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The magnetism in RbCoC13 2H2O ( Tq ——2.97 K) is studied by high-temperature dynamic suscep-

tibility and low-temperature electron-spin resonance. In order to describe the experiments a Hamil-

tonian is derived that includes spin-orbit coupling, tetragonal and rhombic distortions, exchange in

the mean-field approximation, and an externa1 magnetic field. A simultaneous fit to three mutual

perpendicular susceptibilities yields consistent values for the crystal-field parameters and an intra-

chain exchange constant of J/kg ———5.0 K. The final Hamiltonian in the effective-spin s = —, for-

malism is more or less of the planar type. The zero-field electron-spin-resonance spectra are

described in terms of magnon bound states, i.e., the elementary excitations of the proposed Hamil-

tonian. The frequency independence and the angular dependence of both microwave and external

fields are explained by the model. The temperature variations of the absorption intensity and

linewidth are qualitatively discussed using simplified models.

I. INTRODUCTION

The hydrated compounds AM C13 2HzO, with A =Cs,
Rb, or (CH)iNH and I=Co or Fe, are prototypes of
chainlike metamagnetic systems, ' and show a great
variety of canted (anti-) ferromagnetic structures. 2

They are characterized by weakly coupled chains which
themselves possess strong (Ising-like) intrachain exchange
interactions. Apart from many interesting (field-induced)
phase-transition properties, this quasi-one-dimensional
behavior has made these compounds the subject of a great
number of experimental studies. ' The present system,
RbCoC13 2H20 (RCC), shares many properties with the
other family members. It distinguishes itself, however, by
a different crystal structure (monoclinic), ' a relatively
low field of the metamagnetic phase transition (70 Oe), '

and a plane of magnetic ordering which does not coincide
with a typical plane of the crystallographic structure. s'2

The present interest in RCC stems from the following
considerations. From a study of the low-temperature sus-

ceptibility and specific heat, McElearney and Merchant'
proposed that RCC might be an example of a
Dzyaloshinsky-Moriya (DM) linear-chain magnet, i.e., an-
tisymmetric exchange is the dominating intrachain in-
teraction. Neutron-diffraction results showed, however,
that in the ordered state the canting of the sublattices was
not compatible with a pure DM interaction. To elucidate
this apparent contradiction we have studied the magnetic
interactions from a microscopic point of view. We de-
rived a spin Hamiltonian including the exchange interac-
tions, thereby taking into account the canting of the local
surroundings of the magnetic ions. Experimental infor-
mation was gained from high-temperature susceptibilities
in such a way that the problem of interference of pure
one-dimensional (1D) behavior and 3D ordering phenome-
na was avoided. This latter complicated metamagnetic
behavior of RCC has recently been reconsidered by Floks-
tra et al. "

In connection with the antisymmetric exchange, it
makes sense to inquire into the nature of the elementary
excitations at temperatures just above or in the ordered re-

gime. By virtue of its multicomponent character, the DM
model can give rise to linear excitations (magnon-bound
states) as well as to nonlinear excitations (solitons). If, on
the other hand, an Ising-like interaction is present, spin
clusters are the dominating linear excitations. We report
here on the excitations in RCC which are characterized by
strong microwave absorption in zero external field, and an
angular dependence pointing to strong anisotropic
behavior.

To make this paper self-contained, we shall now sum-

FIG. 1. Monochnic unit cell of RbCoCl3 2H20. Cell con-
stants are a = 15.714 A, b =5.619 A, c =S.743 A, and
@=118.3T (Ref. 13). (Rb and H atoms are not indicated. ) Ar-
rows denote the magnetic moments in the ordered phase and are
located in b-c' planes. The c' axis makes an angle of 22' in the
a -c plane with the c axis {Ref. 17). Notation of ( 1) and {2) at
the octahedra is explained in the text.
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marize some crystallographic and magnetic properties of
RCC. ' The crystal structure is face-centered monoclinic
(space group C2/c, Fig. 1). ' The Co ions are octahe-
drally surrounded by four chlorine atoms and two H20
molecules. The trans-[CoC1&(HzO)z] octahedra form
chains along the c direction. In zero external field RCC
orders antiferromagnetically at T~ =2.97 K. Vermeulen
er al. ' determined the magnetic space group C~2'/c from
NMR and neutron-diffraction data. The magnetic mo-
ments are located in b c' -lanes, where c' is at an angle
of 22'+1' with the c axis. ' The canting of the magnetic
moments amounts to 1T+5' with respect to the b axis.
The components along the c' axis are ferromagnetically
aligned. The ordering between the chains is ferromagnetic
in the b-c plane, while the relative orientation of adjacent
b cplan-es is antiparallel. s

The paper is arranged as follows. In the next section
some experimental details are given. In Sec. III the sus-

ceptibility data are discussed„and in Sec. IV we present
the resulting spin Hamiltonian. The ESR measurements,
together with a semiquantitative interpretation, are given
in Sec. V. Finally, the paper ends with a summary and
some conclusions in Sec. VI.

II. EXPERIMENTAL DETAILS

Single crystals of RbCoC13 2H20 were grown by slowly
evaporating an aqueous solution of RbC1 and CoC12 6H20
(molar ratio 1:4.44) at a temperature of about 30'C. The
crystals grew as prisms elongated along the [001] direc-
tion and with average dimensions of 2)&2X5 mm . The
crystal structure was verified by x-ray diffraction.

Below 100 K dynamic susceptibilities were measured
with an ac susceptometer' using a mutual-inductance
technique. Typical values for the frequency and the am-
plitude of the alternating magnetic field were 330 Hz and
1 Oe, respectively. The system was calibrated using the
known susceptibility of Mn(1&4)t(S04)q. 6HzO. The sen-
sitivity amounted to 10 emu. Temperature control was
accomplished by feedback-controlled heating of He gas in
the sample space, which was in direct contact with a
liquid-He bath. Temperatures were measured with a cali-
brated carbon-glass resistor. The susceptibility data were
taken in various crystallographic directions by the use of
appropriate wedges. At room temperature the static sus-
ceptibility was measured with a superconducting
quantum-interference device (SQUID) magnetometer with
an open-ended horizontal access. ' Angular variation was
obtained by repositioning the crystal relative to the fixed
direction of the static magnetic field.

The ESR measurements were carried out on a conven-
tional X-band microwave spectrometer, operating at a
fixed frequency near 9.5 6Hz, and fitted for direct
recording of the absorption signal. The sample was
mounted on a rotation table in the center of a rectangular
resonant cavity, operating in the TE&o2 mode. The mag-
netic field was applied along the cavity by a 3-T supercon-
ducting magnet. In addition, a number of measurements
were performed in a parallel-field configuration, in which
case the sample was mounted on a narrow wall of the cav-
ity. Temperature control below 4.2 K was effected by

reducing the pressure above the liquid-He bath. Stabiliza-
tion within 0.01 K was achieved by using a manostat.
Above 4.2 K the sample space of the cryostat was filled
with He gas to cool the sample by means of conduction.
Temperature stabilization within 0.03 K was obtained by
feedback-controlled heating. A carbon-glass resistor was
used to measure the temperature.

III. SUSCEPTIBILITIES

In this section a general model for the high-temperature
susceptibilities in an exchange-coupled system with a
canted structure is derived. From a fit to experimental
data we can deduce crystal-field parameters which serve
as the input for a spin Hamiltonian for RbCoC13 2H20.

A. Theory

The ligand field of the Co2+ ion in RCC is determined
by the trans-octahedral surroundings (cf. Fig. 1). The
directions of the Cc — 0 and Co—Cl bonds in the case of
RCC are almost orthogonal. So we introduce a set
(g, rl, g) of local coordinate axes along these bonds, i.e., g
in the Co-0 direction, f in the Co-Cl chain direction, and
rl along the remaining Co=—Cl bond (Fig. 2). Note that
these axes are different for two neighboring Co + ions in
the chain. Justification for choosing the principal axes of
the crystal field in this way will be given in the discussion
below. Details about Co + in such a ligand field are given
by Oguchi and Narath ' in their treatments of
CoCI& 2H20.

The general state of Co + (S= —,
'

) in a cubic crystal
field is an orbital triplet ( Ti). The main perturbation
arises from the spin-orbit coupling and noncubic distor-
tions of the crystal field, represented by the Hamiltonian

4 = —-', kkl S—b[(l~) ——,']—I [(l")'—(l~) ] . (1)

Within the Ti triplet the angular momentum is defined

b,z",z

c,y"

FIG. 2. Definition of the local coordinate system type (1).
Euleriau angles are specified by Pi ——61.4' (rotation in the a-c
plane), 8=44.5' (rotation around a'), and /=38. 9' (rotation
around g). For type (2), Pi ——Pi+m, and the 8 and P are rotated
in the same direction as (1).
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by I.= ——,'1 with 1=1. The spin-orbit-coupling constant

is A, , while k is a correction factor due to the mixing with

higher orbital levels and effects of covalent binding.
The last two terms of Eq. (1) denote the effects of tetrago-
nal (b, ) and rhombic (I') distortion, respectively. The per-
turbation A splits the 3&4 degenerate T] level in six
Kramers doublets. For the sake of convenience new
crystal-field parameters are introduced in the numerical
calculation, '

, D(3—+v), I = —,D(l —a),
where x is a measure for the antisymmetry, —1 & ir & 1.

Rewriting Eq. (1) yields

(2)

A = —,'A, '1 S—+D[(ll)+a(l") (ll) ]———,'Da, (3)

where A,'=kl. . The matrix elements of P are calculated
in the

I
1,1 ;ASS l) representation of the T, state, yielding

two degenerate sets which we denote by I
+ ) and

I

—).
The matrix M = (+

I
P

I

+ ) is diagonalized by a unitary
transformation U, according to

two neighboring Co spins is assumed to be isotropic, i.e.,

A, = —2JS, .Si,
where the components of Si and S2 are expressed on the
same, crystallographic, set of axes. For the latter we use
the interchangeable notations x",y",z" or a', c,b, where
a' denotes the normal of the b cp-lane. To calculate the
susceptibility, and anticipating a transformation to an ef-
fective spin s = —, notation, it is convenient to express H,
in terms of local crystal-field axes. ' The octahedra are
canted with respect to each other in the c (or chain) direc-
tion. We therefore distinguish two sublattices, subscripted
(1) and (2), with their own local axes [cf. Fig. 1; (1) is de-
picted in Fig. 2]. The local axes are parametrized by the
Eulerian angles Pi 2, 8, and P, where (()z

——Pi+a. For de-
tails on the transformations we refer to the Appendix.
The result for the exchange of spin (1) in the mean-field
notation reads

4, =2piiH, i.Si,
with

E„=(i
I

U-'M Ufi), (4)

where
I

i ) (i = 1, . . . , 6) denotes the eigenstate of M with
energy Eo;. The remaining degeneracy of the Kramers
doublets is lifted by the Zeeman interaction

4 z ————', kpsH1+2ps(H+H, ) S,
where H is the external magnetic field and H, represents
the exchange field in the mean-field approximation. Up
to second order in 4 z the energies are modified to

I
&i f~z I j& I'

E+; Eo; + (i
f
P——z f

i ) +g, (6)
j

with a =g, rl, g and i,j= 1, . . . , 6. The susceptibilities can
now be calculated from the energies E+;. Before doing
so, however, we first have to specify the exchange field
H, .

In the full spin notation (S = —,
'

) the exchange between

(S()
E &S,"&

and the matrix E is defined in the Appendix. The angular
brackets denote the statistical average of the operator. It
should be kept in mind that the components of S2 are re-
ferred to a set of local axes in octahedron type (2).

The susceptibility in the direction of a principal axis a
(a=), rl, g) for ion type (1) is defined by

where Z~ = g+,. exp( pE+; ) denotes —the partition
function, P= 1 /k' T, and N is Avogadro's number. The
energies E+; are calculated from Eq. (6) and yield

E, , =E„+[ ,'kp, H—, —&i fl Ii)+2p, (H;+H, )&i IS fi)]

[ ', kpsH, &i Il —I

—j&+&Jtls(Hi+H, )&i IS I
j&]'

+
1+I ~0i EO j

We restrict ourselves to a high-temperature approxima-
tion, i.e., we assume that the perturbation energy due to
A, is small compared to k& T. In this case the expression
for 7; is restricted to

4X 8;J
g i —— g exp( PEO; ) PB;; —2p-

l
, l ll

(13b)

H, ]
&i =1'i+Pi

H

with

2%
Pi —— +exp( PEo;) PA;; —2g-

Z j~l EO, i EO,J

(12)

(13a)

AJ =( —, kgb(i I
1

I j) +p—2(isIS I j)), (14a)

3kwa&i fl lj&&i —fs I»+4 a&i IS IJ&'.

(14b)

Upon replacing H, , in Eq. (12) with H, 2, the susceptibil-
ities of sublattice (2) may be derived in a similar way. It
should be noted that H] generates three spin components
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at sublattice (2). In order to solve Eq. (12) we make the
approximation

X2=Ng pit(Sz )/Hz, (15)

where g are the spectroscopic splitting factors of the
lowest Kratners doublet

~

I-). These factors are defined
by

g =2(1+-) —', kl —+2S )1+) (tx=g, t)),

gal=2&1+ ~ ,'k—i~—+ZS~~1+&.

The final step is to drop the indices (1) and (2) of the X's,
which is accomphshed by expressing H i in H2 using the
transformations R i and Ri as defined in the Appendix.

The susceptibilities are now the solutions of

(17)

O Mgw

E
CLl

C

0.03',»

0.02-
f

60

temperature (K)
70

FIG. 4. High-temperature ac susceptibility at zero field of
RbCoCl3 ' 2H20, taken along b (0), c '

( 0 ), and c ~ (~) axes.
The inset sho~s static susceptibilities at zero field at room tem-
perature. Solid lines are the fits to the data according to Sec.
III8, in which the fitting parameters are discussed.

ctipf/gf vs'f/gv pipf/g0
v2F 1/gk 1 gPPv/g'9 tr2P'9/g0

p2FC/gC giga/g'9 1 y2Pg/g0

(18)

T I e l

2JQ /N—p,a,
and the components of vector P are defined in Eq. (13a).
The constants a,P,y, v,p, a are defined in the Appendix
(matrix E). It is obvious from Eq. (17) that a calculation
starting from ion type (2) will give the same result. When
a magnetic field is applied in an arbitrary direction, the
measured susceptibility will be a linear combination of the
X . The transformation is straightforward when use is
made of the matrices RJ [Eq. (A2)].

B. Results and discussion

Zero-field ac susceptibilities in the b, c' and c j direc-
tions have been measure(i with tb.e mutual-inductance
method in the temperature region of 4.2 to 80 K (Figs. 3
and 4). Additional measurements, using the SQUID mag-
netometer, were performed at room temperature for X
along the b direction, as well as for several directions in
the a-c plane (Fig. 5). The susceptibility along the b axis
is, at high temperatures (T ~40 K), larger than that in
the c-c plane, indicating that the b axis is the symmetry
axis with the largest g factor. From the rotation diagram
of Fig. 5 we deduce a maximum of X close to the a' axis
and 180 periodicity. The above-mentioned facts indicate
a behavior similar to that in related metamagnetic sys-
tems. ' ' The low-temperature susceptibilities (Fig. 3)
agree with the experimental results of McElearney and
Merchant' in a qualitative way. The steep rise of X'

below 40 K is clearly seen, while the crossing of X ' and
X and X' is more explicitly demonstrated than in Ref.

1.2

2 E

-30 0' 30' 60' 90' 120' &50' 180'

0O I 4 i 4 i a l 1

10 20 30 &0 SG

temperature (K)

FIG. 3. Low-temperature ac susceptibility at zero field of
RbCoC13-28&O, taken aking the b (G), c' (O ), and c& (e) axes.
Solid iles are guides to the eye. The steep rise of c' data is due

to increasing ferromagnetic order along the c' axis.

FIG. 5. Angular dependence of susceptibility of
RbCoCl3. 2820 in the a-c plane at room temperature. Sohd cir-
cles denote experimental data. Solid line is the fit according to
Eq. (22}. P is the angle between applied magnetic field and the
crystallographic c axis {it=4—61.4 ). Arrows denote several
important crJJstallographic directions; c" is the calculated pre-
ferred direction of the moment (cf. Fig. 6).
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g&=3.4+0.3, g&=2.7+0.3, g&=6.2+0.6 . (21}

They reflect the asymmetry in the g-g plane and confirm
the strong tetragonal distortion along the g direction. The
sum of these principal g factors equals 12+1, which is,
within the experimental errors, equal to 13, the theoretical
value of a Co + ion in an octahedral environment.

Attempts to extend the fits below 40 K failed because
of two reasons. Firstly, the model we used was a high-
temperature approximation. At the onset of increasing
correlations in the chains, the mean-field approach, in
particular, will no longer be valid. Secondly, a more
severe problem arises from the increasing ferromagnetic
component along the c' axis. Since the parallel suscepti-
bility of a ferromagnet diverges, it eclipses in the present
case all antiferromagnetic contributions in the c' direction
(Fig. 3). This ferromagnetic susceptibility was studied by
McElearney and Merchant, ' and has recently been recon-
sidered in detail by Flokstra et al. ' Furthermore, there
will also be ferromagnetic disturbances in the b and cz
directions, including effects due to small misalignments
during the measurements.

Finally, we draw attention to the difference between the
present approach and the results of a Dzyaloshinsky-
Moriya (DM) model as used in Ref. 12. For this purpose

12. It illustrates the important role of the relatively small

ferromagnetic component, as is also known from other
metamagnets. ' We shall return to this point later.

A numerical procedure was set up to fit the experimen-
tal data to calculated susceptibilities, ~here the latter were

obtained by transforming solutions of Eq. (17) to the
relevant directions. In order to limit the number of fitting
parameters we used well-established values for the spin-
orbit interaction, k= —180 cm ', ' and the orbital
reduction factor, k =0.9. The Eulerian angles as de-
fined in Eq. (A2) (cf. Fig. 2) are derived from the atomic
positions, ' and amount to P =61.4', 8=44.5', and
/=38. 9'. The distortion parameters D and Ii., as well as
the exchange constant J, are considered to be free. Due to
the form of Eq. (17) the three susceptibilities had to be fit-
ted simultaneously. Good fits, including the room-
temperature data, were obtained for T ~ 40 K, and the re-
sults are given by the solid lines in Fig. 4. We find

D =320+5 cm

v =0.46+0.05,

J!ks= —5.0+0.5 K .

The results for D and a., together with A, and k, lead to a
separation of the ground-state Kramers doublet and the
first-excited state of 260 cm ' [energies from Eq. (4}].
This value can be considered reasonable. It equals that in

CoClq 2H20 as reported by Oguchi, and considering the
ligand positions for both systems this correspondence is
justified. The value of ~, however, points to a substantial
asymmetry in the g-ri plane, which is not a priori obvious
in view of the geometrical symmetry of the Cl posi-
tions. ' The parameter Jwill be discussed in the next sec-
tion. In the course of the fitting procedure, the spectro-
scopic splitting factors, Eq. (16), are evaluated, and yield

an approximation of Eq. (12) is worked out in which only

the lowest Kramers doublet is taken into account, and

where rhombic symmetry around the g axis is assumed
(x=1). The result, after transformation to crystallo-

graphic axes, reads

(g )
2

II
sin

T —(gs ~gs )8x

—'[(g')'+ (g '~)'](T —80)
+ (T+8pg)(T —8~)

cos C (22)

@2' —'[(g') +(g~')'](T —8o)

4kii (T+8N)(T —Opg)
(23)

with

gsgsg' gII

2[(g~~}'+(g')']

(24)

(g~~+g')' ~

ex=so &-
2g llg ~

Here, 4 is the angle between the applied magnetic field
and the projection of the g axis in the a-c plane. In the
transformation RJ [Eq. (A2), j=1,2], we used 8=45'
and, by virtue of symmetry, /=0. The notation for the g
factors is evident, and the spin-only g factor g, is defined
in the next section. Equations (22) and (23) are, in fact,
extensions of Moriya's results. A fit to the experimental
results using Eqs. (22) and (23) gives D =231 cm
J/kz ———4.9 K, g'~ =6.0, and g =3.2. In each direction
b, c', and cj, a Van Vleck contribution was added as a
variable parameter. The fits are as accurate as the previ-
ous ones (cf. Fig. 4). Apart from a different D value,
which has to be attributed to the ligand symmetry, ex-
change constant and g values agree nicely in both models.
In addition, Eq. (22) is used to fit the data in Fig. 5 (solid
curve). No special significance of the c axis at high tem-
peratures is deduced from this figure. McElearney and
Merchant' derived the second term on the right-hand
side of Eq. (22) from the DM Hamiltonian, thereby
prematurely assuming antisymmetric exchange. The con-
clusion must be, however, that, in the present case, an-
tisymmetry, and hence canting of the sublattices, is
brought about by the canting of the principle axes of the
ligand fields alone. Furthermore, due to this canting a
second contribution in 7' arises which cannot be found
from the DM mode1.

Concluding this section, we state that good fits for the
high-temperature susceptibility were obtained, from
which we derived reasonable values for the crystal-field
and exchange parameters.
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IV. SPIN- 2 HAMILTONIAN

The low-temperature magnetic properties of
RbCoC13'2H20 can be described in terms of the ground-
state Kramers doublet. This makes sense in view of the

I

A e= ——,J g [tz(g, ) sis +p(g,") SI"sm+y(g, ) slsm'
&I,-)

distance of 260 cm ' between the latter and the first-
excited state. In case the exchange Hamiltonian is written
on the principal axes of the g tensor the transformation
to s = —, is accomplished by S = —,'g, s (A, =g, ri, g). The
result then reads [cf. Eq. (A3)]

+vg,»g,"(sfs" +SPS» ) +pg,»g,»(s»s» +$»s» ) +ug,"g,»(SPS» +s»s" ) ]

where 1 and m run over the sublattices (1) and (2), respec-
tively, which each have their own set of principle axes. In
the first term, summation over pairs is understood. The
constants a, P, etc. are defined in Eq. (AS). The spin-only

g factors are defined analogously to Eq. (16); however,
here the wave functions are sandwiched between S"only.
The numerical values are

g,~=2.7+0.3, g,"=2.3+0.3, g,~=4.6+0.4 . (26)

Diagonalization of Eq. (25) is now straightforward. We
then attain

with

4 e 2JO g ( Psl Sm gsl Sm+Sl Sm) ~

&I,m)
(27)

Jo/ka ———14.6 K, p =0.56, q =0.98 .

The primed coordinate system is the set of eigenvectors of
the diagonalizing transformation, where the g axis is tak-
en in the direction of the largest anisotropy. Hence the g'

axis is considered the equilibrium axis for the spina, as far
as intrachain exchange is concerned. As to Eq. (27), we
make the striking observation that the exchange interac-
tion has an Xl'character rather than an Ising one. This is
due to the severe canting of the local surroundings of the
Co + ions and, in particular, the fact that 8=44.6' [cf.
Eq. (A2)] does play a decisive role. The g' axis coincides
with the crystallographic b axis by a very good approxi-
mation. The g' and tl' directions are obtained from a ro-
tation in the a-c plane, where the g' axis makes an angle
(t'=39.2' with a' (Fig. 6). Thus a formal back transfor-
mation is performed from the distinct local coordinate
systems I and m to a single set of axes xyz, where z coin-
cides with z". Note that this formal step is necessary to
remove the minus signs in Eq. (27), establishing the anti-
ferromagnetic character of the system. The Hamiltonian
is finally given by

3.2 0 4
—0.4 4.5

—0.8( —1) 1.4( —1)'

0.8( —1)I

1.4( —1)l

4.6

where the ( —1)' accounts for the difference in canting of
the spins on the up and down sublattices. From Eq. (33)
we see that g in Eq. (31) amounts to 4.6. Finally, A (21

represents the resulting interplane interaction. This ener-

gy is very small, as may be inferred from the metamagnet-
ic transition at 70 Oe, and zero temperature. ' '

c

c,g

I

plane is defined analogously to Eq. (9), where only the Is-
ing term is retained. In addition, we introduced an (Ising)
dipolar field Hd. This field is found from evaluating the
dipolar interactions over a limited number of shells. Full
account is taken, however, of the direction of the mo-
ments. The result amounts to Hd-1. 5 kOe at T=0.
The g factors along the principle axes were calculated in
the preceding section [Eq. (21)]. Transformation of this
diagonal tensor to the xyz axes is accomplished by the use
of RJ [Eq. (A2), j= 1,2] with the substitution of

Iti' (cf. F—ig. 6). This yields

P 0—A g +P (])+A z+ck (2)

with

~e WO g (pSISI+1+gsISI+1+Slsl+1) ~

l

(29)

eX
1)

PP(1) ———(MIIg (HI'1+Hd ) g ( —1)'sl',
I

(31)

A z = @IIg sl GIH . —T

The interchain exchange field H; ~ between chains in a b-c

FIG. 6. Directions of coordinate axes in the a*-c plane. No-

tations are explained in the text. Positive axes of sublattice (2)

(f21, rl('i1) are rotated over 180' with respect to those of sublat-

tice (1), and P'=39.2'.
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=[—0.4, 0.7, —(+)2.3]ps, (34}

which gives a component 2.kg along the z axis, and a
deviation of 19' from that axis. Both values, and also the
length of the moments @=2.4ps, are in excellent agree-
ment with the neutron-diffraction results of Vermeulen
et al. The calculated direction of p' makes an angle of
70 with the c axis (c" axis, cf. Fig. 6), which is seen to
correspond with the measured direction of X' at high
temperatures (Fig. 5). This justifies, in retrospect, the
choice of the set of axes for the ligand fields. It is also
clear by now that canting of the moments, and hence the
rise of a ferromagnetic component, is primarily due to the
canting of subsequent crystal-field axes. The question
that remains is why the preferred direction in the a-c
plane turns to the c' axis in the ordered state'7 In the
above model it can be accounted for by the rise of a spin
component in the x direction. In view of the fact that the
c' axis is almost perpendicular to the a axis, the rotation
of p' at the onset of 3D ordering is likely due to the
monoclinic structure of RCC and the small, but compli-
cated interplane interactions, which give rise to the neces-
sary amsotropy.

We finally comment on the intrachain exchange. The
value JQ /ks —14.6 K for the exchange constant is close
to the result of McElearney and Merchant, ' J/ks ——+12
K. Note that in the latter case this ferromagnetic J value
is obtained from a fit of a 1D Ising model to the low-

temperature X'. A similar kind of analysis was recently
performed by Flokstra et al. ,

' yielding J/ks —+12.6 K.
From the analysis given above it is clear that canting of
the magnetic moment can be fully explained by the crys-
tallographic structure, together with the single-ion aniso-
tropies. Hence we can disregard any antisymrnetric ex-
change. Off-diagonal exchange terms arise when evaluat-

ing the Hamiltonian on different local axes for the sublat-
tices [cf. Eq. {25)], the symmetry or antisymmetry de-

pending on the choice of Eulerian angles. At this point
the main difference between the present analysis and that
of McElearney and Merchant' becomes apparent. In the
latter case the antisymmetry was assumed to be present in
the crystallographic coordinate system, which does not
seem to be the case for the present compound. The effect
of the canting of the octahedra is better expressed in sym-
metric non-Ising terms of the exchange Hamiltonian.

From the tensor Gi presented above, we can calculate
the length and direction of the magnetic moments. As-
suming s'=+ —,', ——,

' for ions type (1) and (2)„respective-

ly, the resulting moments are

P1 (2) F361 (2)sl (2)
J3
l0
C0

LI)

0.4 0.6
external field |T)

0.8 1.0

FIG. 7. Microwave spectra of RbCoCl3 2820 taken at 9.5
GHz and 4.2 K (solid lines). Angles between static field and c'
axis are indicated. Microwave field is perpendicular to static
external field. Dashed lines represent the fits according to Eq.
(37).

In Fig. 7 we present the microwave absorption at
T=4.2 K in the a-c plane when rotating the crystal
around the b axis. At a first glance, there are three re-
markable features: (1}the maximum absorption occurs at
zero external field, (2) there is an orientation where the ab-
sorption is inde~ident of the external field, and (3) no
absorption was detected perpendicular to that orientation.
Careful alignment of the crystal showed that if no absorp-
tion was detected, the microwave field is applied perpen-
dicular to the c' axis. Consequently, the external field is
directed parallel to c'. On the other hand, rotating the
crystal from this position through 90' yields the strongest
absorption which turns out to be field independent.

The absorption at zero field y, i.e., the top of the ab-
sorption curve, is depicted in Fig. 8 as a function of the

V. ESR IN RbCoC13-2H20

A. P.xperimental results

Microwave measurements at frequencies near 9.5 GHz
were performed on single crystals of RbCoC11 2H10. '

Spectra were recorded in several crystal planes. Upon ro-
tating the crystal, the relative orientations of both the mi-
cl'owave aild the static flields were cllaiiged with 1'espect to
the crystal.

H

FIG. 8. Angular dependence of microwave absorption in zero
field at 4.2 K (solid circles). The solid line represents the fit ac-
cording to Eq. (35}.
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angle 8' between the external field and the c' axis. As
the static field is zero, the angular dependence is obvious-

ly due to the amount of microwave energy absorbed. By
assuming that only the component of the microwave field
parallel to c' results in absorption, y should obey

y (8~)=y cos 8~, (35)

f(x)=1/(1+x /I'o), (38)

as shown by the dashed curves in Fig. 7. Therefore, apart
from the position of the peak below T~, the absorption
can be simply described by two parameters y and I o,
both of which turn out to be functions of temperature.

0,6—

where 8~ denotes the angle between the direction of the
microwave field and the c' axis (in the experiments
described, 8~ 8'——+n /2), and y is the absorption if H~
is parallel to c'. The solid curve in Fig. 8 represents Eq.
(35) and fits the experimental data very well.

The linewidth I' as a function of 8~ is given in Fig. 9,
where I is defined as the field at which the absorption is
decreased to half of its maximum value. The solid curve
represents

I (8H ) =I 0/cos8H,

where I'0 denotes the linewidth if H, is parallel to c'.
These angular dependences, emphasizing the importance
of a single direction, establish the metamagnetic character
of RCC. ' Combining Eqs. (35) and (36), we obtain

y =y~ cos (8~)f(H cos8H ),
with f(x) the line-shape function. A reasonable fit to all
the curves is achieved iff(x) is taken to be Lorentzian,

The validity of Eq. (37) was checked in a supporting ex-
periment, which was performed in a second spectrometer,
that allowed for varying 8H independently of 8~. The an-
gular dependence was confirmed, and as expected from
Eq. (37) the best results were obtained for 8H ——8,r =0, i.e.,
both fields parallel along the c' axis. All the measure-
ments described below were obtained in this parallel con-
figuration in the superconducting 3-T equipment.

Spectra were recorded at temperatures between 2.6 and
6.5 K. Outside this interval the signal intensity was too
weak to be measured accurately. Three quantities were
determined from these spectra: the resonance field, the
maximum intensity, and the linewidth.

Above a temperature T, the top of the resonance curve
is observed at zero external field. For temperatures below
T, the field of maximum absorption H becomes tem-
perature dependent, as is indicated by the open circles in
Fig. 10. The value of T, is 2.93 0.01 K, which is signi-
ficantly lower than the Neel temperature ( Tz ——2.97
+0.01 K). As a good approximation, the line shapes can
be considered Lorentzian (cf. Fig. 7), i.e., they follow

'2 —1

H —Ho1+
I

(39)

where Ho is the resonance field and I the linewidth.
However, in the present case Ho is very close to zero, and
for a detailed analysis the mirror resonance, at negative
field, must be taken into account. The actual resonance
fields Ho (indicated by the solid circles in Fig. 10) are
evaluated from the observed maxima (open circles). In
the same figure we have drawn the magnetic phase boun-
dary between the antiferromagnetic and metamagnetic
state (solid curve) as measured by dynamic susceptibili-
ty. ' ' Given the experimental errors, we can conclude
that the microwave resonance field coincides with the
metamagnetic phase boundary. The phase transition as
given in Fig. 10 actually indicates the field of maximum
susceptibility, a quantity which strongly depends on the
demagnetizating factor. ' In order to check whether the

I
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FIG. 9. Angular dependence of linewidth (half-width of half
maximum) at 4.2 K {solid circles). The solid line represents the
fit according to Eq. {36).

a l I I i I

2.7
i

2.8
temperature tK)

2.9

FIG. 10. Resonance field as a function of temperature in
parallel-field configuration uncorrected (open circles) and
corrected (solid circles) for mirror resonance. The solid curve
denotes the metamagnetic phase transition, and the dashed
curve is a guide to the eye.
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same holds for the resonance field, additional ESR mea-
surements were performed on a sphere-shaped crystal in
which we did observe a resonance field at a significantly
higher external field. Comparison with dynamic suscepti-
bility experiments on a sphere-shaped crystal results in
the conclusion that the resonance actually occurs in the
upper region of the mixed phase close to the transition to
the induced ferromagnetic state. The maximum of the
absorption is observed at zero field for temperatures above
T, . Whether Ho actually differs from zero is difficult to
say. However, at least the upper limit of He can be calcu-
lated, and yields Ho & 3.7 mT. Additional measurements
at 18 GHz (Ref. 30) showed that, within experimental ac-
curacy, the top of the resonance curve is still located at
zero external field. In this case the resonance field is, at
least for v & 18 GHz, (almost) independent of the frequen-
cy. A similar observation is made in the case of
CsCoClq 2HqO (Ref. 8).

The temperature dependence of the maximum absorp-
tion y at H~ is given in Fig. 11. With decreasing tem-
perature, y~ increases slowly up to a maximum value at
about T =3.15 K, after which it decreases very rapidly to
almost zero in a region of about 0.5 K. For T & T~, the
maximum intensity is corrected for the mirror resonance.
The linewidth I is found to increase strongly at tempera-
tures T & T~ (Fig. 12). Below Tz the observed linewidth
must also be corrected for the mirror resonance and is de-
picted in the inset of the figure.

B. Magnon-bound states

A straightforward interpretation of the microwave ab-
sorption is complicated by the fact that although the spin
Hamiltonian has a more or less XF character, the angular
behavior, in particular, is more Ising-like. Moreover,
there is a great similarity with the ESR results in
CsCoClq 2H20, which might be regarded as a ZXX anti-
ferromagnet. Furthermore, the relevant temperature re-

gion is around the 3D phase transition, thereby excluding
the well-known paramagnetic or antiferromagnetic reso-
nances. Therefore, it is tempting to describe the absorp-
tion in terms of thermally excited magnon-bound states,
as discussed by Torrance and Tinkham for ferromagnetic

1.0

200-

8-

150- 6-E

2.6

C= 100"

50-

02 3 4 5 6 7
temperature (K)

FIG. 12. Linewidth (half-width at half maximum) as a func-
tion of temperature. The solid line is a guide to the eye. The in-

set sho~s linewidth below T~, which is corrected for mirror res-

onance.

ZXX chains, ' and by Ishimura and Shiba for antifer-
romag nets.

The model Hamiltonian which serves as a starting point
for our discussion slightly deviates from Eq. (29), and
reads

MQ= —2Jp g [p ($I SI+1 +SI $I+1 )+SISI+ i ]
I

—h;g( —1)sf+A z ~

I

where p =O.S6,

h; =g P,qHr =g pa(H,' i +Hd )

ikRJ

J
' j./2

and A z denotes the Zeeman Hamiltonian. Harniltonian
P'e gives rise to n-magnon —bound states (n-MBS's). The
n-MBS is the continuous counterpart of the n-fold spin
cluster in Ising systems (@=0), and evolves towards a
state with n decoupled spin waves (or magnons) for a
Heisenberg chain (@=1). The energies of these MBS's are
most conveniently evaluated by starting from Ising basis
functions ' and introducing the x and y terms as pertur-
bations.

According to Ishimura and Shiba, we define the Ising
basis functions of odd magnon-bound states by

t
ii2

0 (k)= 2

0
4 5

temperature LK)

~

~

ikEJ + + + re SJ si+1sj+2 Nml 1 ~

J

FIG. 11. Maximum of microwave absorption as @ function of
temperature in parallel-field configuration. Above T~ the max-
imum is the zero-field value. The solid line is a guide to the eye.

' 1/2

,(k) = 2 n/2 —IikR + +g e sJ g (sz+2» —&sj-+2~)% Ncci, i &

J @=1
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and, similarly, of the even MBS's by
" 1/2

%'z(k) = 2
N ~

~

i')
~j ~j+1+Neel 1 &

j
(42)

' 1/2

4 (k}= 2
N

.k~ n/2 —1' p (s, +2W,'+2.+i)'pw i, i.
j v=o

S = Sg

the odd-number MBS's have eigenvalues s*=+1,and the
even-number MBS's have s'=0.

The matrix elements of A o between the functions 4„
are now evaluated up to order e. ' If n is odd, we find

Here, %N i, is one of the two Neel ground states, s+-

denotes the raising and lowering operators, N is the total
number of spins, and the angular wave number of k runs

over the first Brillouin zone, —n/a &k &ir/a. The ordi-

nary spin wave is, of course, 4i(k). We would like to
mention here that the magnon-bound states can also be re-

garded as domain-wall (or sohton) pairs, moving through
the chain with the center-of-mass wave vector k. 3

Denoting the total spin by

2[
~
Jo

~
+(2v —1)h;], v'=v

&q'z -i lo I'p2 -i&= V, v'=v+1
(43}V, v'=v —I

0, otherwise,

where V=p
~
Jo ~(1+e ' ), with a the interatomic dis-

tance in the chain, while zero external field is assumed.
In the case of even MBS's the diagonal elements read
2(

~
Jo

~

+2vh;). If h;=0 and p &&1, the energies, calcu-
lated relative to the energy of the ground state qlN i i, are
obtained in a straightforward way, yielding

E =2
~
Jo

~
[1—2p cos(ka) cos(ka +P)], (44}

with —m &II) &m. They form a continuous band around
E =2

~
Jo ~; for p =0 (true Ising) all states are degenerat-

ed at 2
~
Jo

~

. Johnson et al. " have given a (complicated)
expression for arbitrary p, which yields the correct gapless
dispersion relation for p ~ 1. Shiba numerically evaluat-
ed the energies for h;+0 and p «1. An analytical solu-
tion for this case is obtained by mapping the Hamiltonian,
Eq. (40), onto a ferromagnetic Hamiltonian. is In the
latter case the solutions are given in terms of Bessel func-
tions, and the energies for the even states at the lower-
band edge (P= —m ) read

E:"'"=2IJo I(1—2lpcos(ka)
I Il —&[3~( + A') /2lpJo«s(ka) I]'"l), (45)

with a=0, 1,2, . . . . Energies for the odd MBS's are
given by E„=E'„" —h;. From Eq. (45) it is seen that
the energies in the continuum are quantized on introduc-
ing a staggered field h;. Note that a nonstaggered field in
the z direction only shifts the energies of the continuum.
When applying an external magnetic field, staggered com-
ponents in the z direction are generated by fields in the
x-y plane [cf. Eq. (33)], which can be considered additive
to h;.

The energies for the k =0 modes, relevant to the ESR
problem, cannot be retrieved from Eqs. (44) and (45) for
arbitrary values of p. To obtain an estimate for the gap
energy we have calculated the dispersion relation in the
spin-wave approximation. For the sake of completeness
we started from the original Hamiltonian [Eq. (29), in-
cluding unequal weight factors p and q for s' and s»,
respectively], and took into account a staggered field h; in
the z direction. The result, up to first order in the
Holstein-Primakoff transformation, yields

(E+ ) =[2
I Jo (

+
[ Jo ( (p —q) cos(ka}+h;]'

—
~
Jo

~

z(P+q)zcosz(ka), (46)

where the value s = —, is substituted. In the limit

p =q =1 and h; =0, the correct dispersion for an antifer-
romagnetic Heisenberg chain is found. The result for

p =q «1 differs from Eq. (44), the origin of which must
be found in the different way of performing the perturba-
tion.

C. 01scQsslon

Before going into the details of the ESR results, we
shall first reconsider the Zeeman Hamiltonian, as speci-
fied formally in Eqs. (32) and (33). From the latter the
preferred direction of X' (and the magnetic moment p' '
at high temperatures) was found to be the c" axis (Fig. 6).
A transformation of the tensor gi [Eq. (33}]around z to a
set of axes, c" and cz', for the Zeeman Hamiltonian,
yields

~z ——ps g ~

g""sl'H" +g""sfH" +g sfH'+( —1)'g""(sfH» +sf H" )+(—1)'g»'(sf H'+sfH» ) ~,
I

(47)

gxx 3 2 gpss 4
(48)

The last term gives a staggered field in the z direction,

I

and is therefore simply additive to the internal staggered
field in Eq. (40). Note that a field applied in the x' direc-
tion does not give a z component. As has been discussed
at the end of Sec. IV, for low temperatures the c' axis is
the important direction, and not the c". Thus from now

on we take, on phenomenological grounds, the c' axis to
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be the y' direction in Eq. (47).
As to the nature of the microwave absorption, we make

an estimate for the k =0 energy from Eq. (46}, yielding
E (k =0)=9.4 K. This energy is far beyond our experi-
mental range, and makes the possibility of creating the
elementary excitations very unlikely. The origin of the
ESR absorption must therefore be found in making transi-
tions between thermally created excitations, of which the
magnon-bound state is considered to be the best candidate.

The frequency-field relations of the MBS resonances
are readily obtained from Eq. (45). It is noted in between
that the transformation discussed above also affects the
exchange Hamiltonian in that weak off-diagonal (sym-
metric) x'y' terms will appear. As our discussion is, how-
ever, semiquantitative, we shall not consider this point
further. Two types of transitions are possible: (i) a
Q'= + 1 transition between an even- and an odd-
numbered MBS, and (ii) a M'=0 transition between two
even- or two odd-numbered MBS's. If we now apply the
microwave field along the c' (or y') axis, it can be seen
from Eq. (47) that a Zeeman contribution is present in the
y' as well as in the z direction. Therefore the selection
rules allow for both types of transitions. For the reso-
nance condition of the

~

b,s*~ =1 transitions induced by
the rf Zeeman term in the y' direction, we obtain

30(

= 25-
N

u 20-

~ 10-
O

Eeven Eodd y'z

where we introduced the effective field

(49)

H,ff=(g Ig" ')H;+Ho,

and Ho in the c' direction. It is obvious from Eq. (49)
that if X-band absorption is observed around zero external
field (HO-O), absorption at nonzero field should be
detected at double the frequency. The fact that this has
not been observed makes the

~

M'~ =1 transition highly
unlikely.

As to the M'=0 resonances, we infer from Eq. (45)
that, for k =0,

~=E.+i —&.=2&
I
Jo

I
(3~g"'VaH. rr~2S

I
JO

I

)'"
x[(~+—,)' ' —(~+ —,')' '] (50)

This relation is depicted in Fig. 13 for ~=0, 1, and 2. In-
cluded are the two experimental points, where we have
drawn the a=0 curve through the 9.5-6Hz point. Thus
the almost frequency-independent resonance field can be
satisfactorily explained by assuming that M'=0 MBS
resonances are observed. Using ~=19m GHz and a =0,
we derive from Eq. (50) an effective field of H,if=150
Oe. At 4.2 K, Ho Oand thus H, ff i——s an estimate for the
internal field above Tz. Below T~ the resonance field
shifts from zero (Fig. 10} and coincides with the
metamagnetic transition. This field in the c' direction
must be considered a compensation of the internal fidd.
The angular behavior of the microwave absorption, being
a manifestation of strong anisotropy, is now easily under-
stood from the form of the Zeeman Hamiltoman. A
M'=0 transition requires a Zeeman component in the z
direction. When applying the rf field in the a-c plane,
this is only accomplished by the component in the y' (or
c') direction. The angular dependence of the dc field is

0
l l

50 100 150

g&pc'p. H' (mT.'I

FIG. 13. Magnon-bound state resonances for ~=0, 1, and 2,
according to Eq. (50},as a function of effective field. Open cir-
cles denote data points at 9.5 and 18 GHz.

explained in a similar way. Only the staggered oman
component along s,' influences the splitting of the MBS's
and, hence, the observed absorptions. This component is
induced by a dc field parallel to the c' axis only. A non-
staggered external field in the z or even in another direc-
tion shifts the absolute energy levels an equal amount for
all a, and, consequently, disappears from the resonance
condition (50).

We now turn to the intensity of the absorption as a
function of temperature. The ESR intensity, defined as
the area under the absorption curve, is plotted versus tem-
perature in Fig. 14. It is noted, in the first place, that the
overall temperature behavior is characteristic for reso-
nance between thermally activated excitations in a linear
chain, a process which is quite well understood in Ising-
like systems. The intensity increases from zero with in-
creasing temperatures due to the thermal activation of
more MBS's. Above a maximum the intensity gradually
decreases to zero as a consequence of decreasing correla-
tion length and interactions between MBS's in different
chains. An expression for the intensity as a function of
temperature is only available for a~&1, but is difficult
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FIG. 14. Intensity of microwave absorption (area under spec-

tral line) as a function of temperature. The solid hne is a guide
to the eye.

with E/ks ——26+2 K, as is represented by the solid line.
This energy equals 2' in the Ising limit, yielding
Jo/ka ——13 K, a value which is very close to the exchange
constant previously prescxtted. Below T~ even the true
spin-cluster model is unable to explain the vatic de-
crease of intensity. What happens is that in that tempera-
ture region the internal (staggered) field rises very rapidly.

).0- Oo
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0.28 0.30
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FIG. 1S. Magnon-bound state resonance intensity versus re-
ciprocal temperature. The fits are aotmtding to Eq. (51) for
E/kg ——2,6 I (solid hne) and E/k~ ——93 K. (dashed hnet.

to deal with. Therefore we restrict ourselves, as a first ap-
proximation, to the hing theory. ' Just above Tjv, an
exponential behavior (Fig. 15) is found acc«ding to

I—exp( E/ks T—),

5„5 6g 6$3& 4g 4.5 5.0

temperature (K)
FIG. 16. Linewidth versus temperature on double-

logarithmic scale. The solid hne is I —T, mth o =3.9.

This can also be seen from the sublattice magnetization,
which rises to 90% of its maximum value at T=0 be-
tween TN and 2.6 K." This happens to be just the inter-
val where the intensity disappears. As is clear from Fig.
13, a large staggered field will take the resonance out of
the experimental region.

Finally, we look more closely at the linewidth. In order
to obtain better insight, we have plotted I as a function of
temperature on a double-logarithmic scale (Fig. 16). We
find that, for T & TN,

T3.9

To the best of our knowledge, an expression for the tem-
perature dependence of the linewidth of spin-cluster or
MBS resonance is not available. The linewidth of the an-
tiferromagnetic resonance (m= 1), however, has betxt stud-
ied by several authors. ' 2 The calculations of Rezende
and White hued on a theory of multimagnon processes in
the ordered state yield a temperature dependence of

where a=2 or 4, depending on the dimensionality and
temperature region. Although the observed Ts behavior
is encouraging, we must interpret it with care. Firstly, we
cannot account for the order of magnitude of the
linewidth, and secondly the present compound is not of
true Heisenberg type. On the other hand, the resemblance
of the dynamics to a case intermediate between magnons
and MBS's is clear. The uniform modes of the bound
states (i.e., k =0), as excited by microwaves, decay due to
interactions with modes having k&0.

In conclusion, it can be said that the MBS resonances
give a good explanation for the frequency behavior as well
as for the angular dependence of the ESR spectra in
RbCoC13 2H20. When absolute energies do play a signifi-
cant role, as is the case when considering intensities, the
model is too much of a simplification. It should then be
extended for a larger e, and the dipolar and interchain ex-
change energies must be taken into account more accu-
rately.
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VI. SUMMARY AND CONCLUSIONS

In this paper we have reconsidered the spin Hamiltoni-
an of RbCoCls 2HiO on the basis of a detailed crystal-
field analysis. Although the canting of the C14(HqO)z oc-
tahedra that surround the Co ions is not exclusive for
RCC, it has far-reaching consequences in the present
compound. The fact that the principal axes of the two
types of octahedra are almost perpendicular to each other
leads to a spin Hamiltonian of more or less X1' character.
Experimental information, needed for details on the
crystal-field parameters and g factors, was extracted from
high-temperature susceptibilities. In addition, the intra-
chain exchange constant was obtained, yielding Jo/ks
= —14.6 K. This value is in agreement with results from
low-temperature susceptibilities. By use of the calculated

g tensor, the magnitude and direction of the magnetic mo-
ment in the ordered state, as measured by neutron diffrac-
tion, could be confirmed. As the theory included a high-
temperature approximation, and did not incorporate 30
interactions, the precise direction of the c axis was, how-
ever, not predicted. The results of the present analysis
also allow a detailed insight into the various contributions
to susceptibility and magnetization at low temperatures.
Canting of the moments can be satisfactorily explained
from the canted crystallographic structure in combination
with single-ion anisotropy, and the introduction of an an-
tisymmetric exchange seems superfluous.

The nature of the elementary excitations in RCC was
probed by ESR. Microwave absorption was found around
the 3D phase transition. It showed strong angular depen-
dence relative to the c' axis, and hardly any frequency
dependence. The results are best explained in terms of
thermally excited magnon-bound states, which are con-
sidered to be the elementary excitations of the anisotropic
Heisenberg Hamiltonian. Because of the strong resem-
blance to the antiferroinagnetic resonance results in
CsCoC1& 2H20, a reconsideration of the latter data in
terms of magnon-bound states would be worthwhile.
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APPENDIX

The transformation from the crystallographic axes
x",y",z" to the local axes g, r), g is accomplished by three
successive rotations over the angles P, 8, and P (cf. Fig. 2).
A vector X" in the former system is then related to = in
the local system according to

where

cosP cos(t —sing sing cos8 cosf sin(t +sing cosP cos8 sing sin8
R i —— —sing cosP —cosg sing cos8 —sing sing+ cosg cosP cos8 cosP sing

sing sin8 —cos(t sin8 cos8

(A 1)

for ion (1). In case of ion (2), P~P+~; hence, Ri(P)
=Bi(—P). Furthermore, RJ '=RJ, with j=(1,2), and
E. T denotes the transposed matrix.

Expressing the exchange interaction [Eq. (7)] on the lo-
cal axes is accomplished by

P, = —2JSiIS2———2JXiEXp, (A3)

where X&,X2 are the spins in local-axes notation, I the
unit matrix, and E the matrix

a= —[cos g+cos(28) sin2$],

p= —[sin g+cos(28) coszf]

y =cos(28),

v = —,[ 1 —cos(28) ]sin2$,

p=sin(28) sing,

cr =sin(28) cosg .

(A5)

with

The X notation for the spins in (A3) is only formal.
Throughout this paper we have denoted the spins by S
(s), while the interpretation will be clear from the context.
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