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Assuming that the spin-density-wave (SD%) state in a high magnetic field (e.g., 8p 10 T} in a

typical Bechgaard salt such as di-tetramethyltetraselenafulvalene perchlorate (TMTSF)2C104, has
the Q vector proposed by Gor'kov and Lebed, we construct the Gor'kov equation for Green func-
tions in the SD% state. %'e find the thermodynamics of this SDW state (Gor'kov-Lebed state) is

equivalent to that of a Bardeen-Cooper-Schrieffer superconductor. Furthermore, we obtain a simple
expression of the magnetization in the SD%, which is compared with experimental data of
(TMTSF)2C104.

I. INTRODUCTION

The di-tetramethyltetraselenafulvalene [(TMTSF)iX]
family of organic charge-transfer salts (Bechgaard salts)
exhibit a number of phase transitions at low tempera-
tures. Perhaps the most intriguing is a series of field-
induced spin-density-wave (SDW) transitions first ob-
served in (TMTSF)iPF6 under pressure. It is later con-
firmed ' in R-(TMTSF)2C104 (slowly cooled) that a series
of SDW transitions are induced at low temperatures when
a high magnetic field is applied along the c' direction.

Recently, Gor'kov and Lebed5 (GL) have shown that
the SDW transitions are intrinsic to the quasi-two-
dimensional systems with the quasiparticle energy given
by

e(p) = vz(
I p» I pF) 2tscos(—b'ps—)

—2tb cos(2b 'p» ) —2t, cos(c 'p, )

when a magnetic field is applied in the c' direction. In
particular, GL consider the SDW with wave vector
(2pt;, tr/b', n./c'), and study the SDW instability within
mean-field approximation, and find that the transition
temperature is given by

T, (H}= 1.14E,exp[ —A, (a} ']

with A(tz)=AJo(u), where a=2tt', /b'vzeH, Jo(z) is the
Bessel function, and E, is a cutoff energy. Furthermore,
I, is estimated to be A,=0.1. This approach is later gen-
eralized for more general SDW wave vectors by Heritier
et al. On the other hand, at T=0 K„Yamaji has
shown within mean-field theory that SDW state has lower
energy than the normal state. Heritier et al. neglected
the third term (the second-nearest-neighbor hopping term}
in Eq. (1), which plays the crucial role in the GL theory.
Furthermore, almost nothing is known about the SOW in
the intermediate-temperature regions (0 & T & T, ).

The object of this paper is to study the thermodynamics
of the GL state at all temperatures (0 & T & T, ). In spite
of generalization by Heritier et al. , we believe that the
GL state is the most stable in the high-field region (e.g.,
H&10 T). Furthermore, the GL state is the simplest
among the field-induced SDW's.

In Sec. II we construct the Gor'kov equation for Green

functions in the SDW state, which is solved exactly in the
limit Jo(a) »Ji(a),J2(a)—where J„(a) are the Bessel
functions and u has been defmed below Eq. (2). For ap-
propriate parameters of (TMTSF)2C104, we find that the
above condition is satisfied for H&10 T. The thermo-
dynamics of the SDW is determined in Sec. III. We com-
pare these results with a recent experiment on T, (H) and
magnetization in (TMTSF)iC104 in Sec. IV.

II. GOR'KOV EQUATION

Assuming that the quasiparticle spectrum of a Bech-
gaard salt is given by Eq. (1), we write the Gor'kov equa-
tion as follows:

where G (x,x') and F„(x,x') are the Fourier transform
of the thermal Green functions with to the Matsubara fre-
quency defined by

G, (x,x'}= i i, T[f,(x)g—,(x')]),
F,(x,x') = ( T[g,(x)gi(x')]e'q'*) .

(4)

We can write a similar set of equations for G, (x,x') and
F,(x,x'), where pH in Eq. (3) is replaced by pH. —

Furthermore, the self-consistency equation is given by

6'(x)=A,No 'TQF„(x,x),

where No is the density of states at the Fermi surface.
Hereafter, following Gor'kov and Lebed, we take

Q=(2pF, m/b', n/c')

A=(O, Hx, O) .

Then substituting

[it@ e(p eA—) pH—]G„(x—,x')+b(x)F (x,x')

=5(x —x'),
(3)

[t'ta e(p+Q e—A)+pH—]F (x,x')+b, '(x)G„(x,x')=0,
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2ity z 2l tb z6 (x,x')=g(x, x')exp dx" cos[b'(p„—ed„)]+ f, dx" cos[2b'(p„—ed„)]
Vp Z Vp z

+i[2tdCOS(C pz)+pH](X —X )UF (8)

2ity z
F„(x,x') f(x,x')=exp, dx" cos[b'(p„—eg )]

Vp Z

2ltb z x"cos 2b' p„—ed~ + x"cos 2 ' p„—eA&
Vp 0

+t [2tdCOS(C pz}+pH](x —X }UF (9)

into Eq. (3},we obtain where

lCO+lVp g (X,X')+]s],(x)f(x,x') =5(x —x'),

(10)

g, (x,x') f, (x,x')

f, (x,x') g, (x,x')

l QP —lVF f(x,x')+ b, *(x)g(x,x') =0,

where

4itb
b(x)=b(x)exp J dx" eos[2b (ps —sde)]

VF 0

and o.; are Pauli spin operators. Here we restored the spin
indices explicitly. Furthermore, we eliminate the phase of
b, (x) by redefining f by e ' f, although this phase
factor has to be reinserted in the gap equation (5).

Before solving Eq. (16), we shall consider the quasipar-
ticle energy spectrum, which is obtained from

ia sin(kzo ) ink(z —zo ) E„+iuFo, +ds]0(7]+2m]o,sin[k(x —x())] y„=o,
dx

where

a=2ti', /b uFeH, where

(18)

k =2b'eH, and xo p„/eH——
and Jn(z) is the Bessel function.

In the following we limit ourselves to the limit where

Jo(a)»](a) &)J2(a),J$(a), . . . (13)

which is realized when H&2ti/b'UFe. In this limit we
can take b(x) =C independent of position without loss of
generality, which corresponds to the Gor'kov-Lebed
state. Then we obtain

u„(x)

u„(x) (19)

and E„ is the energy eigenvalue.
Then the Green functions are constructed in terms of

eigenwave functions and eigenvalues E„as

g (x,x') = g (i co E„) 'u„(x)u„—(x'),

(20)
f(x,x') = g (i co E„) 'u„(x)u„—(x'),

and

E(x)=e []s],0+ih]sink (x —xo)],

b,()——CJO(a)

bi ——CJ](a) . (15)

for example.
In the limit 6]/i]],0~~1, Eq. (18) is solved in terms of

the plane-wave solutions:
e

QP

Pp(x) = (2ir) (21)P

as
Then Eq. (10) is recast as

d
it()+iuFoi +Atter]+26 ]ozsin[k (x —xo}] g

= 15(x —x'),

E=+EF——+(gF +6())'~

uF =[—,'(1+('/E)]'~', UF = —[ —,'(1 g/E)]'~', —
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(23) 1=A(a)TQ f dg(aP+E ) (26)

The last term in Eq. (18) allows the mixing of fp and

gp+k with k =2b eH. Then this mixing causes a split-
ting of the continuous energy band for E)0 into two
bands at g=+2upb'eH =+/ with a small energy gap of

This leads to the orbital quantization in SDW's;
the SDW transforms the open orbits of quasiparticles into
closed orbits in the SDW. ' However, in the limit

~
b, i/Q~ &&1, the effects of small gap on the thermo-

dynamics of the spin-density wave is certainly negligible.
The Green functions are readily found in this limit as

g(x,x')= —(2m) ' f dp(ia)+g)(co +E )
'e'p'"

(24)

f(x,x') = —(2m )
' f dp hoe

and A,(a) has been already defined after Eq. (2). Here ( )
means the average over p„.

III. THERMODYNAMICS

Since Eq. (26) is the same as the Bardeen-Cooper-
Schrieffer (BCS) gap equation for a superconductor, the
thermodynamics is identical to a BCS superconductor.
First, the transition temperature T, (H) is given by the
Gor'kov-Lebed expression (2), where E, is the cutoff en-

ergy. Furthermore, the energy gap in the vicinity of T,
and at T =0 K is given by

+ (~2+E2)—leiP(x —x')
m T,(H) [8/7g(3)]'~ (1—T/T, )' (27)

where E and g have been defined in Eqs. (22) and (23).
Then the gap equation (5}reduces to

C=kXTg I dido(e ' )(aP+E') ', (25)

which is rewritten as

(28)

respectively, where g(3}=1.202. . . is the zeta function
and y is the Euler constant.

Similarly, the free energy is given by

(2m T, )2

No —(1—T/T, ) for T=T, (29}

~sDW ~n

2n b,3T 1+ —e ~ for T((T, .15 T
8

(30)

For example, the specific heat in the SDW state is the
same as a BCS superconductor. Furthermore, the excess
magnetization associated with the SOW is given by

= —Noh, 2(H, T)[2aJo(a) /wo'(a)H], (31)

—No ( T, —T)T, [2aJO(a)/AJO(a)H], (32)

—Noa2[2aJO(a)/uo'(a }H],

respectively.
Indeed the magnetization" recently observed in

(TMTFS)2C104 at 22 mK for H ) 10 T is described quite

where Jo(z) =(d/dz)JO(z).
The excess magnetization is always positive and de-

creases like H as the magnetic field is increased. This
magnetization may be considered to be due to canting of
the SDW, since it is proportional to 5 . In particular, in
the vicinity of the transition temperature and at T =0 K,
Eq. (31) reduces to

well by Eq. (33), if we assume that we are already in the
region of a«1. Furthermore, the temperature depen-
dence of the magnetization in the third peak" appears to
be proportional to 6, although the third SDW is certainly
not the GL state. We believe, however, that M is propor-
tional to b, , in general, as in the GL state. Furthermore,
the observed transition temperature for H) 10 T is
described quite well by Eq. (2).

IV. CONCLUDING REMARKS

Limiting ourselves to the special type of SDW state
proposed by Gor'kov and Lebed, we have obtained the
Green functions describing the quasiparticles in SDW's.
We find that Green functions have identical structures as
in a BCS superconductor, if we neglect a small energy gap
due to the orbital quantization. En this limit the thermo-
dynamics is identical to that of a HCS superconductor.
%'e obtain also a simple expression for the magnetization.

When Ji(a) )J(i(a) the present SDW becomes certain-
ly unstable. If we identify the phase transition at H=8 T,
with this transition we will have tb ——0.716bUFeH=10 K,
which appears to be quite reasonable. Analysis of the
SDW when Ji (a))Jo(a) will be reported in a future pub-
lication.
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