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Solitary waves in elastic ferromagnets
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It is shown, on the basis of the continuum equations of the magnetoelasticity of ferromagnetic
crystals, that Bloch walls in an infinite crystal and Neel walls in a thin elastic film can be represent-
ed by "magnetoelastic" solitary waves. In the first case the so1itary waves are solutions of a simple
sine-Gordon equation in which the only alteration as compared to Enz's case is a change in the
reference length as a result of the presence of magnetostrictive internal strains. These solitary waves

may therefore be true solitons. In the second case, in addition to the same effect resulting both from
magnetostrictive internal strains and demagnetizing effects, the magnetic-spin orientation remains
nonlinearly coupled to the elastic displacement polarized in the plane of the film. One therefore has
to deal with a nonlinearly coupled system of a sine-Gordon or a double —sine-Gordon equation and
two wave equations. Solitary-wave solutions are obtained in closed form for this system. These soli-

tary waves, however, are not true solitons in that radiations always accompany the interactions of
such two waves, as already shown in a parallel study concerning ferroelectric crystals.

I. INTRODUCTION

After the works of Seeger, ' Enz, Feldkeller, and oth-
ers providing a dynamical generalization of the pioneer-
ing paper by Landau and Lifshitz, it is well known that,
in rigid ferromagnets, solitary waves, and solitons, solu-
tions of a sine-Gordon equation, may represent ferromag-
netic domain walls in motion. Enz s derivation, in fact,
nowadays is often used in reviews and textbooks on soli-
tons as a physical introduction of what may be referred to
as the sine Gordon m-odel On th.e other hand, with a
growing interest in the magnetoelasticity of crystals and
magnon-phonon couplings, ' we now have at our dispo-
sal a rather well-established theory of the nonlinear and
linearized magnetoelasticity of ferromagnets, " ' so that
all ingredients are available for a magnetoelastic generali-
zation of, say, Enz's derivation. As a matter of fact,
Motogi and Maugin' ' have already studied the small-
amplitude magnetoelastic vibrations of Bloch and Neel
walls in ferromagnetism. But this problem already in-
volves a linearization, albeit about a spatially nonuniform,
nonlinear solution. Here we directly tackle the nonlinear
dynamical problem of the ferromagnetic domain-wall
structure on the basis of the equations of magnetoelastici-
ty. More precisely, by analogy with the recent works of
Pouget and Maugin' ' on the "soliton" type of approach
to the domain-wall structure in elastic ferroelectric crys-
tals, we show, in two cases where ferromagnetic crystals
find technological applications, that solitary waves, jointly
in the magnetization orientation and the elastic-
displacement components, provide an adequate modeling
of the nonlinear motion of ferromagnetic domain walls.
The derivation follows Enz's in the sense that a slight de-
viation of the magnetic spin out of the usual plane of ro-
tation in Bloch and Neel walls must be envisaged so that,
mathematically, pure Bloch and Neel walls cannot exist.
En particular, the existence of such solitary-wave solutions

is established for 180' Bloch walls in an infinite cubic
crystal on account of magnetostrictive internal strains and
for 180' Neel walls in a thin cubic elastic film where both
magnetostrictive and demagnetizing effects are taken into
account. The second case is much more involved than the
first one in that it generally involves a nonlinear dynami-
cal coupling between the orientation of magnetic spins
and the elastic displacement component in the plane of
the film. Then the solitary waves obtained are not exactly
solitons in the sense that radiations will accompany any
interaction phenomena between such two waves—
compare Ref. 19.

Section II is devoted to the statement of the basic sys-
tem of field equations for the magnetoelastic motion in
elastic ferromagnets. The magnetomechanical constitu-
tive equations needed to close this system are given in Sec.
III for cubic crystals presenting an easy axis of magneti-
zation. Bloch and Neel walls are defined in Sec. IV. The
dynamical nonlinear problem concerning the motion of a
Bloch wall is examined and solved exactly in Sec. V, while
that concerning the Neel wall is dealt with in Sec. VI,
analytically. In particular, the branch of the pseudo-
"magnetoacoustic"-dispersion relation which provides a
stable magnetoelastic solitary-wave solution is determined,
and a closed-form solution is given both for magnetic and
mechanical entities. The work concludes in Sec. VII with
possible generalizations (influence of an externally applied
magnetic field, interaction of solitary waves, influence of
coupled magnetomechanical dissipative effects) which are
not studied in the present work.

II. EQUATIONS OF MOTION

En the magnetoelasticity of ferromagnets the balance
equations which are needed in the magnetomechanical
description of crystals at low temperature (much below
the Curie temperature) are as follows (e.g., Ref. 15): (a)
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V
p =divt+M f, (2.1)

the spin-precession equation,

=p, xC, (2.2)

and Maxwell's equations of magnetostatics in insulators
(here I.orentz-Heaviside units are used so that neither fac-
tor 4m nor vacuum magnetic permeability appear in the
formulation):

Maxwell's equations of magnetostatics, (b) the conserva-
tion of mass, (c) the balance of linear momentum, and (1)
the precession equation of magnetic spins or, at the long-
wavelength limit, of the bulk magnetization. The
quasimagnetostatic hypothesis implied at point (a) is suffi-

cient since we are not interested in optical effects. Within
the framework of infinitesimal strains envisaged here, (b)
does not play any role. Equation (2.1) below, for infini-
tesimal strains, contains couplings with magnetic entities
in two forms: (i) in the stress constitutive equation in the
form of magnetostriction and (ii) if the magnetic field is
not spatially uniform, in the form of a body force, the so-
called ponderomotive force, acting on a magnetized crys-
tal. Equation (1), referred to as the Landau Lifsh-itz equa
tion, describes the time evolution of magnetic spins in a
phenomenological manner. It was shown in magnetoelas-
ticity that this latter equation is entirely equivalent to the
equation of balance of angular momentum for the crystal
(see, e.g., Refs. 12 and 13). We therefore have the follow-

ing equations: the balance of linear momentum,

divergence —taken on the first index of second-order ten-
sors) and a Cartesian tensorial index notation in rectangu-
lar coordinate frames.

Equation (2.6) means that it is an effective magnetic
field H' which causes a couple C which, in turn, is re-
sponsible for the spin precession. The very form of Eq.
(2.2) implies that

i p i
=ps ——const, (2.10)

the saturation value. Instead of p or M one can introduce
the director cosines such that

a, =pt/ps=Mt/Ms. Ms=pljs

and Eqs. (2.7)—(2.9) are replaced by

H"=H+H
Ms 5a '

X=X(e,a,Va),

(2.11)

(2.12)

(2.13)

BX . BX

B "B(V) (2.14)

It must be noticed that in writing the second of Eqs. (2.7)
we have somewhat simplified the theory in neglecting the
coupled exerted by the field on the elastic continuum so
that the stress tensor t is reduced to a symmetric contri-
bution, which is generally not exact in a deformable fer-
romagnetic body (see Refs. 12—15 for the complete ex-
pressions).

VxH=O, V.B=0,
where ( T= transpose)

(2.3) III. INTERNAL ENERGY:
CONSTITUTIVE EQUATIONS

and

i' e= —,[Vu+(Vu)T],

Mf=(M V)H, M pp, , H=B —M,
C=yH"

H «=H+H~ 5M' Be

(2.4)

(2.5)

(2.6)

(2.7)

The internal energy of the crystal at a given tempera-
ture much below the Curie temperature is the sum of four
contributions:

(i) The magnetic anisotropy energy such that the crystal
presents privileged directions of easy magnetization. We
assume that the considered crystal is of the easy-axis type
of direction of unit vector 1, hence the magnetic anisotro-

py energy

X=X(e,M, V'M) . (2.8)
X,„„=—, KMs(a d),—K&0, (3.1)

where E is the dimensionless magnetic anisotropy con-
stant.

(ii) The ferromagnetic exchange energy. This is a con-
tinuum representation of Heisenberg's exchange interac-
tions which contribute to the ferromagnetic ordering of
spins. It does not depend on the direction of magnetiza-
tion but it accounts for any deviation from a state of spa-
tially uniform magnetization. Its continuum representa-
tion involves Va in the form

sr ex . ar
5M=BM "

B(VM)
(2.9)

We use indifferently a direct intrinsic notation (in which
V is the nabla operator and "div" means the

Here, p is the matter density at the natural state, u is the
elastic displacement, e is the strain tensor of infinitesimal
strain theory, v is the matter velocity, 8 is the magnetic
field, B is the magnetic induction, M and p are the mag-
netization per unit volume and mass, respectively, y is the
gyromagnetic ratio of the crystal, X is its internal energy
per unit volume, 8' is the applied magnetic field, 8 is
the demagnetizing field (which depends only on the mag-
netization and the geometrical shape of the sample), and
5l5M is the functional derivative such that (3.2)

where the summation over repeated indices is understood
and A, is the exchange constant ~ith dimension L .

(iii) The elastic strain energy. For a cubic symmetry
such as in iron, nickel, or YIG (yttrium iron granet) this
energy reads ' (also Ref. 14)
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X i ——
ascii(e

+eyy+e~)+c44(e y+eyg+e~)

+c i&(exxeyy +eyy ezz +ezzexx ) (3.3)

(4.3)

Moreover, it is supposed that q varies slowly with x so
that

where the axes x,y, z coincide with the edges of the cubic
structure and c~~, c~q, and e~ are the elastic moduli.

(iv) The magnetoelastic energy. This is the interaction

energy between magnetization and strains, which provides
globally a nonlinear effect since, for magnetostriction, this

energy is cubic simultaneously in a; and e,~, remaining
linear in the strains. For a cubic crystal one has (Ref. 22)

2 2 2X, ,&

—[Bi(a,e +aye~+a, e )

+28&(a,aye~+aya, e~+a,a, e )]Ms, (3.4)

where Bi and Bi are nondimensional coefficients of mag-
netostriction. Globally,

B2y 1 By
(4 4)

where

(4.5)

the thickness of a Bloch wall in the early Landau-Lifshitz
theory (Ref. 5), is the only characteristic length which can
be introduced so far. The above approximations allow
one to replace (4.2) by

M(Bloch)=Ms(q&, cos8, sin8) =Msa(Bloch) . (4.6)

~=canis+ ~ex+ ~el+ ~mage)

IV. SLOCH AND NEEL %'ALLS

A. Bloch wall

(3.5)

H"= —N M, (4.7)

Furthermore, the out-of-plane deviation of M related to
the small angle y implies the existence of a demagnetizing
field H" which opposes this deviation (see Winter ').
Generally,

or

a(x~ 00 ) =(0, —1,0), a(x~ —oo ) =(0,+1,0) . (4.1b)

Within the wall, using the angles 8 and y in Fig. 1,

M =M+(sinip, comp cos8, cosqr sin8}=Msa, (4.2}

where 0&
~
8~ &m, while, following Enz in his analysis

of the rigid case, y is considered as an infinitesimally
small deviation out of the plane of the wall, i.e.,

The following setting will be considered for the case of
a Bloch wall (Fig. 1). The crystal is infinite in its three di-
mensions. The wall is pictured by a transition layer of
which the plane is orthogonal to the x axis. Far from the
wall, at infinity, we have the following limit conditions on
the magnetization or its orientation:

M(x ~)=(0 —Ms 0) M(& —00)=(0 Ms 0)

(4.1a)

where N is the so-called demagnetizing tensor. In the
present case

H =(H„,O, O},

with

(4.8)

H, = NiiM, = —Mssinq—= Msp, N—ii=1 . (4.9)

B. Nbel mall

The following setting is considered for the case of a
Neel wall (Fig. 2). The crystal is a thin film of thickness
T along the z axis, wide as compared to T along the y
direction and of infinite extent along x. According to
Neel (also Soohoo and Jones and Middleton ), insofar
as demagnetizing effects are concerned, one can assimilate
the wall to a uniformly magnetized cylinder of elliptic
cross section with principal axes Dyi and T. According to
their analysis it follows that, along the x axis

X

I

/'
j

I

I

Nl
Neel '

- X

FIG. 1. Bloch wall in an infinite crystal. FIG. 2. Neel wall in a thin film.
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d0„=— I„,
D~+ T

(4.10)

which reduces to —M~ sin8 if D& ~& T and M is in the
plane (x,y) of the wall. The out-of-plane deviation of the
magnetization (p&0), by analogy with the Bloch case of
the previous paragraph, yields a demagnetizing field com-
ponent

d
Hg ———%33M'0,'g,

Dpf+ T
(4.11)

with H, = Msa—, if T «D1v. However, if D1v « T, H,"
will be much less important. Globally, on account of Eqs.
(4.10) and (4.11),we set

H (Neel) = ( lii 1 1
M—sa„0, N33—Msa» ),

2 &1MS2
~100 ~ ~111

C11 C12

2~S2

3C~
(5.1)

and it is shown (Ref. 22, pp. 272—273) that to a spatially
uniform magnetization field of director cosines ao there
correspond internal strains e=e given by

0 3 q(jj) 0 0
egj = 2 A. cx]cxj

where

(5.2)

180' rotation occurs through the wall). In these distant
regions (x~+ oo ) the cubic crystal is therefore subjected
to the magnetostriction of uniformly magnetized bodies
(see Ref. 22 and Kleman ). For a cubic crystal with elas-
tic and magnetostrictive energies given by Eqs. (3.3) and
(3.4) we set

with k'I'=A, iso if i =j, X'"=A,„i, ifi~j . (5.3)

+N
11 D T& 33 D

(4.13) In our case, since the motion does not depend on y and z
we can write

Like for the Bloch wall, we have the following limit con-
ditions

e~ ——e~ ——const, e~ =e~ ——const,
(5.4)

M(x ~+ oo ) = Ms(0, + 1, 0)

and [compare Eqs. (4.4)]

a'q
a' "T'

for all x's, while in the region of the wall

M(Neel) =Ms(co~ sin8, co~ cos8, sinq&)

(4.14)

(4.15)

e~ =e~ =const,

where the constants are determined by the values of inter-
nal strains at + ao. For the 180' Bloch wall with asymp-
totic conditions (4.1), Eq. (5.2) yields

81Mg2
0e~(+ oo ) = — otherwise e,&(+ oo ) =0 .

(C 1 1 C12 )
(5.5)

On the other hand, Maxwell's equations (2.3), integrated
along x, give

=Msa( Neel ), (4.16)

which, on account of the third of Eqs. (4.15), can be sim-
plified to

M(Neel) =Msa(Neel)=Ms(sin8, cos8, g&) . (4.17)

V. BLOCH WALL IN AN
INFINITE ELASTIC MEDIUM

%'e consider a one-dimensional motion of a three-
dimensiona1 elastic body along the x axis. I et u„, u~, and
u, denote the three Cartesian components of the elastic
displacement which, together with a and H, is assumed to
depend only on x and t. %ith the asymptotic conditions
(4.1) it is normal to assume that the crystal is practically
uniformly magnetized far away from the wall where the
dependence on x is markedly pronounced (the bulk of the

The walls described by the orientation fields (4.6) and
(4.17) and the asymptotic conditions (4.1) and (4.14) are
called 180' walls since the magnetization effects a rotation
of 180' within the two limits. It must, however„be no-
ticed that the orientation fields (4.6) and (4.17) are not
pure Bloch and Neel walls since in both cases there is a
slight out-of-plane deviation. The existence of this
nonzero deviation is of utmost importance because the
linearization of the theory with respect to the small vari-
able y allows for the forthcoming manipulations.

(5.6)

where H is a spatially uniform field which may possibly
depend on time. On account of this and Eq. (4.6) the
equations of motion (2.1) on the open x interval
( —oo, + oo ) first read

8 u»
2

t}t
—CL

28 uY

dt
—CT

2a"
Bt

—CT

2~u» z 1 8
BX

=Ms(B, ——, ) (q ),
Bx

8 uy
2

z 2(B2Ms Ip) ——(tpcos8),
BX X

~us 2 8
2

=2(B2Ms Ip) (p sin8),
BX Bx

(5.7)

where we have defined the speeds cL and cr of longitudi-
nal and transverse elastic waves by

2 2
cL c11/Pi cT c44/P . (5.8)

(5.10)

But, in view of the approximation (4.4), we can consider
that the right-hand sides of Eqs. (5.7) are negligible, so
that we obtain the following three uncoupled wave equa-
tions for the elastic-displacement components:

8 Qz 2 8 Qz—CL ——0, (5.9)
dt Bx

—cr ——0, — —cT ——0.
Bt Bx Bt Bx
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+(H, cos8 Hy—sin&)+B&Mz(e~ —e )sin28,

sin8=(H„sin8 AM&—sin8 yH,—)
188 o. ~ Q

y dt

(5.11)

+2B i Mq(e~ —e )y sin8

Now the spin-precession equation (2.2}, on account of
Eqs. (2.6), (2.12), (2.14), (3.1)—(3.5), (4.8), (5.6), and (5A),
yields the components:

——,KMs sin28 —2B2Mze~ cos28
1 Bip 8 8 1 . o

Bx

On account of Eqs. (5.5) and setting

28 )Mg
K =EC —28)e~ ——K+

we rewrite Eqs. (5.14) and (5.15) as

1 a(p a'8=A Ms —
~ KMs sln28+ (H, cos8 —H» sin8 )

0 0 ~

Bx

(5.17)

(5.18)

y I —,
' [K +2B|(e~—e~ )]Ms sin28

+ (H„sin8 —H, cos8) ] =0 . (5.16)

—2B2Mz(e sin 8+ —,
'

ey sin28}, (5.12) =H +q&(Hosin8+Hyocos8+KMzcos 8+Ms )
dt

188 o 0

y dt
cos8 = ( pH» +yKMscos8 H„cos8—+qMzcos8 )

+2B2Ms (e»„cos8+e sin8) .

We shall assume that

(5.19)

+2Bi'(e —e~ )y cos8

+2BpMs(ey cos 8+ —,
' e~sin28) . (5.13)

=A3fz + (H, cos8 Hsin8)—1 a~ a'8
Bx

Combining the last two equations while accounting for
(4.4), we are left with the equations;

1 »Hy IMs, H» /Ms, K . (5.20)

0M =X~s~ Hx, y, g ='V+x,y, s»

we obtain the following equation for 8:

(5.21)

8 8 2 828
=co~ A, —,' K sin28+(—AH cos8 AH sin8)—

2

Taking then the time derivative of Eq. (5.19), eliminating
q& between the resulting equation and Eq. (5.18), and intro-
ducing the notation

,
' [K+B,(e—~o—e~o)]Mssin2—8

—2BzMse~cos28, (5.14}

Bey» Be~
+2B2tost cos8+ sin8

t t

188 o o. o 0

y Bt
=H, +y[H, sin8+Hy cos8+Ms(K 2B&e~ )co—s 8

2BiM—se sin 8+Ms]

—2Btcost(e», sin8 —e cos8)

But, after Eq. (5.19)

(5.22)

and

+2B2Ms(e» cos8+e~sin8},

8
=toH +2B2to~(e», cos8+e sin8)+O(q),

Z
(5.23)

so that we can reasonably rewrite Eq. (5.22) in the follow-
ing final form

BNH

dt
282MM

~ey»
+catt e»» cos8+

dt X
—coH ey~ sin8

x

2 2 2 2 a82+2B /co~ [(ey» e»» )stn28 2e»»e„, cos28]—=co A, ——,Ksin28 + (AH cos8 —toH sin8) . (5.24}
X 2 P

—K sing =0, P =28,
dx

(5.25)

At this point we can remark that the vanishing of the first
factor in the right-hand side of this equation defines, in
statics, the orientational distribution obtained by Landau
and I.ifshitz within a Bloch wall. Indeed, the vanishing
of this term in statics, i.e.,

I

by integration over x on account of the asymptotic condi-
tions {4.1},gives the distribution

cos8= —tatth(x/5a), 5a (A,IK)'i, ——(5.26}

but here we have a magnetostrictive effect which replaces
the usual value K by K, hence 5 by 5e. In fact, from Eq.
(5.17)
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' 1/2

2 2K+2BiMsl(ci) —ci2)
(5.27)

which is none other than the "magnetostrictively reduced"

(5& ~5 since E~E) Bloch-wall thickness introduced by
Motogi and Maugin' in their study of the small-
amplitude magnetoelastic vibrations of Bloch walls. Ob-
viously, 5s is the natural reference length for the nondi-
mensionalization in the magnetoelastic case.

We now return to the fully dynamical case of Eqs. (5.9),
(5.10), and (5.24) with the limit conditions

on the interval ( —ao, + 00 ), and thus

Bu» du» du»

Bx dg dg

Be

Bt
=0,

Bu, du, du, Be

Bx dg' dg
'

Bt

r

Buy du@ du@ Bey
gz B q

dg
'q

dg
7

B
7

(5.32a)

(5.32b)

(5.32c)

8( x~—oo ) =0, 8(x~+ 00 ) =n .

To that purpose we consider propagative solutions for
u„u„,u, and 8 which are functions only of the phase
variable

But, on account of Eqs. (5.4) and (5.5),
0 0 0e~ =ey~ =e~ =0, (5.33)

and thus, for asymptotic conditions such as (5.27), Eq.
(5.24) reduces to

g= qx tot +g—o go=const . (5.29)

2 2 2 2 2 2 2 2
CO =NL =Q g, 67 =COT =CTQ (5.30}

If co and q do not satisfy the usual "dispersion relation"
for longitudinal and transverse elastic waves, i.e., the rela-
tions

B'8 B~ . B'8"
=coM A, ——,

' csin(28)
Bt Bt Bx

+t0M(co& cos8 coH s—in8) .
z J'

(5.34)

then Eqs. (5.9) and (5.10) imply that

Q~ d uy d Qg =0

Setting

~4 & ~M I &stst ~ (5 ~ 35)
(5.31)

we can rewrite this in nondimensional form as

cos
2

r8
sin

6)~
=0 (5.36)

with the asymptotic conditions

P(X~—oo)=0, $(X~+oo}=2m . (5.37)

—1 X —c~$=4 tan C exp c2)1/2

C =const, c =const ~ 1 .
(5.39)

Equations (5.38), (5.37), and (5.39) are exactly the same as

Clearly, according to Eq. (5.36) which governs P (or 8),
magnetoelastic couplings contribute only by a redefinition
(5.27) of the reference length of the problem. That is, Eq.
(5.36) would be exactly the same in rigid crystals but with

5 and E replacing 5& and K. This manifestation of mag-
netostriction in the spin-precession equation can be traced
back to the introduction of internal strains at the asymp-
totic, uniformly magnetized states at + oo.

Whenever H vanishes, toH ——coH ——t0H ——0 and Eq.
X P g

(5.36) reduces to the celebrated sine-Gordon equation as
established by Enz and others

B' B'
+sing =0, (5.38)

BH BX

with an exact stable solitary waue solution, -satisfying Eqs.
(5.36), in the form

wherein

(5.41)

21(~)= Hs(r)/Ms .
g }y2 S (5.42)

If H„ is a constant, then 21=const and Eq. (5.40) is a
double-sine-Gordon equation, an equation which also ad-
mits solutions of the soliton type. If H» is not constant
in time but its magnitude remains small in the sense that

f

those obtained by Wesol'owski in his study of the mixed
torsion flexure of an elastic ribbon with rectangular cross
section subjected to a longitudinal tension. As is well
known (e.g., Ref. 7), the sine-Gordon equation (5.38) ad-
mits not only solitary-wave solutions but also solitons of
various types depending on the asymptotic conditions.
Note that the stable solution (5.39) is obtained for a sub-
sonic state (c& 1, where 1 is the characteristic speed of
the linearized equation}.

If H is directed along the easy axis of magnetization,
then only Hr &0 and Eq. (5.36) can be written as

BH BX'
—sing =2}(r)sin (5.40)
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~
ri(r)

~
remains small for all times, then Eq. (5.40) is a

nonlinearly perturbed (simple) sine G-ordon equation. This
situation resembles the one obtained by Pouget and Mau-
gin' in ferroelectric crystals of the molecular-group type.
For Hz(t) represented by a step function —a mathematical
assumption which supposedly models the starting motion
of a Bloch wall from rest under the switching on of a con-
stant, spatially uniform, magnetic field which favors the
growth of one of the magnetic domains to the expenses of
the other one—,the perturbation in Eq. (5.40) can be
treated by a simple energy method which provides the
time modulation of the solitary-wave speed only or, more
sophistically, by using %nathan's "averaged Lagranyan"
method, ' in which case a time modulation of both the
speed and phase of the solitary wave can be obtained
analytically. ' The evolution of the amplitude requires a
numerical study. We do not consider such processes
that would directly duplicate what has already been
achieved for elastic ferroelectric crystals.

Finally, if H depends on time but is oriented along x,
then Eq. (5.36) reduces to

a2$ a2$

aH ax' +sing= f(r), (S.43}

where

aug 2aflg—CT =O.
at ax

(6 7)

2B—&Mse~cose 2B—zMse„&sine]

+H, cos8—B2Mse~„sin(28), (6.g)

1 ae.
sine=+q&[H, —(Nii —%33)Moraine

y at

2B,Mz—e„,cose —2B2Mse sine]

—H~sine+2BzMse~sin 8, (6.9)

1 aq = —(H, cos8 —H„sin8)+ , Mz(K

+alii

—)sin(28)0 ~

at

That is, in contrast to the Bloch case [see Eqs.
{5.9)—(S.10)] the x- and y-components of the equation of
elastic motion remain coupled to the rotation 8 through
magnetostriction.

The precession equation (2.2} is now shown to have the
following components:

cose= —y[H +Ms(K+X»)
1 a8 p

y ar

f«)=2, [~H„(r)/~~] . (5.44) —LMs +Bi Ms(e~ —
ezra

)sin(28)
a'e
ax

Equation (5.43) is a sine-Gordon equation which is forced
by a temporal term For .

~ f(r)
~

sufficiently small, stan-
dard perturbational methods can be used.

VI. NEEL %'ALL IN A THIN ELASTIC FILM

A. Governing equations

(6 2)

The case of a Neel wall proves to be much more in-
volved than that of a 81och wall. Indeed, we have to ac-
count for Eqs. (4.12) and (4.17) along with Eq. (4.16). The
external field H is spatially uniform, but it may vary in
time. The expressions (5.3)—(5.S) are still valid. The
equations of motion (2.1) first give

2 2au au—cL ———(Bi ——,Eii )Mz (sin 8), (6.1)
ax

a Qy i a Qy
2 2

—cz —— Bid [sin(28)], —
Bt Bx p

a u» a u,2 2

—cT ———2BzMs (q sin8) . (6.3)
at ax p

+2B2Mse~ cos(28) +2BiMse qr cos8, (6.10)

where we used {4.12) and neglected terms including con-
tributions of the type y(a 8/ax ). Combining now Eqs.
(6.8) and (6.9) and assuming that

a H
X

%33&), , E, X)),
CO~ COM

where the notation (S.21}is used, we obtain

ae
at

— —=—N33co~y+ co~ —282m)~e sin8 .gx

(6.11)

(6.12)

1+ (coH cose —coH sine)
X

2Bqe~c—os(28) 2B2e y—cose

Eliminating p between this equation and Eq. (6.10) we get

a'e , a'e—(N33cg~ } A i i [K 2Bi(e~ ——e )]sin(28)

these equations can be rewritten as

at ax

Qy 2 8 Qy
2 2

2
—cT z

—— BiMs fsin(28)],—
at ax p

1 — 2 aBi Mz [cos(28)] „
2p Bx

But, on account of the hypotheses (4.15) and setting
1 (6.4)

(6.6)

88 ()g+282m~ Sin9+ e COSH
Bt Bt

where

E=K+X)] .

But, in view of Eq. (6.12},

(6.13)

(6.14)
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=coH —282cosre sin8+co~o(y) .
2

(6.15)

Therefore, noting that contributions in e~ can be discard-
ed in the precession equation by virtue of Eqs. (6.7) and
(5.5), we can rewrite Eq. (6.13) in the following form:

This last quantity, together with A, , allows one to intro-
duce the characteristic thickness of a Neel wall in a thin
elastic film, 5&, in agreement with the definition intro-
duced by Motogi and Maugin' in their study of small-
amplitude magnetoelastic vibrations of such walls:

(N33cosr ) = A, —
2 E sin(28), a'e a'e

at ax

NH QPH

cos8 — sln8

5s ——(k/K)'i
T

%+28)Ms/(c () —c)2)+T/(D~+ T)

1/2

(6.18)

—[8& e~ sin(28) +282e,„cos(28)]

acoH
2 —1 g—(N33~sr ) (6.16)

Here both the magnetostrictive internal strains and
demagnetizing effects diminish the value of the charac-
teristic thickness as compared to the Landau-Lifshitz
value. If T «Dz, which is usually the case, then N» ——0
and Eq. (6.18) reduces to the Bloch expression (5.27). The
following space and time change of scale is natural:

where we have set A.X =x/4' 'r=rM ~m =N33&~m (6.19)

K =E—281e~ ——K+%11—28)eye . (6.17) Then, with /=28, Eq. (6.16) takes on the following form:

~H,
+sing+ 2a '

sinax'

T

cos
2

~H,
+2

a7 Q7

8) au„ 28' au@
sing+ cosP =0,

5~K 5~K

(6.20)

where we have set

a =(N»/IC)'"

[K+28~Ms/(c~~ —c~2)](D~+ T)+ T
(6.21)

and

2

=(2pK)
~1Ms 1

2p5~co ~ x NM5~
(6.25a)

u„=UI„, u =VL

L» =Ly —— (E/2p) 'i

(6.23)

In view of Eq. (6.4) and the fact that Dz ~&T, hence
N 1 ~-0, we shall take B~ ——8, in Eq. (6.5). Setting

cM ——5Nco M~ VL, ——cz, /cd, Vr ——cT/cl, (6.22)
2 2~2 2 2 2 2 2 2

and introducing nondimensional elastic displacements U
and V and nondimensional magnetostriction coefficients
by

2

P= =(2/pK)
82M, ~ „,82M,

p4x ~M5N
(6.25b)

a'U za U—VL, 2
———a (cosP),

a ax' (6.26a)

a'v, a'v a
aH 'ax'= ax "" (6.26b)

we can rewrite the system of coupled equations (6.5), (6.6),
and (6.20) in the following nondimensional form:

= (yN33 ) '(ZpK ) (6.24)
l

and

ap . aU. av a
ax ax ax2

+slIlf= —a s1np+p cosp —2 (~H /Q~)+2@
a~

cos
2

~a
sin

COM

(6.27)

where H (r), or AH, coH, and coH, is a prescribed func-
X g z'

tion of time. Often H =0 for all times and the most
complicated case we can envisage is the one where
H (w)&0 is directed along the easy axis of magnetization,
in which case Eq. (6.27) reduces to

a ax +sing = —a sing+ P cosP

+g(z)sin
2

' (6.28)
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wherein

'g ( 'F ) = —20NH ( 7 ) /COst (6.29)

B. Magnetoelastic Neel wa11 and solitary waves

With rt =0 we seek propagative solutions of Eq. (6.26)
and (6.28), (U„V,tI)), which depend on X and r via the
phase variable

(=Qx Qr+go, $0———const, (6.31)

where Q and Q are the pseudo-wave-number and the cir-
cular frequency. We thus deduce the following system of
ordinary nonlinear differential equations:

(Q —QL ) = —aQ (cosP),
d g2

(6.32a)

(Q2 —Qr } =Pg (sing },
dg'

(Q —Q ) +sing = —Q a sing+ p cosfz 21$ . dU. dV
dX dg

(6.32b)

(6.32c)

where we have set

The system formed by Eqs. (6.26) and (6.28) is quite re-

markable, first by reason of its symmetry. Indeed, apart
from the applied field contribution rt(r), this system con-
sists in a sine-Gordon equation for / =28, which is non-

linearly coupled in a symmetric manner with two
d'Alembert wave equations by the intermediate of the two
"magnetostriction coefficients" a and p. If ri=O and the
"longitudinal" magnetostriction coefficient a is practical-
ly zero (a«1 and, in practice, much smaller than p),
then U uncouples from t}), and there remain the coupled
equations (6.26b) and (6.28) as

BV 2BV 8

a ax'
= »—Vr ——P (sing),

(6.30)
Big . BV+sing = —p cosp,ax'

which is formally the same system as the one obtained
from a lattice-dynamics approach in elastic ferroelectric
crystals of the molecular-group type (such as sodium ni-

trite) by Pouget and Maugin. ' The system (6.30) was
shown to possess stable, propagative, solitary-wave solu-
tions. The same result will be proven here for the more
general system (6.26) and (6.28) for ri =0.

$~0 (mod2m),

dU dV
dg

'
dg

as
~ g ~

goes to infinity. Hence,

Ci ——aQ, Cq ——0 .

(6.35)

(6.36)

In the following development it is assumed that the non-
linear wave motion studied does not satisfy the dispersion
relations (6.33) of linear longitudinal and transverse
acoustic waves. Then Q&QL, and Q&Qr. This allows
one to eliminate dU/dg and d V/dg between Eqs. (6.34)
and (6.32c) which, on account of Eqs. (6.36), yields the
following unique ordinary nonlinear differential equation
for the angle variable (():

( Q
i—Q 2) —sing+ /(Q, Q)sin(2$) =0, (6.37)

where we have set

Q L ——VL, Q, Yt. = Vt (1—estt, ), estL, a /Vr. —— (6.38)

' 1/2

0=Q/W, Q =Q/W,0 —QI
(6.39)

2 2a p
Q —Q Q —Q T

(6.40)

with

Here eML, is a typical small parameter of magnetoelastic
wave propagation (see, e.g., Ref. 15) while VL is the
"magnetostrictively" reduced speed of longitudinal elastic
waves (see, for instance, Ristic35 or Maugin and Hakmi3 ).

For a functional dependence ot the type (6.31) and fixed
parameters Q and Q, Eq. (6.37) is an ordinary differential
equation equivalent to a double sine-Gordon equation.
Therefore, we have reached the same result as in the
simpler case envisaged by Pouget and Maugin' in fer-
roelectrics, but this time in elastic ferromagnetic crystals.
We can state, thus, the motion of a Neel wall in a thin
elastic ferromagnetic film can be represented by a solitary
wave in P and the longitudinal and transuerse elastic dis-
placements, the transverse component being that con-
tained in the plane of rotation of the magnetization.

Equation (6.37}admits a first integral

+F (P)=const=Eo, (6.41)

QL ——VL g, QT ——Vrg

The integration of Eqs. (6.32) with respect to g gives

(6.33)
A. =Q —Q, A =dA/dg (6.42)

(Q —QL ) = —aQ cosP+ C&,
dU
dg

(Q —Qz. } =pQ sing+ Cz .
dV
dg

(6.34a)

(6.34b)

The constants of integration C1 and C2 are determined by
the following asymptotic conditions:

P (P}=cosP—icos(2$) .
2

(6.43)

Equation (6.41) is the total-energy conservation equation
for a particle of "mass" A, (which would be negative for
Q&Q) in a potential P of period 2m. Formally, the in-
tegration of Eq. (6.41) yields
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i/2
g( 1 c2)1/2

f2Ã —~~Pelf'"
(6.44)

aU V2 aU
ar ax

(6.53)

for c =Q/g & 1, and the type of solution depends on the
value of the constant Eo. However, here we can directly
integrate Eqs. (6.37) and (6.41). With the limit conditions

d ~0, $~0 (mod2m. ) as I/I ~~, (6.45)

a'v, a'v ay
ar aX'
a'p a'p a v
aH ax'+ =

ax

(6.S4a)

(6.54b)

8=//2~+re/2 as I(I ~oo

so that Eqs. (6.37}and (6.41) transform to
2

z +sing+(sin(2$}=0,
*2

=2(1+cosg)+g[cos(2$}—1] .

(6.46)

(6.47a)

(6.47b)

we have Eo ——(2—g)/2. To avoid any problem of deter-
mination of trigonometric arguments we set

~,(O,g) =(O' —Q,')(Q2-Q', }-P'gi=0, (6.55)

In this linearization the longitudinal elastic mode can
propagate independently of other components —see Eq.
(6.53). The remaining coupled system (6.54) consists in a
IGein-Gordon equation for P, thus providing a dispersiue
mode, which is coupled by resonance with the non-
dispersive transverse-acoustic mode V. Plane harmonic
wave solutions of true wave number g and circular fre-
quency Q of Eqs. (6.54) must satisfy the following true
dispersion relation:

Setting

$=2tan 'q, y(g)=tan8, (6.48)

where we have set

Q~s=g +1. (6.56)

from Eq, (6.47a) we obtain the well-behaved solution

q&= a sinhg, (6.49}

Equation (6.55), in the positive (Q, g) quadrant admits the
classical representation by branches Q+ and Q in Fig. 3
with a characteristic repulsion at the magnetoacoustic res-
onance point (O', g') defined by

(6.50) O'=Qz(g')=Qs(g') . (6.57)

if y~+ 00 as g-++ ao. The second of Eqs. (6.50), on ac-
count of the definitions (6.42) and (6.40), is nothing but a
pseudodispersion relation to be satisfied by the couple
(Q,g), i.e.,

& i(Q, g)—=[1—2((Q,g)]—(g —Q )=0. (6.S1)

Therefore, the solutions for the real rotation angle 8 of the
magnetization are given by

%'ith branches

Q+= i (Or+Os)+[ ~ (Qr —Qs)2+Pig2] /i (6.58)

the vertical repulsion between (c) and (d) is classically

8(g)=t~-' + " ~ +—, (6.52)

where the + and —signs correspond to two possibilities
of rotation [clockwise and anticlockwise rotation in the
(x,y) plane, respectively]. In fact, these possibilities are
restricted by stability considerations. To examine this
question a closer look at the dispersion relation (6.51) is
necessary and a digression to the linearized case is enlight-
ening.

C. Digression-linearized case

A linearization about a spatially nonuniform static state
is to be found in Motogi and Maugin. ' Here we linearize
Eqs. (6.26) and (6.28)—in the absence of applied field—
about a fully ordered ferromagnetic state, i.e., a spatially
uniform state of magnetization as it can exist sufficiently
far away from a wall, hence at x=+ao, so that $0——0
(mod 2m) and Uo ——Vo ——0. The linearization renders the
following system:

0

FIG. 3. Dispersion relation for "magnetoelastic" solitary
waves in thin films.
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given by

/Q+ —Q /g g, -PQ'. (6.59)

One point is to be emphasized. The uncoupled dispersion
relation (6.56) is not exactly the nondimensional relation
of spin waves or magnons in a ferromagnetic crystal. As
a matter of fact, the latter is usually parabolic,
Qs-1+Q (see Ref. 9) while (6.56) is hyperbolic. This
difference is not significant in practice because the mag-
netoacoustic resonance point Q' usually occurs in the
rather flat part of the spin spectrum, with a frequency not
very different from Qs(0); but this discrepancy is ulti-
mately related to the fact that a real spin uxtue corre-
sponds to the propagation of a true precession about the
easy axis of magnetization directed along the y axis, while
in the present linearized analysis only the angle P about
the z axis has been retained, the other angle p having been
eliminated.

D. Stable solitary-wave solution

The pseudodispersion relation (6.51) can be written as

&...(Q, g)=(Q' —Q,')(Q' —Q', )+P'g'=0, (6.60)

Qs2 =Q2 —1 (6.61)

Q( )=Qr 1 —P
2Vr[( V'- l }Q'+1)

4

[branch (b)] . (6.62b)

They are thus very close to the uncoupled solutions QT
and Qs. With Vr & 1, the expressions (6.62) indicates the
position of the coupled branches vis-a-vis the uncoupled
solutions. A stability criterion decides on which of the
branches (a) and (b) corresponds to a stable solitary-wave
solution (6.52). The linear stability criterion which re-
quests that the solution be always increasing (kink solu-
tion) for all g's,

d
d

&0, c=Q/g &1, (6.63)

i.e., a subsonic propagation with respect to the charac-
teristic speed, here equal to one (compare Callegar and
Reiss ) imposes that

A «{), a ~0. (6.64)

Both Eqs. (6.60) and (6.61}are to be directly compared to
Eqs. (6.55) and (6.56). It can be noticed that while QL
still appeared in the expression (6.40), in fact it does not
contribute in Eq. (6.60} and the situation is quite similar
to that of the linearized case in spite of the coupling
present in Eq. (6.26a).

For small p, the solution branches (a) and (b) (see Fig.
3) of Eq. (6.60) are given by

Q( )=As 1+
2(Q' —1}[(Vr —1}Q'+1]

[branch (a)], (6.62a)

Hence, only the plus signs must be considered in Eqs.
(6.52} and (6.50), since only the points (Q, g) of the pseu-

dodispersion relation situated below the bisectrix of the
positive quadrant are admissible; hence branch (a), for
which the only stable solution (6.52) is the one corre-
sponding to a clockwise rotation of the magnetization in
the (x,y) plane, i.e.,

sinhg

g(1 c2)1/2

where, in fact, Q=g if the longitudinal magnetostriction
coefficient is vanishingly small —see Eqs. (6.38) and
(6.39).

(6.65)

U(g) = Uo+ ag
(Q' —Q~2 }

' 1/2
1 —2$ e ~—a+

ln e-2&—a—

(6.66a)

(( 2PQ 1 —2g
(Q' —Q', )

' 1/2
cosh/
&—2g

wherein

tt —=(4g —I ) +2[2/(2( —I })'~2,

(6.66b)

(6.67}

with a+ &0 and a &0. Simultaneously, the nondimen-
sional stress components X;J developed by the displace-
ments U(g) and V(g) in the (x,y) plane are found as

dU 2ag (1—2g), (6.68 )
[(1—2()+sinh2$](Q2 —QL )

d V 2PQ (1—2g) '~ sinhg

(Q —QT) (1—2g)+sinh g

(6.68b)

to which can be added the internal stresses X~ associated
with the internal strain e~ via the elasticity constitutive
relation.

Equations (6.65), (6.66), and (6.68) provide a complete,
exact, stable nonlinear dynamical solution (solitary wave)
of the magnetoelastic equations that govern a thin elastic
ferromagnetic film in the plane of the film in the absence
of an applied magnetic field H . Numerical simulations
of this solution would be practically identical to those car-
ried out and reproduced by Pouget and Maugin' by using
a Lax-Wendroff leap-frog numerical scheme for nonlinear
hyperbolic systems rewritten in the form of time-
evolution systems in the case of elastic ferroelectrics.

Whenever Hz is not zero but constant, and hence

g =const, Eq. (6.68) becomes a double-sine-Gordon equa-
tion which is nonlinearly coupled to the elastic displace-

E. Acoustic Geld generated by the Neel wall

Equations (6.34) can be integrated on account of (6.36)
and the solution (6.65). After a somewhat lengthy calcu-
lation it is found that the longitudinal and transverse elas-
tic displacements which accompany the rotation (6.65) of
magnetization, are given by



ments U and V. If II depends on time=. g., through a
step function —then with

~
ri(v ) ( small for all times some

perturbation procedure has to be used to study the influ-
ence of the applied fleld. For this mathematical point we
refer the raider to previous works on ferroeiectrics (Refs.
29, 32, and 33}which provide the adequate treatment that
naxls no duplication.

VB. CGNCLUSI(ON

Solitary-wave solutions representing the no»i~ear
motion of a Bloch wall in an infinite, cubic elastic fer-
romagnetic crystal and of a Neel wall in a thin feixomag-
netic fil made of a cubic elastic crystal have bam ob-
tained in closed form, . In the first case (Bloch wall) the
whole problem reductio to a sine Gonf-on equation, the in-
fluence of malpxetoelastic couplings being felt only
through a slight change in the reference length (wall
thickness) of the problem. Therefore, this problem admits
true soliton solutions. In the second case (Nbei wall), in
the abence of external field, the problem consists of solv-
ing simuItaneously two wave equations and a sine-Gordon
equation, the three equations being nonlinearly coupled
via magnetostriction. This also admits solitary-wave solu-
tions which consist of a solitary wave for the magnetic-
spin orientation within the wall and accompanying soli-
tary waves in the longituthnai elastic displacement and the
transverse elastic displacement polarized in the pl~~e of
rotation of spins. This rather complex mathanatical
structure, already encountered in elastic ferroelectrics'—

where only one elastic (transverse) displacanent was
involved —appears to be a common feature of the problem
of propagating walls in elastic crystals with a microstruc-
ture. It is this microstructure (in the present case, the
magnetic-spin field} which brings the dispa3ive and non-
linear features in the wave problem. From the already
thoroughly examined case of elastic ferroelectrics, ' we
know that the couphng of the sine-Gordon equation with
one or two wave equations makes that pure solitons (i.e.,
solitary waves interacting as solitons do, recovering their
full identity after interaction) are not possible, being al-
ways accompanied by radiation wavelets that propagate
preceding and tail traihng the solitons. We refer the
reader to the ferroelectric case for the corresponding
theoretical and numerical analysis and to a review paper
for the general mathematical features of this problem.
Another possible generalization of the present problem
consists of accounting for coupled dissipative processes
(viscosity and spin-lattice relaxation) as formulated in a
good invariant framework by one of the authors. 4' This is
left for further works.
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