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Conductivity in percolation networks with broad distributions of resistances
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Diluted resistor networks with a broad distribution of resistances are studied near the percolation
threshold. A hierarchical model of the backbone of the percolation cluster is employed. Resistor
networks are considered where the resistors, R, are chosen from a distribution having a power-law
tail such that ProbI R ~XI -X as X~ ao, 0&a & 1. Such distributions arise natura11y in con-
tinuum percolation systems. The hierarchical model is studied numerically and using a
renormalization-group transformation for the distribution of resistances. The conclusion is that the
conductivity exponent t is the greater of t, and (d —2)v+1/a where t, is the universal value of the
conductivity exponent and v is the correlation-length exponent. This result is in agreement with

Straley's earlier predictions [J.Phys. C 15, 2333 (1982); 15, 2343 (1982)].

I. INTRODUCTION

In this paper we study the conductivity near percolation
of diluted resistor networks with a broad distribution of
resistances. We consider bond percolation with a fraction,
p, of finite resistors chosen from a distribution having a
power-law tail such that

Prob{R ~XI -X as X~oo .

Here R is any of the finite resistors of the network and
0 &a & 1 characterizes the tail of the distribution. An im-
portant feature of such distributions is that they have no
mean value. Our object is to understand the conductivity
exponent, t, which characterizes the singularity of the
conductivity, o -(p —p, )'.

It has recently been shown that a number of continuous
random systems with percolation thresholds have trans-
port properties near the threshold which are influenced by
a broad distribution of bond strengths. A class of models
of random materials which displays this phenomenon are
the Swiss-cheese models' in which randomly placed,
spherical holes perforate a conducting or elastic medium.
A related model which is important in the foundations of
nonequilibrium statistical mechanics is the overlapping
Lorentz gas3' in which a single particle moves classically
in an array of overlapping hard spherical scatterers.
These models have been analyzed' by mapping the con-
tinuum system onto a random network with a distribution
of resistances (elasticities for elastic Swiss-cheese or wait-
ing times for the Lorentz gas) satisfying (1.1) where ct de-
pends on the dimensionality and type of transport in each
case, large resistances arise when three spheres (d hyper-
spheres) are arranged so that only a small conducting neck
is left between them.

Gn a more fundamental level, understanding the effect
of a distribution of resistances on the conductivity ex-
ponent clarifies the scope of the universality hypothesis
and leads to interesting insights into the relation between
the renormalization-group approach and the theory of
stable distributions.

The problem of percolation in the presence of a broad

t (a) =(d —2)v+ 1/a, (1.2)

where d is the dimension of the system and v is the
correlation-length exponent. The term proportional to v
relates the conductances to the conductivity of the lattice.

While presenting a convincing intuitive picture of the

distribution of bond strengths was first studied by Kogut
and Straley and later by Ben-Mizrahi and Bergman,
Straley, ~ Halperin et al. ,

' Sen et al. ,
s and Tremblay and

Lubensky. These investigations all arrive at the con-
clusion that an anomalous distribution with a sufficiently
small value of a (Ref. 10) leads to nonuniversal values of
t, but they disagree in their detailed predictions. In this
paper we take a new approach to the problem which is in
agreement with Ref. 7 and clarifies some of the arguments
presented there.

In Ref. 7 Straley reaches the conclusion that the ob-
served exponent t is the greater of the universal value to
and a quantity t(a) given below. His argument is based
upon a numerical study of the evolution of the probability
distribution of the resistors under a simple real-space
renormalization-group transformation. He finds that the
large-R tail of the distribution evolves independently of
the rest of the distribution and dominates the fixed point
when a is sufficiently small, leading to the result t = t (a).
For larger a, the tail becomes unimportant at the fixed
point and t =t, . He asserts that the crossover between t,
and t(a) occurs when the two are equal. In order to ob-
tain t(a) he uses the nodes-links" picture of the backbone
of the percolation cluster and ignores multiply-connected
insertions between nodes or blobs, arguing that the distri-
bution of blob resistances can be ignored. Thus he consid-
ers the percolation backbone to be a network of nodes
separated by the correlation length g and connected by
chains of random resistors in series. The final step in his
argument is the application of Coniglio's' result that the
number of singly connected bonds or links in a chain, S,
diverges according to S-(p —p, ) '. Since the typical
value of the sum of S independent random variables
chosen from a distribution satisfying (1.1) diverges as
S' for 0 &a & 1, he obtains the result
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behavior of t, Straley's analysis raises some questions.
Can the crossover between t, and t(tx} be derived from an
analytical theory' Is it correct that the blobs in the more
accurate nodes-links-blobs' description of the backbone
do not contribute to t (n)'? In the present work we address
these questions in the context of a recently proposed'
hierarchical model of the percolation backbone. In Sec. II
the model is defined and studied analytically using an ex-
act renormalization-group method. In Sec. III the model
is studied numerically, confirming the validity of the ana-
lytic results found in Sec. II and illustrating the evolution
of the probability distribution of the resistances under re-
normalization. The paper closes with a discussion.
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2- BLOB

II. THE HIERARCHICAL MODEL AND AN ANALYTIC
STUDY OF THE CONDUCTIVITY EXPONENT

In this section we introduce a class of hierarchical
models for the backbone of the infinite cluster. Using this
class of models we give an argument for the scaling prop-
erties of the conductivity of the infinite cluster when the
resistors are anomalously distributed, (1.1).

(1) The length of an ( n + l)-chain, L"+", is a factor b
greater than the length of an n-chain, L'"',

L(n+1) bl (n) (2.1a)

(2} An (n +1)-blob is a multiply-connected network of
n-chains constructed in the same way at each generation
so that, if the resistance of each n-chain is R'"', then the
resistance of the ( n + 1 )-blob, R bi,+b ", is given by

A. The hierarchical model

In the nodes-links-blobs picture' the backbone of the
infinite cluster is taken to be a disordered d-dimensional
lattice with typical spacing g, where g is the correlation
length. The sites of this lattice are referred to as nodes
and the bonds as chains. The chains are composed of
singly-connected pieces or links and multiply-connected
pieces or blobs. The blobs are arranged in a hierarchical
fashion in that, when the chain is viewed on longer length
scales, some of the smaller blobs of a given size are seen to
be incorporated into larger blobs. ' We introduce a
hierarchical model of a chain described by three parame-
ters, a, b, and c. The model is defined by a set of rules
for assembling an (n +1)th generation chain, or (n +1)-
chain, from n-chains. These rules are the following:

FIG. 1. Construction of the hierarchical lattice used in the
simulation. An (n+1)-generation blob is formed from two
parallel n-generation chains. An (n +1)-chain is composed of
an (n+1)-blob in series with two n-chains. The first two gen-
erations of the construction are illustrated.

v=lnb/inc . (2.3)

These considerations are illustrated in Fig. 1. The
hierarchical construction specified by these rules contin-
ues until the length of the chain reaches the correlation
length. The backbone is then constructed as a regular lat-
tice of chains of length g.

In this section we shall not need to precisely specify the
geometrical way in which an (n+1)-blob is constructed
from n-chains. In the next section we numerically study a
hierarchical model in which c =2, b =3, and the
(n +1)-blob is formed from two parallel n-chains so that
a = —,'. This is the d =2 version of the models discussed

by de Arcangelis et al. ,
' where, for 1(d(6, they let

c =8/(6 —d), b =c +1, and construct the blobs from two
parallel chains. With this model they find good agree-
ment with known values of percolation exponents.

Z'"'=(c+ a)"~"',
while the length of an n-chain is given by

(2.4)

B. The conductivity exponent

For ordinary percolation with each bond having the
same resistance, R' ', and length, L' ', the eonduetivity
exponent can be related to a, b, and c by a simple argu-
ment. At each generation the resistance 8'"' of an n-
chain is given by

(n+1) (n)8bl,b
——aR (2.1b} L (n) I nL (0) (2.5)

(3) An (n+1)-chain is composed of c n-chains con-
nected in series with one (n+1)-blob. Thus, if each n-
chain has resistance R'"', the resistance of the (n +1)-
chain is given by

~("+"=~~(")+Z("+"
blob (2.lc)

Note that c also specifies the way in which the number of
links in an n-chain, S'"', scales,

g2 —d)/(c +a)lg (0) (2.6)

Thus the conductivity exponent t (defined by cr-g '~") is

t, /v=(d 2)+ln(c +a)/Inb—, (2.7)

Let I be the number of generations required to reach the
correlation length; then g=L'" and the conductivity o is
given by

g(n + 1) ~g(n)

Thus, using the result S-(p —p, ) ', we have

(2.2} where the subscript 0 refers to ordinary percolation as op-
posed to percolation where randomness in the resistors is
relevant.
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Next let us turn to the situation where the resistors
forming the backbone are chosen from a probability dis-
tribution satisfying (1.1}. In this case the resistance of an
n-chain is a random variable. Thus the scaling law,
R {")=(c+a)"R{', is incorrect and we must consider the
probability distributions for n-chains and n-blobs. The
correct relation between the random variables is

~ {a+1)
Rb] b =Of (2.10)

where r{") is a typical value of the resistance of the n

chains, to be defined below, and a is defmed in (2.lb).
The justification for this approximation is that the distri-
bution of the blob resistances is much narrower than the
distribution of the chain resistances forming the blob.
This is because the parallel paths within a blob allow
current to bypass the largest resistors. For example, con-
sider the case that blobs are constructed from k parallel
chains. If a describes the tail of the distribution of chain
resistances [see (1.1)], then it is easy to show that ka de-
scribes the tail of the distribution of the resulting blob
resistances. Thus the blobs are distributed in a less singu-
lar way than the chains from which they are composed.

Given this approximation it is possible to analyze the
evolution of the chain probability distribution using La-
place transform techniques. ' For a cumulative probabili-
ty distribution I'(x} which vanishes for x &0, we define
the Laplace transform f(z) as

f(z)= f exp( zx)dI'(x), — (2.11)

and its natural logarithm g (z),

R(n+1) R(n+1)+ y R{n) (2.8)
j=l

where RJ"' are the resistances of c )i-chains chosen in-

dependenti~ from the n-chain probability distribution. In
general, Rb) b 1s a nonlinear function of a finite number
of independently chosen n-chain resistances. For exam-
ple, if the blobs are formed from two parallel chains we
would have

R {n+1) (1/R (n) + 1/R (n)
)
—1

The evolution of a probability distribution under a non-
linear transformation such as (2.8} and (2.9) is difficult to
study analytically. To render the problem tractable, we
make the following approximation. We assume that the
resistance of each (n +1)-blob is given by the definite
value,

using (2.8) and (2.10) we have a recursion relation for the
functions g'"' corresponding to the probability distribu-
tions for the n-chain resistances:

g(n+1)(Z) =QP(n)z +Cg(n)(z) (2.13)

This recursion relation is clos(xl by defining the typical
value. We choose the following definition for the typical
n-chain resistance r'"',

g(n)( 1 /&(n) ) (2.14)

This definition has several convenient properties. First-
ly, it is well defined even for distributions which have no
mean value. Secondly, if two random variables are related
by a scale change, then their corresponding typical values
are related by the same scale change. Finally, for narrow
distributions, the typical value is close to the mean. These
properties of the typical value are discussed in more detail
in the Appendix.

Our object is to determine the scaling behavior of the
n-chain probability distributions characterized by g'"'.
This is most easily accomplished by constructing a
renormalization-group (RG) transformation in which the
distribution is rescaled by a factor A, at each iteration so
that the typical value is always equal unity. The RG
transformation of g obtained from (2.13) is

g(n+1)(g(n p 1)Z) =Qz +Cg( )(Z

and, from (2.14), A,
{")is chosen so that

g(n)(z 1)

(2.15)

(2.16)

We seek to find the fixed points of this transformation
within a suitably large space of distributions. We consider
the class of distributions that correspond to

g(z)=(AZ) +Bz, (2.17)

A +8=1.
Use of (2.15) and (2.17) yields

(2.18}

with A and 8 non-negative real numbers and a given in
(1.1). It is not difficult to verify that powers of z, less
singular than z, are irrelevant. For A &0, probability
distributions corresponding to (2.17) are stable distribu-
tions' with exponent a which have been shifted by 8
along the real axis. For A =0, (2.17) corresponds to a
delta-function probability density concentrated at 8. The
constraint (2.16) gives

g(z)= —lnf(z) . (2.12)
(2.19a)

For a random variable R with the definite value ro,
gR(z) =zro. For a random variable R which satisfies (1.1)
a Tauberian theorem shows that gi((z)-z as Z~O. Fi-
nally, if a random variable R is a sum of random vari-
ables, E. =8~+R 2+ . +8k, then the associated proba-
bility density for R is a convolution of the densities for
R),R2, . . . , Rk and, by the convolution theorem for La-
place transforms, g)i ——gi(1+gx 2+ . . +gi(), .

The convolution theorem for Laplace transforms shows
that the g's associated with these random variables enjoy
the same linear relation as the variables themselves. Thus,

(2.19b)

where 3 =A{")and 3'=A{"+", etc. The value of A, is
fixed by (2.18). Using (2.18), a recursion relation may be
written for A or 8 alone. For example,

(1 8')' /8'=c' (1——8)' /(a +cB)

From (2.19a) we see that, at a fixed point, either
A, =c'~ or A =0. We refer to the former case as the
anomalous fixed point, and denote it by a subscript a. At
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the anomalous fixed point

Ag =c

A, =[(c'i —c —a)/(c' —c))'i

and

8, =a/(c' —c) .

(2.21a)

(2.21b)

(2.21c)

The anomalous fixed point exists only if c '~ p c +a since
we require that A be real and positive. The corresponding
fixed-point distribution is a stable distribution which has
been shifted by an amount 8, . Note that if the blobs had
been treated as superconductors (a =0) as in Ref. 1, the
fixed distribution would be an unshifted stable distribu-
tion (8 =0).

We refer to the fixed point with A =0 as the ordinary
fixed point and denote it with a subscript o. At the ordi-
nary fixed point

and

A,,=c+a,
A, =O,

(2.22a)

(2.22b)

o[L,F(R))=x~ yo[xL,F(yR)] . (2.23)

The RG analysis shows that F'"+"(AR)=F'"'(R) for
large n, so that when x =b we require y =A, and the con-
ductivity exponent is given by

t/v=(d —2)+ink. /lnb . (2.24)

Finally, using (2.7), (2.21a), (2.22a), and (2.24) we find

t, if t, ~(d —2)v+1/a,
(d —2)v+1/a if t, ((d —2)v+1/a,

(2.25a)

(2.25b)

with t, given in (2.7). This result agrees with Straley's.
In the anomalous regime the relation ink, /lnb = 1/va does
not depend on the values of the parameters a, b, or c.
Thus (2.25a) holds for the entire class of hierarchical
models. Similarly, the crossover between the ordinary and
anomalous regimes occurs when t, =(d —2)v+1/a, in-
dependent of the model parameters. This observation
lends support to the hypothesis that (2.25) is exact if t, is
interpreted as the true value of the conductivity exponent
for ordinary percolation.

(2.22c)

The ordinary fixed point is unstable to perturbations in A

unless c '/'
& c +a. Using (2.20) we have verified numeri-

cally that the anomalous fixed point is globally stable in
the anomalous regime A,, ~A,„while the ordinary fixed
point is globally stable in the ordinary regime A,, (A,

Let us now use the understanding we have gained of the
scaling behavior of the distribution of chain resistances to
study the scaling behavior of the conductivity. In the
present model the backbone consists of a network of
chains. The conductivity of this network is a homogene-
ous functional of the cumulative distribution of chain
resistances F(R) and of the chain length,

III. NUMERICAL STUDY OF THE DISTRIBUTION
OF CHAIN CONDUCTANCES

In this section we present the results of a numerical
study of the probability distribution of chain conduc-
tances in order to confirm and clarify the analytic theory
previously described. %e have calculated the probability
density P'"'(W) of the conductance W'"'=1/R'"' of an
n-chain. The specific hierarchical model studied is shown
in Fig. 1 and referred to in this section as the hierarchical
model. For this model an (n+1)-blob is composed of
two parallel n-chains so that a =

z and an (n +1)-chain
is composed of an ( n + 1)-blob in series with two n-chains
so that c =2. Thus the conductance of an (n +1)-chain
is a random variable related to four independently chosen
n-chain conductances,

1 1 1

W("+') W("' +
W ") + W(") W(")

1 2 3 + 4
(3.1)

For comparison we have also studied the simpler case
where ( n + 1)-chains are composed of four n-chains in
series. This model, referred to as the series model, corre-
sponds to a =0 and c =4. Since there are no blobs in the
series model, the results of Sec. II are exact. The series
model corresponds to the chains in the nodes-links picture
of the backbone.

For both models we choose the conductances of the ele-
mentary bonds from the probability density P' '( W),

P(0)( W)
aW, 0 & W ( 1

0, otherwise .
(3.2)

We studied five values of a: 0.4, 0.5, 0.6, 0.66, and 0.9.
For the hierarchical model the crossover between the ordi-
nary and anomalous regimes occurs when a=0.757, so
that a=0.9 is in the ordinary regime and the four other
values are in the anomalous regime. For the series model,
all values of a in the range 0 & a & 1 are in the anomalous
regime.

In a typical run, 4 bonds were chosen from the distri-
bution (3.2) and 4 values W'" are calculated according to
(3.1). A numerical approximation to P"' was obtained by
putting these values of W'" into bins. The 4s values of
W'" were then used to generate 4 values of W' ' from
which P' ' was computed, etc. The corresponding calcu-
lation was also carried out for the series model. In Figs. 2
and 3 we show the probability densities obtained in this
way for a=0.6 and 0.9, respectively. In these figures we
plot P'"'(W) versus A, '"'W for n =2 (16384 values of
W' '), through n =6 (64 values of W' '). The scaling
factor A, is chosen according to (2.21a) or (2.22a). For the
hierarchical model, a=0.6 is in the anomalous regime
and A, =3.175, while a=0.9 is in the ordinary regime
where k=2.5. For the series model X=10.8 for a=0.6
and A, =2.160 for a =0.9.

Figures 2(a) and 2(b) show the evolution of the proba-
bility densities at a=0.6 for the hierarchical and series
models, respectively. It is clear from these figures that
the predicted scaling leaves the small- 8' tail of the distri-
bution invariant from one generation to the next and that
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the probability densities are approaching stable forms
having the same power-law tail as the original distribu-
tion. The differences in the distribution between Figs. 2(a)
and 2(b) appear only in the head (I,"W= 1) of the distri-
bution, which cuts off more sharply for the hierarchical
model than the series model. This supports Straley's as-
sertion that the nodes-links picture is adequate in the
anomalous regime.

In Fig. 3 we show P'"'( W) versus A,"W for the hierarch-
ical model with a=0.9 and A, =2.5, its theoretical value
in the ordinary regime. This choice for I(, leaves the loca-
tion of the peak of the distribution nearly unchanged. As
n increases, the head of the distribution becomes larger
and more sharply peaked. The results are consistent with
the theoretical prediction that the fixed-point density is a
delta function.

For the special case a=0.5, P'"'( W} can be compared
directly to the theoretical predictions because there is a
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P'"'( 8') after n generations is plotted against the scaled conduc-
tance for 2 & n & 6. (a) The hierarchical model and (b) the series
model. The data represent 16384 values of W' ' and 64 values
of gr(6)

Since a=0.5 is in the anomalous regime, A is invariant
under the renormalization-group transformation and, for
the distribution (3.2), has the value m. For the hierarchi-
cal model at the anomalous fixed point, the ratio of A, to
8, is determined by (2.21b) and (2.2lc) and has the value
9/4, so that for sufficiently large n we expect P'"'( W) to
approach to P ( W

~
m, 4fr/9). For the series model,

8, =0, so we expect P'"'(W} to approach P(W
~

m, 0) for
large n.

Figures 4(a) and 4(b} show the results of a numerical
study of P'"' for a=0.5 with n =4 and 5, respectively.
Figure 4(a) shows P' '( W) and P' '(W) for the hierarchi-
cal model as compared to the theoretical fixed point,
P( W

~
n, 4~/9). Figure 4(b) shows the data for the series

model for P"'( W} compared to the exact theoretical re-
sult for the fixed oint, P(W

~
1r, 0). The similarity be-

tween P' ' and P' suggests that we are close to the fixed
point by the fourth generation. For both the series and
hierarchical models the agreement between the numerical
and analytic probability densities is quite good. The influ-
ence of sample size in determining P( W) is seen in com-
paring in Fig. 4(a) with 15360 values of W' ' and Fig.
4(b) with 256 values of Wf~'.
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of W'". The data in {b) represent 1024 values of W' ' and 256 values of 8"". The smooth curves in {a) and {b) are the predicted
probability densities for the hierarchical and series models, respectively, P( W

~
n, 4jj /9) a.nd P( W

~
n, 0) as defined in (3.3).

In addition to studying the probability density we have
also considered the average conductance W(S) at the nth
generation as a function of the number of links, S, in that
generation (S'"'=c"). These results are shown in Figs.
5(a)—5(c), where W(S) is plotted against S for a=0.9,
0.6, and 0.4, respectively. The data are obtained from
four runs, each starting with 4 bonds with each data
point corresponding to one generation. For large S,
in[ 8'(S)] is a linear function of lnS with a slope which is
the conductivity exponent t The so.lid lines in the figures
show the theoretical slopes obtained from (2.5), (2.7), and
(2.25). We note good agrts:ment between the predicted
slopes and the data.

Sen, Roberts, and Halperin and Lubensky and Trem-
blay have investigated the d =2 percolation problem nu-
merically using finite-size scaling. The largest lattice
studied by Sen, Roberts, and Halperin was 49 X49 and the
largest lattice studied by Lubensky and Tremblay was
23X23. For a=0.4, Sen, Roberts, and Halperin obtain a
result which is consistent with t =1/a=2. 5. However,
for a=0.66 both Sen, Roberts, and Halperin and Luben-
sky and Tremblay obtain t =1.84, which is significantly
above our theoretical prediction, t = 1.5. Is this
discrepancy a result of finite lattice sizes or a failure of
the hierarchical model? To shed light on this question we
calculated an effective exponent by taking the slope of
lines connecting adjacent points on the graph of ln[ W(S)]
versus lnS. Figure 6 shows the slope found in this way as
a function of the generation number n for a=0.4 and
0.66. For a =0.4 the effective slope oscillates around the
theoretical prediction, while for a=0.66 the effective
slope is larger than theoretical prediction and approaches
it relatively slowly as n increases.

In order to make a quantitative comparison between the
hierarchical model and an L XL percolation lattice, it
seems appropriate to choose n so that the number of links
in the hierarchical lattice equals the average number of
links in the backbone of the L)&L percolation lattice.
Numerical simulations by Breton and Tremblay' show
that the average number of links, S(L), for the L &&L

backbone is S(L)=(1.1)L . Comparing this to S=2"
for the hierarchical model, we find that n is between 3
and 4 for L =23 and close to 4 for L =49. For n =4 and
a=0.66 the effective exponent in the hierarchical lattice
is 1.75, which is significantly above the asymptotic pre-
diction, 1.5. This finding is consistent with the hy-
pothesis that simulations of Refs. 8 and 9 did not probe
the scaling regime for a =0.66.

IV. DISCUSSiON AND CONCLUSIONS

Within the framework of a hierarchical model of the
percolation backbone we have studied the effect of disor-
der in the bond strengths (conductances) of a percolation
lattice. Our results support the view that there is a cross-
over in the conductivity exponent from the universal value
to an anomalous value at the point where the two values
are equal. The anomalous value is given by the simple ex-
pression t =[(d —2)v+1/a]. In the ordinary regime the
conductivity of the percolation backbone depends on both
the link and blob resistances and the conductivity ex-
ponent is therefore sensitive to the structural details of the
blobs. On the other hand, in the anomalous regime the
link resistances dominate the blob resistances; the conduc-
tivity near the threshold is determined only by the links
leading to the siinple expression for t.
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PIG. 5. ln[ W(S)] vs lnS. The average conductivity is plotted against the number of singly-connected bonds for both the hierarch-
ical and series models. (a) a =0.4, (b) a =0.6, and (c) a =0.9. The solid lines are the theoretical slopes.

Lubensky and Tremblay have studied the same prob-
lern using an e expansion. They predict that t is greater
than the universal value whenever a g 1 and depends on
both a and e for a near 1. They find a crossover to
t =[(d —2)v+ 1/a] at a value of a which may be smaller
than the crossover value found here. Their numerical
simulations as well as those of Sen, Roberts, and Halpe-
rin yield values of t which are larger than those predicted
here and thus give qualitative support to the results of the
e expansion. On the other hand, we showed that for the
system sizes used in the simulations, the hierarchical
model predicts an effective exponent which is larger than

the asymptotic exponent. Since both theories involve ap-
proximations and since both are consistent with the nu-
merical results we cannot conclude at this time which is
closer to the truth.

The hierarchical model incorporates many of the
features of the nodes-links-blobs structure of the backbone
and provides a simple framework for studying percolation
problems. However, the hierarchical model does not in-
clude fluctuations in quantities such as the blob connec-
tivity or the number of links between nodes and it is possi-
ble that these fluctuations might lead to a more compli-
cated dependence of t on a than found here. It would be
very interesting to carry out more extensive simulations to
determine whether the hierarchical model gives correct re-
sults for percolation with a broad distribution of bond
strengths.
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APPENDIX: PROPERTIES OF THE TYPICAL VALUE
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FIG. 6. Effective exponent as a function of generation num-
ber for a=0.4 and 0.66. The effective exponent at generation n

is the slope of the line connecting the nth and (n +1)th data
points in a plot of ln[ $V(S})vs lnS.

The typical value r of a distribution I' defined in (2.11),
(2.12), and (2.14) exists for all distributions which are con-
centrated on the positive real axis. This follows from the
facts' that the Laplace transform f(z) of any such distri-
bution F exists for all real positive z with f(0)=1,
f ( ao )=0, and f(z) a monotone decreasing function. In
particular, the typical value exists even if the mean value
of the distribution fails to exist. For random variables re-
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lated by a change of scale, the associated typical values
are related by the same change of scale. That is, if cumu-
lative distributions F~ and F2 are related by
Ft (Ax) =Eq(x), then their typical values are related
r

&

——A,r2.
If all of the moments of a distribution exist, then there

is an implicit expression for r in terms of the cumulants
A J of the distribution. Using the well-known cumulant
expansion of the characteristic function, we have

(Al)

where /Co —=1. For a narrow distribution the mean A
&

is
much greater than the standard deviation (M2)'~, which
is, in turn, much greater than (MJ )' ~ for j & 2, in which
case (A 1) can be inverted approximately to yield

r =Mt(1 —M2/2Mt ) .

Thus we see that for narrow distributions, the typical
value is close to and somewhat smaller than the mean
value.
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