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Saturation of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction damping at large resis-
tivity or short mean free path in metallic alloys, as predicted in the Kaneyoshi model, is shown to
account for the recently observed spin-glass freezing temperature, T, in such systems as AuFe
quench-condensed films and ternary XY.Z, alloys, where X =Au,Ag, ..., is a nonmagnetic metal
host, Y =FeMn,..., is the dilute magnetic species of concentration ¢, and
Z=C_Cuy,...,TiShb, ..., is a nonmagnetic impurity of concentration x. Some deeper aspects of the
¢ dependence of the characteristic RKKY interaction energy scale are discussed, with emphasis on
the necessary distinction between quenched and ergodic situations in the randomly dilute alloys. A
consequent logarithmic correction to the c-scaling laws (at the marginal dimensionalities d =p =3,
where d is the electronic dimension of RKKY interaction varying as R ~¢, and p is the space dimen-
sion of the magnetic structure), in the form of To~c(—0.577—1Inc)'/?, is shown to be due to broken
dilatation invariance, by finite atomic size. The finite mean free path in real systems also breaks
this invariance by providing a length scale. However, at the damping saturation limit a pseudo-c-
scaling T ~c reappears, as was found in the amorphous spin-glass LaAuGd. This, and related pre-
dictions of the “typical environment” approach to the quenched-random-averaging problem agree
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remarkably well with the new data that have recently become available.

In a recent paper! the authors bypass an interesting op-
portunity to compare their experimental data with the
theoretical predictions of the spin-glass freezing tempera-
ture, among which the estimate due to the present au-
thor*3 has already been tested by several investiga-
tors.>2~!2 Elsewhere,!® Vier and Schultz (VS) recognize
the good agreement that has thus been obtained.
Nevertheless, there is, apparently, not a full consensus
about the “right” way to proceed. The controversial issue
is one of alternative models, and is best decided on empiri-
cal grounds. Since the situation is really quite subtle and
seems in need of clarification we shall briefly explain its
essence. It will be shown that our theoretical estimate
does, in fact, also provide a detailed account of the experi-
mental results reported by VS.!

Consider a randomly dilute configuration of spins that
interact strongly at short range. It may be time depen-
dent, as in a fluid, in which case we shall take ergodicity
for granted, or static, as in a quenched solid. Spins that
are particularly close to other spins experience a “strong
environment.” In the ergodic situation, all the spins have
a strong environment part of the time. In the quenched
situation part of the spins have a strong environment all
the time.

If a decision to freeze is based on the rule that a majori-
ty must experience a total interaction strength above a
given threshold, then there are cases in which the ergodic
and quenched situations will give opposite decisions. All
that is required is sufficient dilution to decrease the fre-
quency of close pairs (by roster in the quenched situation,
by time share in the ergodic) and sufficient strength at
short range.

For example, for the sake of simplicity, suppose all of
the interactions are zero except on neighboring lattice
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sites, where it is X. Let the threshold be X, and let
¢=N;/N, be the fraction of sites having a spin. The
probability (by roster or time share) that such a site has a
neighbor spin is gc, where g is the lattice coordination
number. For gc << 1, one can disregard multiples. In the
quenched situation, the majority, therefore, have a weak
environment, and the decision is “No.” If, however,
gc | X | > Xy, then every spin in the ergodic situation at
times experiences a strong environment which is suffi-
ciently strong, compared to the frequency with which it
occurs, for the decision to be “Yes.”

This example resembles the situation prevalent in real
spin-glass systems. One should note that if every site con-
tains a spin, or if the interaction is constant and of infinite
range, then the distinction vanishes, because all environ-
ments are equivalent. The latter cases are the ones con-
sidered in most current spin-glass theories, and in this
respect do not alert the necessary caution in their applica-
tion to the real systems. If the interactions are graduated
with range each environment is unique. In the case of a
fluid, we know how to evaluate the situation by the
averaging of statistical mechanics, which rests on ergodi-
city. In the quenched situation it is the most prudent to
assume that, without empirical confirmation, we do not,
except in highly symmetric crystalline structures. If we
have to decide between alternative suggestions in this
matter it is an empirical question.

A range dependence appropriate to the Ruderman-
Kittel-Kasuya-Yosida (RKKY) coupled spin-glasses is

3
) (1)

ro

where R;; is the distance between spins (i) and (j), and r,
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is an atomic radius. The sign is assumed randomly in-
dependent for each pair, in order to represent the effects
of the oscillation in the true RKKY interaction. The lo-
cal energy scale A; for a given site ( z) is the single sum
over nexghbor spins (not lattice points):*
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Consider replacing the j sum in (2) by an integral over a
spherically symmetric density. Three approaches are of
interest.

(i) Ergodic situation: An “average envxronment is
presented to each spin. Its density is essentially c/ry ex-
tending down to the atomic radius rq, therefore, apart
from the constants,
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This is at odds with the well-established concentration
scaling laws,'"* which have shown the energy scales in
RKKY coupled real spin glasses to be nearly linear in c.
Only in very exceptional circumstances do freezing tem-
peratures approach the V¢ predicted in (4), and these are
much more consistently explained otherwise.

It was suggested!® using a cutoff at the nearest-neighbor
distance &;, which is a random variable depending on (i),
and subsequently to average over its distribution (to be
done in tandem, before the root is taken). This can be
shown!® to be equivalent to constructing a “typical envi-
ronment” density.!” It represents the essence of quench-
ing, that a given spin never experiences a closer encounter
than a definite nearest neighbor. We have shown how this
may affect freezing decisions.

(ii) Quenched-uniform situation: Assume all §; are
equal to the average nearest-neighbor distance
(&)=(4mr3/3c)'”? as would be appropriate with a spin-
atom superlattice. Then,
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This result does agree with the scaling laws, apart from
the small corrections to be discussed below.

(iii) Quenched-random situation: Averaging over the
distribution of £; appropriate to the random configuration
gives close pairs a more proper representation, and a loga-
rithmic correction to ¢ scaling,'>®

A_iqucnched random __ c \/.—_—‘)’———E_C‘ /O N

(v represents Euler’s constant) in good agreement with
quite extensive sets of data.>!® The case of d=3 with the
R 3 range dependence is marginal in this sense. The
phenomenon is due to broken dilatation invariance:
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A, Quenched random  qoeq ot exist in the limit of point
atoms.!® If atoms have a finite size, the 7, here, then it
introduces a length scale. Any such inherent length,
atomic size, or mean free path, or RKKY short-range
modification, breaks dilatation invariance. In the present
case, pairs closer than 2r, are missing, compared to what
would occur in a random distribution of points. This
makes a big difference because the RKKY is strong at
short range. It causes the root factor in (7), which is ab-
sent from (6) because under (ii) there are no close pairs
anyway, as illustrated in Fig. 1. The ¢ dependences of (4),
(6), and (7) differ because their hypotheses about the envi-
ronment of a given spin differ. Each approach attempts
to estimate what continuous neighbor density might be
best assumed to be equivalent for all spins under the given
circumstances.

I Ns=3
NG:ZS
c = 3/25

Ns: 3
Ng = 81
c=3/81

1a0/2

FIG. 1. Dilatation transformation changing lattice spacing
and concentration c in conjunction, such as to keep fixed the in-
variant space density. The actual lattice spacing is related to the
finite atomic size. The configuration of @ atoms misses some
close pairs (shown as @—0O) which would be possible on the
finer lattice, and both miss some closer ones that would occur
with point atoms in a continuous space. This will break dilata-
tion invariance in all of those quantities, such as our present
quenched-random kzT), in which close pairs contribute signifi-
cantly at the ¢—O0 limit. This is marginally the case with the
form (1) of the RKKY interaction because of its strength at
short range. Evidently, the quenched uniform situation has no
similar effect, since the atoms are never closer than the superlat-
tice spacing. A distribution of this sort, such as the @ atoms ex-
clusively, is therefore dilatation invariant and gives rise to the
pure c-scaling law.
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There are two further possibilities one may consider:
(iv) The first moment of A, is

. 1
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Since the distribution of A; in the quenched-random situa-
tion is anomalous, due to close pairs and the infinite range
of the interaction, a direct numerical evaluation is
demanding.'® A careful evaluation with N, large enough
to get sufficient accuracy of y; at low ¢ to distinguish the
¢ dependences of (4), (6), and (7) from each other showed
that p, agrees with (7) (cf. Fig. 2).

(v) The second moment of A; is
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It involves the double sum 3, ; and therefore implies an
averaging over the center spin (i) of our previous con-
siderations. Thereby it becomes equivalent to an “average
environment,” which is the same as the one used in the er-
godic situation (i). It is difficult to see how the locally
relevant quantity could be

A=(u)2~Ve £y, (10)

rather than u itself. Perhaps it may aquire a global signi-
ficance by way of the replica method!® (both the A; and A
are displayed in Ref. 19, but the distinction appears to
have been overseen in some subsequent works). Even if
one maintains (10) for such reasons, the decision between
the different models remains an empirical question.

With proper attention to details, in the quenched-
random situation (iii) with a “typical environment” densi-
ty one finds®>>!

kgTo=A[3cT(z,£)]'%. (11)

Here, A is essentially the RKKY strength £, z is the
damping strength (see below), {=c¢/(1—c¢), and

Tao)= [ " dxtre==(1—e81-2Y) (12)
x
The Euler-McLaurin expansion is
T(z)=—t-e
4m
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and in some ranges of z and ¢ is accurate already at
m=10.
In the Kaneyoshi model®® one has asymptotically?! the
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where
x =2kpR, ¢=+tan"'5. (15)

This contains three parameters: £, kj, and & (the
linewidth), which, at present, we have no choice but to
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FIG. 2. Mean first moment I;, according to Ref. 18, of
spin-glass RKKY interaction energy (8) over randomly con-
structed systems with finite N;. In samples with fixed fcc lat-
tice volume N; is distributed as appropriate to the given global
concentration c¢ (i.e., Poisson for low ¢) with mean N,=40.
There are typically ~400 samples at each ¢. The development
with size N, is indicated for ¢ =107, including systems of
N, =100 (100 samples) and N, =500 (14 samples), which be-
come quite consuming of time and storage. Special care was
taken to compensate for boundary effects by embedding each
sample volume in a shell containing 26 times as many spins (also
in_average over the N, distribution). Displayed is ;/c £, vs

—v—Inc to emphasize the c-scaling correction [low ¢ form
according to (7)], as well as intervals containing the central
38.2% of the sampled values (together with 68.2% intervals at
¢=1073). The trend is ~N ;7%*. The accuracy achieved here,
despite the anomalous distribution of g, at low ¢, seems suffi-
cient to establish in (8) the c-scaling correction in the form
predicted in (7) with the “typical environment” construction.
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leave adjustable to the experiments.”* ¢ and kj contri-
bute to A, while it follows from (14) and (15) that

z=%[(1+52)1/2—1] , (16)

where z, contains kz (and ry).

Previous investigations’~ ! were done under the simpli-
fying assumption that § << 1, in which case z = 32,8, and
one could let §xp, the resistivity. The present experi-
ments' indicate that in the ternary alloys 8 may reach
values large enough to actually bring about the saturation
of the damping, as predicted in (14), i.e.,

z—zy for 6— o . (17)

We continue to let § « p, since we have no evidence to the
contrary, but the constant of proportionality should be
reserved as an adjustable parameter

d=p/po - (18)

Free-electron estimates are not meaningful in systems this
complicated. We have then three parameters: 4, z;, and
po with which to reproduce the entire experimentally ob-
served p and ¢ dependences.

Inspection of the data of VS for AgMng (,6Sb,, which
is the most extensive set they present, reveals a saturation
at large p already without assistance from ad hoc fitting
formulas. Without attempting a fully optimized fit the
values

ZO=O.5, po-—_—6.4 ,U,Q cm , (19)
1
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FIG. 3. Resistivity dependence of spin-glass freezing tem-
perature with zy and p, as in (19) adjusted to fit approximately
the AgMn_Sb, (c =0.026) data presented in VS (Fig. 1). Sa-
turation of the RKKY damping implies a finite value at infinite
resistivity.
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produce the p dependence shown in Fig. 3, and the ¢
dependences shown in Fig. 4. These theoretical estimates
of kzTy/A must be compared with Figs. 1 and 2 in VS,
respectively. In Fig. 4 we show p=0 and p= o limits, as
well as the intermediate curve corresponding to the binary
system AgMn,, where the resistivity is*

PagMn=154c uQcm . (20

We believe it is fair to conclude that the agreement is
striking. It even extends to the slight curvatures in the c
dependences, and this is not something which can be ar-
ranged by adjusting the parameters since they are already
determined at ¢=0.026. For example, at p=o in
1% <c <10% we find To~c**?, whereas with their ex-
trapolation formula VS report T,(w)~c®°!. Since the
saturation of T in the present estimate is not exponential,
but slower, the values at p= o are a little smaller than
what their exponential formula might suggest, so it is to
be expected that their exponent may be slightly less. But,
in any case the ¢ dependence is only approximate, and
the exponent depends somewhat on the interval of ¢ in
which it is taken. The phenomenon that T, becomes
nearly linear in ¢ at strong damping was first noticed by
Poon and Durand,” and here receives an explanation.
(See Fig. 4.)

Compared to the earlier analysis we have now intro-
duced one more parameter in order to extend the test of
our estimate to the range where the damping is predicted
to saturate. For small 8§ they coalesce into the self-
damping parameter

KN
o
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freezing temperature kgl /A

o

0 1 10
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FIG. 4. Concentration dependence of the zero resistivity limit
of the spin-glass freezing temperature, the infinite resistivity
limit, and the estimate for the AgMn, resistivity (20) with self-
damping of the RKKY interaction by the Mn impurities. Same
parameter values as in Fig. 3 to reproduce approximately the
data in Fig. 2 of VS for AgMn_Sb, .
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r =

o N

= %zopAgMn/poc ~6 . (21)

In the absence of unequivocal evidence for the saturation
in the earlier data this simplification was continued to
high p, without introducing the quantity 6. With hind-
sight, one can see the hints of the saturation also
there,®2%%" a point which was noted but left for future in-
vestigation.>

In conclusion, we have pointed out the distinction be-
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tween ergodic and quenched environments which is neces-
sary when estimating the RKKY interaction strength in
dilute alloys. The source of a marginal correction to ¢
scaling has been identified in this context. The model us-
ing the “typical environment” density in the quenched
random situation was compared with the experiment of
VS and found entirely adequate in an extended range,
demonstrating the damping saturation effect predicted in
the Kaneyoshi model.
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