar argu-
ments as for the correlation length,

' 1/2
n iJ/

ln(n + 1) T

and inserting this expression into (5.1) we get

50
1

ln 1+
~ m~1 m (m +2)

—3&O
2 2'

m+1X arctan c—

m —1+arctan +(A~ —A) . (5.4)
A, —A

In order to obtain the free energy this expression times
[cosh(m/2)A] ' is integrated over A. Since A, »1 only
small A, i.e., ~

A
~

&&A„are relevant. Since A, —1/v T,
a Taylor expansion in A/A, generates a power series V T.
We keep only the leading term, which corresponds to
A=O in (5.4).

In zero field the convergence of the sum (5.4) is fast,
such that the arctan functions can be expanded in powers
of (m+1)/A, . The linear term contributes as T'~ and
all other terms contribute with a higher power of the tem-
perature. The result is
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Xo dx x arctan(x)

8 2 0.573~'T 1 ln ln(1/T)
»(1/T) in'(1/T)

(5.6)
(b) Since ri in the integrand is independent of A, the

integrals are straightforward and we obtain

00 sinh[(n, + 1)XO]
2 g ln(1+ri ')=21n

tie =5 sinh n, xo
C

Expanding for small Xo the expression reduces to

(5.7)

nc+1
2 ln

27lc+ I 2 2 4 2Xp + —,ncXp .
~c

(5.8)

Note that the field-independent term is of order T and
hence of higher order than (5.5). The field-dependent
term is of the same type as (5.6) and hence of leading or-
der.

Collecting (5.5), (5.6), and (5.8), and using (5.1) inserted
into (2.6), we have, for the leading order of the free ener-

gy~

I'= —11T (J i

Hi 1 ln ln(1/T)
T' ln(1/T) ln'(1/T)

(5.9)
This has the same functional dependence on T as our nu-
inerical results discussed in Secs. III and IV. Even the
amplitudes agree remarkably well with those obtained nu-
merically.

The above results were obtained by integrating over the
free-spin regime on the right-hand side of (5.1). If we as-
sume that the free-spin solution in part (a) is valid only
for

~

A
~
&aA„n &an„and the one in part (b) for

n &an„where a & 1, the temperature dependence of our
results remains unchanged, and only the amplitudes are
rescaled. %e have assumed in our calculation that the
crossover from strong coupling to free spin is abrupt.
Since all terms on the right-hand side of (5.1) are positive,
a smooth crossover region cannot modify our conclusions.

nO
1

[m ln(m +1}]'/z=2.2T'~m, m(m+2)

(5.5)
where the sum can be extended to oo and its numerical
value is approximately 2.2.

The finite-field contribution is mainly determined by
the larger m indices. %e can then approximate m+1 in
the argument of the arctan by m and convert the sum into
an integral. The leading-order contribution is given by

Bethe-ansatz equations for the Heisenberg chain. The
data were presented in a previous paper and are in good
agreement with later results by Takahashi and Yamada'
for the same temperature range. We discussed the trunca-
tion of the infinite set of nonlinear integral equations and
the extrapolation procedure for no —mao. In our previous
paper we assumed a power-law dependence on T for
the entropy and the susceptibility and obtained
a = —0.49+0.02 and g =2.00+0.02.

In Sec. II we obtained the correlation length by equat-
ing the strong-coupling and free-spin solutions of the sys-
tem of equations. We obtained v=1 with logarithmic
corrections given by (2.10). From our finite-string-size
analysis of the susceptibility data we found that this loga-
rithmic dependence cannot be ignored. The results for the
susceptibility are consistent with y=2 and logarithmic
corrections. These logarithmic corrections indicate the
existence of a marginal variable, which is not present in
the classical solution. The logarithmic corrections are
also very suggestive in view of the analogy between the
thermodynamic Bethe-ansatz equations of the Heisenberg
chain and the Kondo problem. ' For the exchange model
with S= —,

' the Kondo logarithms appear in the high-T
expansion and for S & —,

'
in both the high- and low-T

sees.
In Sec. V we obtained analytic expressions for the zero-

field free energy and the susceptibility. The calculation is
based on the strong-coupling and free-spin solutions of
the integral equations. The leading term for the free ener-

gy is T3/2, i.e., a= —2, while for X we obtain again ) =2
with logarithmic corrections. The leading zero-field
dependence of the free energy is a rigorous result; it de-
pends neither on the logarithms in the correlation length
nor on the cutoff of the sum. The absence of logarithms
is confirmed by the relatively weak finite-string-size
dependence of S. Note that the T ~ arises from the large

~

A
~

values on the right-hand side of (5.1). Large
~

A
~

corresponds to small momenta, such that the result is
indeed due to long-wavelength magnons. The ainplitude
of the Ti~2 term is the same as for spin waves. '

The situation is more complicated for the susceptibility,
since strings of all orders contribute. The logarithmic
corrections in X arise from those in the correlation length
and depend, hence, on the temperature dependence of the
cutoff in the sums (5.5) and (5.7}. The result, however,
strongly suggests the existence of logarithmic corrections,
in agreement with the numerical data and the analogy
with the Kondo problem.

Vote added in proof. In a recent paper M. Marcu, J.
Miiller, and F. K. Schmatzer [J. Phys. A 18, 3189 (1985)]
obtained a = —0.261+0.013 and y = 1.552+0.008 by
Monte Carlo simulations. Their data are restricted to
temperatures higher than 0.06

~

J
~
.

UI. CONCLUSIONS

In this paper we gave a detailed description of our nu-
merical procedure for the solution of the thermodynamic
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