PHYSICAL REVIEW B

VOLUME 33, NUMBER 7

1 APRIL 1986

Molecular-dynamic study of the molecular glass model for Rb,_,(ND,), D,PO,

Krzysztof Parlinski* and Hans Grimm
Institut fiir Festkorperforschung, Kernforschungsanlage Jiilich, D-5170 Jiilich, Federal Republic of Germany
(Received 25 October 1985)

A two-dimensional model with four protons and two effective rubidium or ammonium particles
per unit cell has been studied by the molecular-dynamic method. The symmetry properties of the
phase transitions of RbD,PO, and ND,D,PO, are used as input data for the simulation. The mixed
system shows a glassy behavior. The freezing temperature T, has been found by studying the glass
order parameter 7,. T, depends on the time over which 7, has been averaged. The calculations
showed that below Ty the mixed system can go to many local minima which differ by displacement
patterns. With the use of the multiple molecular-dynamic method with time averages and configu-
rational averages over local minima, the diffuse scattering function and the dynamical structure fac-
tor have been calculated. Diffuse streaks along the high-symmetry axes of the crystal have been
found. The width of the diffuse streak and of the quasielastic scattering exhibit a change of slope as
a function of temperature, in agreement with the neutron-experimental observations.

I. INTRODUCTION

A structural analogue of a magnetic spin glass is the
mixed system of ferroelectric RbH,PO, or RbD,PO,
(RDP) and antiferroelectric NH4H,PO, or ND,D,PO,
(ADP).! The paraelectric phases of RDP and ADP are
isostructural at ambient temperature, the lattice constants
are almost the same, and the solid solution
Rb,_,(NH,),H,PO, or Rb;_,(ND,),D,PO, (RADP)
can be obtained over the whole range of concentration.’
Upon lowering the temperature, the mixed crystal with
x <0.22 becomes ferroelectric, while that with x >0.75
becomes antiferroelectric. In the intermediate range of
concentrations 0.22 <x <0.75, RADP maintains the
overall paraelectric tetragonal structure down to the
lowest temperature,' but the features of freezing into a
glass state are already evident at 110 K.2~3 The RADP
system has been studied by variety of methods, including
dielectric,>* optical, NMR,’ x-ray,*” and neutron® mea-
surements.

The diffraction data®*’—° are of special interest since
they throw some light on the structure of glass. For
RADP crystals with x =0.35, Courtens et al.* have ob-
served broad diffuse satellites at wave vector k=(u,0,0),
where u=0.25a*. Cowley et al.’ studied crystals with
x=0.49 and found diffuse streaks close to u=0.35a".
We have performed® neutron-scattering measurements on
the deuterated crystal Rbyg 33(NDy)g ¢,D,PO;, finding dif-
fuse streaks along (100) directions peaked at a distance
1=0.35a*, from some Bragg reflections. We have also
measured the temperature behavior of the wave-vector
width and energy width of the diffuse streaks. The
widths of both quantities remain constant up to about 110
K and then increase.

A number of theoretical works have been devoted to
molecular glasses like (KCN),(KBr),_,.!%!" The interest
in RADP glass is also remarkable.">~!* In this crystal,
because of its complexity, usually only the proton subsys-
tem is considered using the Slater model, the cluster ap-
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proximation,'>!® and the replica method.!® In effect, the
order parameter, freezing temperature, phase diagram, lat-
tice constants, and dielectric susceptibility behaviors were
described. So far, no attempt has been made to calculate
the diffuse scattering and the dynamical structure factor
for RADP.

In this paper we introduce a two-dimensional model of
RADP and solve it, by using the molecular-dynamic
method. The model consists of a proton subsystem with
four protons in the unit cell and two additional particles
per unit cell which model the combined properties of Rb
and PO4 or ND,4 and PO4. For RDP or ADP crystals the
model parameters are chosen such that the system shows
a phase transition to the ferroelectric or antiferroelectric
phases, respectively. Some model parameters in both
crystals are different, and in the mixed crystal they are
taken to be in agreement with a given distribution of Rb
and ND, particles. That simple assumption leads to
many features which are characteristic for glass behavior.
Monte Carlo simulations!® for model KH,PO, and
molecular-dynamic simulations for potassium cyanide-
bromide mixtures'' have been performed. In the latter
only the time averages were calculated. We have found,
however, that the calculation of a diffuse-scattering func-
tion and the dynamical structure factor below the freezing
temperature of a glass needs to be averaged not only over
time but also over configurations of many equivalent
states. The finite system in the computer can model dif-
ferent regions of the sample, just by using different initial
conditions which drive the glass model system into dif-
ferent local minima. This multiple molecular-dynamic
procedure leads to the configurational average specified in
Sec. V.

The ‘“observation” time 7 available in the computer
simulation is only of order 10*r, where 7o=27/w,, and
wg is the characteristic mode frequency, which is not al-
ways sufficient for a good average. Within this range of
time there exists a freezing temperature T, depending on
7 such that the longest relaxation time, in a broad spec-
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trum of the relaxation times, exceeds the observation time
7 when the temperature drops below 7,(7), i.e., the sys-
tem is approximately nonergodic due to the “impatience
of the experimenter.”!” During a scattering experiment
such as neutron scattering, the neutrons are even more
“impatient observers.” The observation time 7 is specified
by the energy resolution Aw of the instrument and is, at
most, of order of 10>r,. The neutron probes differently
noncorrelated regions or states of the sample.

The outline of the paper is as follows. In Sec. II the
symmetry changes of pure RDP and ADP are considered.
The results have been used in Sec. III to derive the poten-
tial energy of the two-dimensional model of RDP and
ADP, with full agreement with the symmetry elements of
the three-dimensional crystal. In Sec. IV we present the
modifications introduced for the glass model. The
molecular-dynamic method and its peculiarities are out-
lined in Sec. V. As a check of the model, the order pa-
rameters of RDP and ADP are given in Sec. VI. In Sec.
VII the results of the phase diagram, average potential en-
ergy, glass order parameter, diffuse-scattering function,
and dynamical structure factor are reported. The glass
order parameter strongly depends on the observation time
or averaging time 7. Using different initial conditions, the
glass system could arrive in different local minima with
entirely different diffuse-scattering patterns. Such local
minima possess different patterns of particle displace-
ment, even if they have the same distribution of Rb and
ND, particles. Below freezing temperature the dynamical
structure factor is accompanied by an elastic peak. Due
to configurational averages, the results for the diffuse-
scattering function and dynamical structure factor agree
with experimental observations, including the temperature
behavior of the widths of the diffuse streak and quasielas-
tic peak. Final remarks are'made in Sec. VIIIL

II. SYMMETRY REDUCTIONS IN THE PHASE
TRANSITIONS OF RDP AND ADP

A. Rubidium dihydrogen phosphate

RDP exists in paraelectric, tetragonal form, with space
group 142d (D3}3) (Z=2).'%"" Below 148 and 218 K for
hydrogenated and deuterated compounds, respectively, the
crystal goes to the orthorhombic phase, with space group
Fdd2 (C})) (Z=2). The phase transition is driven by
B,=T; irreducible representations’>?! at the Brillouin-
zone center, i.e.,

142d(Z =2)—(kr=(0,0,0), T'y=B,)—>Fdd2(Z=2) .
2.1

The phase transition is elastic and ferroelectric because
the strain component V,, and the spontaneous polariza-
tion along the z axis transform according to I';. Two
domains of the ferroelectric phase can exist. Except for
the unit representation I'j, no secondary order parame-
ters?? are present; therefore the Landau free-energy expan-
sion takes a simple form

F=ap’+bp*+c&+dp’e+ -+,

where p and £ are the order parameters for the I'; and T,
representations, respectively. The coupling constant d is
small and, therefore, the phase transition remains second
order.

B. Ammonium dihydrogen phosphate

The paraelectric phase of ADP belongs to the same
space group 142d as the rubidium compounds. The struc-
tures are similar, with the obvious difference being that
rubidium is substituted for by ammonium. Below 150
and 237 K, respectively, the crystal becomes antiferroelec-
tric and orthorhombic, with space group P2,2,2, (D3)
(Z=4). The phase transition is driven by the sum of two
complex-conjugate irreducible representations Z,+Z;
from the high-symmetry point Z=(2m/ay, 0,0) of the
Brillouin-zone surface,

I182d(Z =2)—(kz=(27/ay,0,0), Z,+2Z;)
—P222(Z=4). 2.2)

Four domains of the antiferroelectric phase can occur.
Since there exists an intermediate space group, namely

142d(Z =2)D12,2,2,(Z=2)DFdd2(Z=4) ,

the phase transition is accompanied by the secondary or-
der parameter®? of symmetry I',. T, describes the crystal
shear V,, —V,,. The relevant Landau free-energy expan-
sion for the paraelectric-ferroelectric phase transition can
be written as

F=a'pyp3+b'(pi+p}) +c'pipi+d'(prps)
+e'(p3+p) paps+fE +E popsE+h'n?
+j(p3+pIm+ -, (2.3

where p,, p3, £, and 7 are the order parameters for the Z,,
Z,, T'y, and Iy irreducible representations, respectively.
Large coupling between the Z,+Z; and I'y (large |j'|)
leads to the first-order phase transition. Below, we disre-
gard this coupling, allowing for the second-order phase
transition.

III. MODEL OF RDP AND ADP CRYSTALS

Using a molecular-dynamic method, one is not able to
simulate a three-dimensional crystal with 36 degrees of
freedom per unit cell (if treating PO, and ND, as rigid
bodies) nor able to provide a satisfactory average over
concentration, classify the modes with a large number of
the wave vectors, etc. Therefore, it is reasonable to study
rather a simplified, two-dimensional model.

The two-dimensional model should properly describe
the symmetry changes of paraelectric to ferroelectric and
antiferroelectric phases and take explicitly into account
the hydrogen bonds and the spontaneous polarization of
the crystal. That means the selected degree of freedom
must be able to form the I'; and Z,+Z; irreducible rep-
resentations, Egs. (2.1) and (2.2). Thus, the two-
dimensional model consists of unit cells addressed i,/ with
six particles in each unit cell (Fig. 1): four protons
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v=1,2,3,4 at positions (5 +U, - 0, (3=U, ), (3,0,
and (+,—U), where U=+, and two particles v=5,6 at
(0,0) and (—;—,0), representing combined PO, and Rb or
PO, and ND, groups. Each particle has one degree of
freedom which is a displacement u; ;, from its average
position R; ;,. The protons v=1,2 and v=3,4 can move
only along y and x directions, respectively, in the model
plane, and these are the directions of the hydrogen bonds,

J

(2 1 1),,2 (2),,2 (3)
VP=1 3 (4 Pul+ A ul; + AL

ij

KRZYSZTOF PARLINSKI AND HANS GRIMM

33

while the particles v=5,6 can move only along z, the
direction normal to the model plane.

The potential energy is assumed to depend on displace-
ments of all particles and external fields and is proposed
in the form of an expansion,

250 ZC I 7 2O 7S 3.1)

where

(6)

2 (4),, 2 (5),,2
uljs+ APl + A ul; s+ AlSule)

—2E(u; jsu; j 6+ j sti —1,j,6 Wi j,s%i j— 1,6+ Ui j,s%i —1,j—1,6)

+2CTuy j5(ui _y,j1— i j—1,2F i1, —1,3— Ui j,8) F s je(Ui 1 — Ui j o+ U j3— i j,4)]
+2[B; j 6w j1ui j,a— i j1ti j,3) +Bi 1,5 j sy 41, 5,0 — Ui j 1t —1,3)
+ B j (Ui jaui j,3— i j o4 j,a) +Bi j 1, st joti _y,j3—ui jatijy1,4)]

+2(Dy j64i,j,1ti 2+ D jsi 1% 41,5 1,2+ D j64i, 3%, j,a+ D j,si 1,5 —1,3%;,,4)

+2P(uy jui 1,52+ Ui 3% +1,8))
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0y
i 4 4 4 4 4 4
7 2 Gy Fujo+ui s Fuijatus+uije)l
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Each term of the expansion has the same form as the term
with corresponding components of the potential energy of
the three-dimensional crystal of RDP or ADP, and there-
fore the expansion (3.1)—(3.5) is consistent with the sym-
metry elements of 142d space group. The quadratic term
of potential energy consists of the local potential and in-
teraction with few neighbors, while the fourth-order term
is restricted to the local terms only. The local term of
V3 is forbidden by symmetry. The interaction of the or-
der parameters of the ferroelectric and antiferroelectric
phases with the external Eg;, and staggered Enpy,Enpy
electric fields, respectively, are defined in V,,.

The way of selecting the numerical values of the pa-
rameters relied on the followmg procedure. Translational
symmetry of the crystal requires A(”)——A B; ”)—.B and
D{¥'=D. Thus, by the transformation,

u; jv=2 e, k,s)exp(2mikR; ; i
k,s

(3.6)

where k=(k,,ky) and s=1,2,...,6, e,(k,s) is the po-
larization vector, and nk s is the normal-mode amplitude,
the quadratic form V'® of the pure crystal can be con-
verted into a diagonal form,

V(Z)__Ewksnksnks . (3.7

k,s

(3.2)

—ulis—ulil, (3.3)

(3.4)

3—ujjat+ui s+ e) FENpy 3 (— D Py +uy )
0

(3.5)

FIG. 1. Model system used in the molecular-dynamic simula-
tion. The unit cell contains four protons, 1,2,3,4, and two com-
bined Rb and PO, or ND, and PO, particles, 5,6. The direction
of the hydrogen bounds are indicated. a, is the lattice constant
of the tetragonal-body-centered unit cell.
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TABLE 1. Numerical values of potential-energy parameters for RDP and ADP models.

Rb ND, Rb ND,
Ary —0.50 Anp —1.30 F 3.00 3.00
Brs 0.54 Bxp 0.20 P 0.80 0.80
c 0.50 c 0.50 H 3.00 3.00
Drs —0.20 Dxp —0.60 G 660.0 660.0
E —0.50 E —0.50

In Fig. 2 the eigenvalues o}, are drawn for two sets of
parameters, given in Table I, one corresponding to the
model of RDP, second to the model of ADP. They have
been chosen according to the following conditions. In or-
der to obtain the phase transition, the minimum values of
w} ; must be negative. The absolute minimum of w} ; has
to occur at k=0 for I'; and at k =(27/ay, 0) for Z,+Z;
irreducible representations, for the RDP and ADP sets of
parameters, respectively. The minima must be at the
same level to ensure that both phase transitions occur at
approximately the same temperature. The parameter A4
from V'? must be negative and G from V* positive, so
that they define local double minimum potential necessary
to specify the hydrogen bound. The lowest branch should
have a valley along ,, i.e., the {(10) direction, in order to
produce a diffuse streak there. A simple average
(1—x)0}RPP) 4 x o} APP) where 0.3 <x <0.7 along Z,,
should have a minimum for k values not at the k=0 or
k=(2m/aqy, 0) points; otherwise the superlattice reflec-
tions will occur in the intermediate range of x and a pure
glassy state would not be observed. It is obvious that an
elaborate potential energy is needed to fulfill these re-
quirements.

The local fourth-order term does not introduce any k
dependence and the value of G is chosen so that the aver-
age low-temperature displacements are of the order
0.05ay. Then, the undesired multimode (similar to multi-
phonon) effects do not enter into the calculated structure
factors.

Any branch of wy close to k=0 is isotropic. Conse-
quently the valley along (10) is shallow close to k=0
and can become deeper near the k =(2m/a,, 0) point. For

ROP x=0

FIG. 2. Eigenvalues o}, [Eq. (3.7)] of the quadratic part of
the potential energy V', Egs. (3.2), for RDP and ADP models,
and for the parameters listed in Table I. w;, is given in wg
units.

a good description of the experimental data, one would
need a deep valley also close to the k =0 point. Only the
introduction of an anisotropic acoustic mode could im-
prove the situation, but then one needs a three-
dimensional model with more degrees of freedom.

IV. MODEL OF A GLASS RADP

In the glass model the rubidium and ammonium parti-
cles are distributed randomly among v=5,6 sites, with a
given concentration x. In such a mixture the potential en-
ergy (3.1)—(3.5) is no longer translationally invariant, and,
therefore, the parameters of the i,j,v particles in the po-
tential energy are taken to be in agreement with the parti-
cles which occupy the neighboring v=>5,6 sites, and the
rules for that are as follows:

A;j,=Ary+(Anp— ARy)S; .y »
B, ;v=Bgy+(Bnp—Brp)d; ),y »
D; j,»=Dgrp+(Dnp—Drp)d; j v

(4.1)

where Agy, . . . , Dnp are given in Table I, and

5 = 0 if in (i,7,v) is Rb,
YT if in (i,5,v) is NDy,

and the local potential parameters for protons are as-
sumed to be an average of the appropriate A parameters
for the nearest neighbors,

(_1
Aij=5(4;41)5+4ij6)

AP =74y 15+ 456

(3)

i =7 Ai g5+ i) 4.2)

A‘(’j)_‘—_ %(Ai,j,s +A1,j,6) )
6
A=A{9=F

V. MOLECULAR-DYNAMIC METHOD

The system used in the computer simulation was a
square two-dimensional (2d) crystallite consisting of
N =38 38 unit cells, Fig. 1. Two edges of the crystallite
were supplemented with additional particles, v=35, so that
along all edges only v=>5 particles occur. In total, the
system consisted of 8741 particles. Free-boundary condi-
tions were used in order to allow extended defects, such as
domain walls, to flow out of the system. The Newton
equations of motion were solved by a simple difference
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scheme using a vector computer (Cray). We used the mi-
crocanonical ensemble in which the total energy is con-
served. The iteration step was Az =0.057;. The tempera-
ture was described by the average kinetic energy. The cal-
culation started from initial conditions in the form of a
random rectangular distribution for positions and veloci-
ties, and then the system was allowed to equilibrate. The
system was heated or cooled by a delicate change (typical-
ly by a factor of 1.0005) of particle velocities in each itera-
tion step.

We calculated two types of averages. The time average
of a dynamical variable O, which was defined as

L
<o>,=—}:12 ol AL) (5.1)
=1

where 7=L At and L is the total number of iteration steps
over which O was averaged. In a glassy state the simulat-
ed system can go to a local minimum, and in this state the
time average alone may not produce representative results.
The local minima, even for the same distribution of Rb
and ND, particles, have generally different displacement
patterns. The experimentally observed quantities are the
averages over many local minimum states; therefore we
have introduced the following configurational average,

{<0>f]c=% ﬁ (09, (5.2)

c=1

over C systems of 38X 38 unit cells having the same con-
centration x and the same temperature, but calculated
with different initial conditions. The concentration distri-
bution can be the same or different. This approach can be
called the multiple molecular-dynamic method. The
configurational-averaging procedure is especially obvious
for scattering methods such as neutron or light scattering
in which each incident particle hits the crystal in another
region and the regions can be quite independent. More-
over, the averaging time 7 during which the system
evolves, contributing to the configurational average (5.2),
is straightforwardly related to the energy resolution Aw of
the method, since 7~27/Aw.

We call the system approximately ergodic,!” at least in
the limits of time 7 available in the computer simulation,
if the time average over Cr is equal to the configurational
average over short time 7,

(0)e,={{(0),}c; (5.3)

otherwise the system is called approximately nonergodic.

To minimize the influence of the crystallite edges, we
have calculated the majority of quantities with the space
damping factor

Qi,j,v= exp( '-A'Riz,j,v) > (5.4)

where R; ; ,=0 corresponds to the center of the crystallite
and A has been chosen so that the two-unit-cell-thick ring
close to the edge contributes only 8% to the total infor-
mation. This “trick” involves a finite-wave-vector resolu-
tion and allows one to calculate quantities for any wave
vector k. In contrast, the periodic boundary conditions
without Q; ;, would allow one to find averages only for
discrete wave vectors.

VI. RESULTS FOR RDP AND ADP MODELS

A. Order parameters

The moduli of the order parameters are defined as

Try= <i > ev(ra)u.-,,-,v(t)Q,-,,-,v> 6.1)
N ij,v T
for the paraelectric-ferroelectric phase transition, and
1
NIND= <_ D e Zy+Z5,5)u; ()
N i,j,v
Xe —21rikRi,j:vQ‘.,j,v> (6.2)

for the paraelectric-antiferroelectric phase transition. The
symmetry of the crystal allows one to choose the polariza-
tion vectors related to the I'; and Z, + Z; irreducible rep-
resentations as

e(I'3)=(1,-1,1,—-1,—1,—-1), (6.3

and

e(Z,+2Z,,1)=(1,1,0,0,0,0) ,

(6.4)
9(22 +Z], 2)=(Oy0, ly 1,0,0) 3’

and Q; ;. is a damping factor [see Eq. (5.4)]. The spon-
taneous polarization of the system is proportional to 7gy,.
Conventionally, the order parameters are defined within
one domain. Here, they are described over the whole re-
gion of the crystallite. Since the domains differ by their
signs, 7gp and 9np can diminish considerably, when more
than one domain occurs in the system.

To find the order parameters we proceeded as follows.
The molecular-dynamic calculations were started from in-
itial conditions leading to a paraelectric phase, where
Nro="np=0. Then the system was slowly cooled down
in the presence of external fields Eg, or Enpy,Enpy,
respectively, and only one domain was formed at low tem-
perature. The results of the order-parameter calculation
for these runs are shown in Fig. 3, curve 1. Now, remov-
ing the external fields and heating the system, the order
parameters decrease; see curves 2 and 3. Two different
heating rates established the transition temperatures to be
T,=0.00565 and 0.00430 for the RDP and ADP sys-
tems, respectively. Although the values of w; ; for I'; and
Z,+Zj; are the same, the transition temperatures are dif-
ferent. This is caused by different contributions in the
fourth-order term V). Indeed, in the RDP case all com-
ponents of the polarization vector (6.3) contribute to V4,
while in the ADP case only proton components of Eq.
(6.4) enter into V¥,

Slow cooling from paraelectric phases, Fig. 3, curve 4,
leads to a structure with few domains. Fast cooling leads
to the state with many small domains the size of a few
lattice constants, but the structure within a domain is per-
fect. The order parameters 7y, and nnp do not depend
on the averaging time { - - - )., Eq. (5.1).
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0.1 x=1.0 E
0.10 —
o Tc=0.00430
0.05 =
\
0 L | g 4 Aen
0 0.002 0.00&  0.006  0.008 0.010

FIG. 3. Temperature behavior of the order parameters (6.1)
and (6.2) of the RDP and ADP models taken with different
external fields and different heating and cooling rates dT /dt.
Curve 1, Egp=0.001 or Enpx=Enp,=0.001 and dT/dt
=—4x107%. Curves 2,3,4, Egy=Enp:=Enp,=0 and dT/dt
=4%1075 2% 1075 and —4x 105, respectively.

B. Average potential energy

The average potential energy ( V'), was calculated as a
time average of formulas (3.1)—(3.5) and the results are
shown in Fig. 4. During cooling from the paraelectric
phase, the linear behavior is abandoned at the transition
temperature T.. In the multidomain system (¥), has a
higher potential energy than the relevant one-domain sys-
tem, and the difference corresponds to domain-wall ener-
gies. Of course, domain walls disappear above the transi-
tion temperature.

0.005 — 77—

V),

-0.005

o — one -domain
o — multi- domain

-0.010 i 1 1L 1 1 1 L
0 0.002 0.004 1 0.006 0.008  0.010

FIG. 4. Average potential energy (¥ ),, Egs. (3.1)—(3.4), as a
function of temperature for RDP and ADP models, and a glass
model with concentration x =0.62.

VII. RESULTS FOR THE MODEL OF GLASS RADP

A. Phase diagram

Each point of the phase boundary in the calculated
phase diagram of the mixed system, Fig. 5, was establish-
ed by extrapolating the behavior of the order parameters
MRp OT Mnps Egs. (6.1) and (6.2), to zero. The zero-field
behavior was found from extrapolation of two cooling
runs with different external fields. Obviously, 7z, and
7Np are nonzero close to x =0 and x =1, respectively. In
the range of concentration x~0.4—0.7, the magnitudes of
the order parameters 7y, and nynp are negligible.

B. Average potential energy of glass

In Fig. 4 the average potential energy V), Egs.
(3.1)—(3.5), for a glass of concentration x=0.62, is
shown. The influence of initial conditions on (V).
behavior is negligible. The average potential energy of the
glass is higher than those of the pure crystals, even if the
crystal possesses few domain walls. This means that the
destruction of long-range order in the glass costs some en-

ergy.
C. Glass order parameter

We define the glass order parameter of our model as

Tlf=—1~ E (<ui,j,v)‘r)2 ’ (7.1)
N i,j,v

where the summation goes over all particles. 77, does not
vanish when at least a few particles remain in positive or
negative positions during time 7. We have checked that
7, is independent of the initial conditions, which is natur-
al for such an integrated quantity and such a large a crys-

tallite.
The analogue of the Edwards-Anderson order parame-
ter for an Ising spin system?>2* will be lim,_, . 7,. The
freezing temperature of a glass is usually defined by extra-

0.002

05 0.2 0k ., 06 . 08 10
RDP ADP
FIG. 5. Phase diagram of the RADP model. The freezing-
temperature line for the time average with 7=200r, is also indi-
cated.
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0.010

Uk

0.005

0 0.002 0006 ;0,006 0.008

FIG. 6. Glass order parameter as a function of temperature
calculated with the time average 7=20070, and for several con-
centrations x, including RDP and ADP.

0

polating the temperature-dependent 7,_ ., curve to zero.
The spectrum of the relaxation times of a glass is rather
broad and the limit 7— o0 in the definition of the
Edwards-Anderson order parameter should exceed the
longest relaxation time of the system. This limit is not ac-
cessible by a computer simulation. For a finite averaging
time 7, the average will not “see” these relaxation times
that are longer than 7 and, therefore, the freezing tem-
perature depends on averaging time 7.

The following calculations have been performed. First,
for a few concentrations x the glass order parameter was
found during slow cooling from the paraelectric state with
an averaging time 7=2007,, and the results are shown in
Fig. 6. Extrapolating 7, to zero, the freezing temperature
Ty was estimated as shown in the phase diagram, Fig. 5.
For longer averaging times this freezing-temperature line
will be placed lower. Second, for x=0.62 and several
averaging times the glass order parameter was calculated
as above, Fig. 7. In the intermediate temperature range,
7, depends on the averaging time and this involves the 7
dependence of the freezing temperature T;. We found
Ty~ logr and these data are presented in Fig. 8, together
with points T, evaluated in the same manner for the
RDP model. The glass order parameter of the pure sys-

0.010

M

0.005

0
0 0.002

0.006 T

FIG. 7. Glass order parameter for a glass model with a con-
centration x =0.62 and RDP model in multidomain state, as a
function of temperature for several averaging times 7.
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FIG. 8. Freezing temperature T, as a function of logr for
concentration x =0.62 and RDP model in a multidomain state.

tem depends less on the averaging time 7 because only the
motion of particles close to a domain wall contribute to
the changes of 7,.

From these data one is, of course, not able to judge
whether T goes to zero or not, when 7— oo. However, at
zero temperature the motion of the classical system stops
and the glass order parameter has a finite value and is in-
dependent on the averaging time, Fig. 7.

Using the orthogonality properties of the polarization
vectors e, (k,s) and Eq. (3.6), one finds

"7r=2 |<nk,s>‘r|2 .

k,s

Each (7 ), has the symmetry of one of the components
of the irreducible representation of the high-symmetry
space group I42d of the crystal, and all irreducible repre-
sentations contribute to 7, in the same way. The glass or-
der parameter 77, has the symmetry of the unit representa-
tion. Each (7, ), separately would define an order pa-
rameter of the normal phase transition, and then the sign
of {7y, would select the low-symmetry domains.

D. Diffuse scattering function

Let us introduce the Fourier transform of the proton
density of the crystal as

4
E(k,t): % 2 21 exp{ _21Tik[Ri,j,v+ui,j,v(t)]}Qi,j,v .
ij v=
(7.2)

First, we define the diffuse scattering function as a time-
independent correlation function,

F(k)=(e*(k,t)ek,t)) ., (7.3)

where only the time average is applied. This function
contains Bragg reflections and usually not intense diffuse
scattering. Thus, for practical reasons it is better to split
(7.2) into

e(k,t)=(elk,t)) +plk,t)
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and calculate the two terms of F(k) separately, and then
F(k)=(€e*(k,t)) (ek,t)),+{p*(k,t)pk,t)), . (7.4)

The term | (e(k,t)),|? describes the Bragg reflections.
We have checked that the Bragg peaks at the I" point (22)
occur for all phases and the superlattice reflection at the
Z point (21) appears in the region of the antiferroelectric
phase, indicated in the phase diagram in Fig. 5. The dif-
fuse scattering was extensively studied for a glass model
with concentration x =0.62, the same as in our experi-
ment.® To find whether the time average is adequate we
have started the calculations from initial conditions at
about 7'=0.00350, cooled down to T=0.00112, and
equilibrated. Then the data were collected in order to cal-
culate, from (7.4), the diffuse scattering function as a time
average over 7=25007,. The F(k) along two lines of re-
ciprocal space are shown in Fig. 9. They indicate that
rather complicated frozen modulation exists in the sys-
tem. Then, the same system was allowed to evolve further
during the next 7=25007, and the diffuse scattering
functions, also shown in Fig. 9, were again calculated.
The general peaked features of both curves remain. Con-
sequently, a rather long averaging time does not lead to
results which are representative for the experimental ob-
servations.

The comparison of two diffuse scattering functions ob-
tained using the same cooling and equilibrating procedure
as above, the same distribution of rubidium and ammoni-
um, and the same averaging time r=25007;, but two dif-
ferent initial conditions, is shown in Fig. 10. Both curves
are entirely different. Thus, applying two different initial
conditions, the system has arrived at two different local
minima, having approximately the same energy, but com-
pletely different displacement configurations. It is worth
noticing how precisely the diffuse scattering function can
differentiate different local minima.

The above result proves that, at low temperatures below

x=0.62
- k=(2,ky)
| T=000112

S o

F (k) x1073

x=0.62
- k=(ks,1.65) 1
| T=0.00112

o @ _O ~N

F (k) x10~3
N E

(=)

10 15 20 «, 25 30

FIG. 9. Time-averaged diffuse scattering functions F(k) at
T=0.001 12 and for two lines in the reciprocal space. The open
dots indicate F(k) averaged over 7=25007,; open triangles
denote F(k) averaged over the next 7=25007,. The solid dots
denote the configurational average { F(k)}c over C =80 config-
urations.
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FIG. 10. Time-averaged diffuse scattering functions F(k) at
T'=0.001 12 and for two lines in the reciprocal space. The open
and filled circles indicate F(k) averaged over 7=25007,, but
started with different initial conditions, respectively.

Ty, the time average (5.1) and the configurational average
(5.2) do not give the same results; therefore, the system is
approximately nonergodic, Eq. (5.3), at least during the
observation time over which the system could be studied
by the molecular-dynamic method. This is not a long
time in comparison to the times facilitated by some exper-
imental techniques. If one observed the system for longer
times, then T, would diminish and the nonergodic effects
would show up at lower temperatures.

At elevated temperatures, where the glass order param-
eter vanishes and the system becomes ergodic, the time
average (5.1) should be equivalent to the configurational
average (5.2). Indeed, Fig. 11 shows two results for the
diffuse scattering function. In the first case we have ap-
plied one initial condition and found F(k) averaged over
7=250079. In the second, we have used C =80 initial

0
x=0.62 ' '
T 2k k=(k, 1.65) .
(=]
< | 7-000412
=21 oen . i
0 1 1 1
10 15 20, 25 30

FIG. 11. Time 7=25007, (open dots) and configurational
C =80 (solid dots) averages of diffuse scattering functions at
T'=0.004 12 close to the freezing temperature, along two lines
of reciprocal space. The time average for each C=80 configu-
ration was 7= 1007,
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conditions and calculated {F(k)}c with 7=1007, in each
run. The results are almost the same. The particular (but
random) distribution of rubidium and ammonium prove
to be not essential for the results.

To obtain a physically representative result for a mac-
roscopic sample, one should average over many local
minima, or, in other words, should calculate the configu-
rational average (5.2) by applying many different, ran-
domly chosen initial conditions. In this work the configu-
rational average of the diffuse scattering function has al-
ways been calculated for C=80 configurations. Each
particular run for these 80 configurations started from a
given temperature, but not lower than 7'=0.003 50, was
cooled if necessary, and then equilibrated. The F(k)
function was averaged over 7= 1007, which was good
enough, recalling the rather weak time behavior of the dif-
fuse scattering function. The “observation” time
7=1007; is compatible with a typical energy resolution
Aw ~2m /7 of a neutron spectrometer, Fig. 9. The config-
urational averages at T=0.001 12 indicated in Figs. 9 and
10 give smooth curves similar to the experimental obser-
vations.

The inelastic-neutron-scattering experiment performed
on the single crystal Rbyg 33(NDy)g ¢;D,PO, revealed elas-
tic diffuse streaks along the high-symmetry direction
(100).® The most intense diffuse streaks occur around
the (200), (240), and (150) reciprocal-lattice points, and in
our model system we observe the diffuse streaks around
the same points. We have, however, intensively studied
only the diffuse scattering around the I' point (22) along
the [01] directions and perpendicular to it. The results,
namely the configurational averages (5.2) with C =80 cal-
culated as described above, are shown in Figs. 12 and 13.
Figure 12 shows the diffuse scattering along the [01]
direction. At the lowest temperature, 7=0.00112, the
diffuse streaks have a maximum at 0.65¢* from the I
point (22), where a*=2m/a,. At elevated temperatures
the diffuse peaks disappear.

The distribution of the diffuse streaks perpendicular to
the [01] direction and 0.65a* away from the I" point are
shown in Fig. 13. At low temperatures, 7=0.001 12, the
distribution of {F(k)}c has a maximum around the
high-symmetry line, and it broadens at elevated tempera-
tures. It is instructive to draw its full width at half max-
imum (FWHM) as a function of temperature. The
FWHM was defined at half-height from the “back-
ground,” and the latter was taken as a straight line joining
the points of {F(k)}c at k,=1 and k, =3. The FWHM
of the distribution centered around k=(2.0,1.35) and
also around k =(2.0,1.65) are shown in Fig. 14. Increas-
ing the temperature, the widths remain constant up to
T=0.00275 and then increase. The width for
k=(2.0,1.65) is larger than that of k=(2.0,1.35) be-
cause the lowest dispersion curve wy  has a shallower val-
ley along the [01] direction at k =0.35a*, which corre-
sponds to k =(2.0,1.65), than it does at k=0.65a*. As
mentioned in Sec. III, better results may be obtained only
by introducing the acoustic branch. The increase of the
FWHM of the diffuse streak, Fig. 14, has been already
observed experimentally by Cowley et al.” and by us.® The
change in slope of the FWHM occurs at temperatures

W x=062
k= (2, ky)
T=0.0013

[F k), 10~

o 1

1 1
10 15 20 g, 25 30

FIG. 12. Diffuse scattering functions {F(k)}¢ along the dif-
fuse streaks close to the (22) T point for several temperatures,
obtained as an average over C=80 configurations. The time
average for each configuration was 7= 100r,.
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FIG. 13. Diffuse scattering functions {F(k)}¢ perpendicular
to the diffuse streaks around its maximum at k =(2.0,1.35) for
several temperatures obtained as an average over C =80 config-
urations. The time average for each of C =80 configurations
was 7= 1007,
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Mo Sik,0) === [~ dt{p*(k,0pk,1))
x=0.62 ’ 2 J = HPOPEE)
o 0.8F 0.00275 . ,
§ \ X exp[ —(t/y)*]e’®" . (7.8)
— 0.6 4
s For a perfect resolution, ¥ — « and the elastic part tends
= 0.4f k=(2.0,1.65) | to | (e(k,0)),|%8(w).
Z k=(2.0,1.35) At low temperatures the model glass system goes to one
0.2t . of the local minima with not only specific displacements
but also specific occupation of the dynamical modes. In
0 1 1 L 1 effect, the intensities of the dynamical structure factor de-
0 0.002 T 0.004 0.006

FIG. 14. Full width at half maximum of the diffuse streak
distribution at two wave vectors, and perpendicular to [01]
direction as a function of temperature.

where the glass order parameter, Fig. 7, is approximately
equal to half of its maximum. At that point the correla-
tion between even well-bounded particles starts to
deteriorate.

A single run made at T=0.001 12 for a concentration
x =0.45 shows that the maximum of the diffuse streak
along the [01] direction occurs at 0.35a*, and this shift
towards the I" point is compatible with the shift of the
minimum of the average wy ; for the mixture x =0.45, see
Sec. III.

E. Dynamical structure factor

The dynamical structure factor for the proton subsys-
tem is defined as a Fourier transform of the time-
dependent correlation function

1 ©
S(k,0)=— [ dt(e (k,0elk,1),

X exp[ —(t/y)*]e’®", (7.5)
where €(k,t) is given by Eq. (7.2). We have included in
the transformation the Gaussian damping factor
exp[ — (¢ /y)*], which is necessary when calculating long-
time correlations and which plays the same role as a
Gaussian resolution function in the instrument which
measures S(k,w). The “experimental” energy resolution
is then Aw=(4/y)(In2)!/2. The dynamical structure fac-
tor also has some wave-vector resolution, defined by the
damping factor Q; ; , [Eq. (5.4)].

The S(k,») may contain elastic scattering. Therefore,
as in Sec. VII D, it is better to decouple

elk,t)=(e(k,t)),+plk,t),

and to calculate the elastic (el) and inelastic (ie) parts
(within a given energy resolution) separately:

S(k,0)=Sk,w0)+Sk,0) , (7.6)
S k,0)={e*(k,0)) {elk,t)),-L-
2

X exp[ —(y*w?) /4] , (7.7)

pend upon the initial conditions. It has been proved that
the studied crystallite is too small to possess an occupa-
tion of modes required by the equilibrium condition.
However, by changing the initial conditions different local
minima and occupation of modes can be reached, and the
configurational average of {S(k,w)}c, Eq. (5.2), can be
calculated. This average should be compared with experi-
mental data. We have used C=80 configurations. In
each run such initial conditions have been taken, which
lead to a desired temperature, but not lower than
T=0.00350, and then the system, if necessary, was
cooled and equilibrated during 7=1007,. For each run
the information was collected during 1007,, and the time-
dependent correlation function {p*(k,0)p(k,t)), was cal-

T T T T T T
10 x =0.62
T =0.00111 k =(2.0,1.35)
sr .
T=0.00205 i
T
=33 .
x T=0.00272
3
=4 _
L4 T=0.00344

FIG.

0
x =0.62
k =(2.0,1.35)
7 2 T
£=
~ T=0.00612 |
3 T=0.00511
S | 4
o T=0.00646
i 1 1 1 e 1
% 0.2 0.4 , 06

15.

Dynamical structure factor

{S(k,w)}c for

k =(2.0,1.35) as a function of temperature. The time average
for each of C=80 configurations was 7=50r;. The energy
resolution was Aw=0.141.
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culated for a time interval t=(0-+50)7, and averaged
over 7=>507,. The energy resolution is Aw=0.141.

At low temperatures the dynamical structure factor
{S(k,w)}c for a glass model of concentration x =0.62
and wave vector k=(2.0,1.35), Fig. 15, consists of an
elastic peak and a long, slowly decaying inelastic back-
ground. No inelastic peaks have been observed up to
o=>5. The elastic peak arises as a result of static disorder.
In the model system of RDP or ADP the intensity of the
elastic contribution would be strongly reduced because the
coherence of the elastic scattering is not broken by static
displacements. The elastic peak for the glass model de-
creases with increasing temperature. Simultaneously, the
inelastic background increases. This means that the static
character of the displacements changes to the dynamical
behavior with a characteristic time the order of the in-
verse energy resolution.

It is worthwhile to indicate the contribution of the elas-
tic and inelastic parts to the dynamical structure factor at
»=0. Figure 16 gives these contributions as a function of
temperature. The elastic contribution decreases with tem-
perature, while the “elastic” contribution from the inelas-
tic part shows a critical behavior around 7 =0.003 50.
One should remember, however, that this separation into
elastic and inelastic parts is rather arbitrary and depends
on the energy resolution Aw.

The full width at half maximum of the dynamical
structure factor {S(k,w)}¢ as a function of temperature is
shown in Fig. 17. At low temperatures the FWHM is
equal to the resolution and it rises above it around
T'=0.00300. This means that at this temperature there
appears a relaxation time shorter than the “resolution”
time 27w /Aw~457;. This behavior is in full agreement
with the experimental observations® and theoretical
description.?

10-3 T T T T T T
x=0.62

k=(2.0,1.35) |
1S4 (k,0)1,

1

0 ; + +

1 i 1 1 1
0 0.002 T 0.004 0.006
FIG. 16. Amplitudes of elastic and inelastic parts of dynami-
cal structure factor at =0 for k =(2.0,1.35) as a function of

temperature. The time average for each of C=80 configura-
tions was 7=>507,. The energy resolution was Aw=0.141.

KRZYSZTOF PARLINSKI AND HANS GRIMM 3
T T T T T T
06 v -062 7
| k=(20135) )
3
= o4f i
b
st .
=
Z 02 —
.
0

0 0.002 10004 0.006
FIG. 17. Full width at half maximum in @ of the dynamical
structure factor for k =(2.0,1.35) as a function of temperature.
The time average for each of C=80 configurations was
7=507o. The energy resolution was Aw=0.141 (dashed line).

VIII. DISCUSSION

Our calculations have shown that the main features of
the crystal statics and dynamics of Rb,_,(ND,),D,PO,
can be understood on the basis of a two-dimensional
model. The model studied has a freezing temperature T,
to a glassy state. Above Ty the relaxation in the system is
so fast that the time average, over times available by com-
puter simulation, is sufficient to produce representative
physical results. Below T the model system goes to local
minima. To arrive at different minima, the history of the
sample must be different, and this can be achieved by ap-
plying, for example, different initial conditions. The in-
tegral quantities, such as average potential energy and
glass order parameter, show negligible dependence of the
local minima. Two local minima differ by the pattern of
displacements, even if the underlying distribution of rubi-
dium and ammonium, which produces a kind of random
field, remains the same. The distribution of the diffuse
scattering, which is the Fourier transform of the displace-
ment correlation pattern, changes significantly from one
local minimum to another.

The calculated diffuse streaks resemble unevolved satel-
lites, occurring in the incommensurate structures. There,
the phase transition to an incommensurate structure arises
as a result of the softening of a displacive or occupational
mode, or a mixed mode of both. In the glassy state the
situation is somewhat similar. The diffuse streak occurs
at the wave vectors where the average dispersion curve
s has a minimum. Sharp satellites or supereflections
cannot arise, however, because the long-range order in
glass is destroyed by the random field of the underlying
distribution of rubidium and ammonium. Perhaps it is
worth mentioning that a mixed crystal can form a glassy
state only when the “soft mode” is of occupational type.
For a displacive mode the barriers between the local mini-
ma disappear and the glassy state will not appear.

The freezing temperature T, of the model depends on
the averaging time, and for this time the system is ap-
proximately ergodic above T, and approximately noner-
godic below Ty. In such nonergodic states there exist re-
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laxation times which are longer than the times of observa-
tion. The freezing temperature decreases if longer averag-
ing times are applied. However, by the use of the
molecular-dynamic method one is not able to answer the
question of whether the freezing temperature goes to zero
if the averaging time tends to infinity. On the other hand,
a short time (10%ry) is sufficient for the description of the
scattering functions, which should be calculated with the
aim of attaining the configurational average. Each run of
the configurational average, starting from rather arbitrary
initial conditions, needs to be equilibrated before use. Be-
cause of the obvious practical reasons, the equilibration
time cannot be too long, and we have used the same time
as the average time for a given quantity. Therefore, the
system could still relax. The corrections, however, should
not be large, since the relaxation times which still drive
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the system toward a local minimum are not “seen” by the
calculated averages.
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