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A short-range-order —dependent electronic theory of coherent phase equilibrium in substitutional
binary alloys is presented. The alloy internal energy is calculated using the cluster-Bethe-lattice
method, The configurational entropy is evaluated using the cluster variation method. This ap-
proach is parameter free and uses only the results of elemental electronic-structure calculations as
input. Et is shown that the configuration dependence of the enthalpy of formation can be described

by concentration-dependent effective pair interactions. Equilibrium phase diagrams for the Cr-W,
Cr-Mo, and Mo-%' systems are presented. Other thermodynamic properties can also be obtained.
As an example, we calculate the chemical activities and high-temperature enthalpy of formation for
the Cr-Mo system. The predicted phase diagrams and related thermodynamic functions are in good
agreement with available experimental data.

I. INTRODUCTION

In an earlier paper' we presented a configuration-
dependent microscopic theory of coherent phase equilibri-
um in substitutional binary alloys. Therein, an alloy free
energy was constructed by coupling a tight-binding
cluster-Bethe-lattice-method (CBLM) treatment of the
electronic internal energy with Kikuchi's cluster-
variation-method (CVM) treatment of the configuration-
al entropy. In particular, it was shown that this CBLM-
CVM approach predicted rather accurately the miscibility
gap found in the Cr-W phase diagram. ' In this paper we
improve our previous CBLM-CVM treatment of the Cr-
W system by describing the configurational entropy in the
tetrahedron, rather than the pair, approximation of the
CVM, and by allowing for asymmetry with respect to
concentration in the analytic representation of the alloy
internal energy. This improved theory is then applied to
the Cr-Mo and Mo-% systems.

A common approach to the study of alloy phase equili-
brium is to use phenomenological Ising- or pair-potential
models for the internal energy together with a CVM treat-
ment of the entropy. In some cases, these simple internal
energy models together with the CVM give accurate re-
sults for alloy phase diagrams and related thermodynamic
properties. ' An important result of these studies has
been the clear demonstration that atomic spatial correla-
tions, particularly the Cowley short range order (-SRO) -pa-

rameter, '
play a crucial role in determining the equilibri-

um phase diagram.
More recently, first-principles treatments of the alloy

internal energy have become available. However, in some

cases these were combined with the Gorsky-Bragg-
%illiams entropy approximation, ' which is known to in-
troduce considerable error. ' For example, in bcc Ising
systems the error in the transition temperature is about
20% for both phase separation and for I.2c ordering, and
the approximation is qualitatively wrong for L lo ordering
in fcc lattices. This makes "agreement" of such calcula-
tions with experiment suspect and complicates the com-
parison between theory and experiment.

Our approach is to combine a microscopic, parameter-
free treatment of the internal energy together with an ac-
curate treatment of the configurational entropy. Vibra-
tional entropy contributions are neglected which, in view
of the overall agreement of our calculations with experi-
ment, appears to be a reasonable approximation for the
systems investigated. In particular, SRO is included in
both the internal energy and the entropy calculations.
Our CBLM treatment of the internal energy, although not
ab initio, requires only the results of pure-element ab ini
tio calculations as input. Previous work has shown that
this approach correctly reproduces trends in enthalpies of
formation of alloys. Furthermore, the CBLM together
with the CVM has also been used to calculate some ther-
modynamic properties of the Cu-Au, Cu-Ag, and Ag-Au
systems at fixed stoichiometries, ' to study the Co-Fe sys-
tem' and, more recently, has been found to predict accu-
rately the Cr-W phase diagram. '

Several other techniques for calculation of the electron-
ic internal energy of alloys with SRO hold promise for fu-
ture work. Some of these techniques, such as those of
Connolly and VA'lliams' and the embedded-cluster
Korringa-Kohn-Rostoker coherent-potential approxima-
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tion (KKR CPA), ' are based on truly ab initio
electronic-structure methods. However, these techniques
rely heavily on the extrapolation of results from specific
alloy configurations using effective cluster interactions
such as those used in phenomenological theories.
Stoichiometric ordered compounds have been used as
reference states by Connolly and Williams. ' A more
commonly used approach consists of extrapolation from a
totally random state (calculated, for example, in the
coherent-potential approximation). For example, in the
generalized perturbation method (GPM) proposed by
Gautier and co-workers, cluster interactions are calculat-
ed from perturbations about the CPA medium. This tech-
nique has been investigated extensively in the tight-
binding approximation and the results indicate that the al-

loy ordering energy is generally dominated by
concentration-dependent effective pair interactions. ' In
this context, one of the important results of the present
work is that our values for the enthalpy of formation,
which are calculated as an explicit function of SRO, can
be described well by concentration-dependent effective
pair interactions.

This paper is organized as follows: In Sec. II we
present a brief review of the quantum- and statistical-
rnechanical approaches used in our calculations. We also
discuss the representation of a portion of the alloy-mixing
energy in terms of effective pair interactions and the
evaluation of the phase diagram. In Sec. III we present
the results of the calculations for the Cr-W, Cr-Mo, and
Mo-W systems, and compare them with the available ex-
perimental data Some. concluding remarks are presented
in Sec. IV.

II. THEORY

qiia„)=[i~~ q~(r)rar a„(r)]'1/2 (2.4)

The electron-electron and ion-ion interactions per atom
are written

sumed to depend only on the species of atom I at the
relevant site i .They are related to the intrinsic tight-
binding onsite energies Erp by

EIp EIp++Ip ~ (2.3)

where 41& is the mean effective Coulomb potential seen

by the P orbital on a type-I atom located at site i T.his
Coulomb potential is calculated in two parts: an intrasite
contribution (effective direct-exchange energy) and an in-
tersite contribution (effective Madelung energy) that is
taken to be the same for all orbitals. The intersite contri-
bution was evaluated using a direct summation method
proposed by Robbins and Falicov.

We have used atomic eigenvalues for the intrinsic onsite
energies. These eigenvalues (listed in Table I) were cal-
culated ' for a relativistic atom with one s electron and
all d orbitals equally occupied. Exchange and correlation
were included using the local-density functional calculated
by Ceperley and Alder. 2~ Crystal-field splitting was not
included. The eigenvalues do not include this spin polari-
zation.

The off-diagonal Hamiltonian matrix elements or hop-
ping energies, t;ii Jr, are also assumed to depend only on
the atomic species at the relevant sites, on the relative po-
sitions of the sites, and the character of the orbitals P and

y. Nearest- and next-nearest-neighbor hopping were in-
cluded. The hopping energies between like species were
evaluated from Harrison's Solid State Table2 and are list-
ed in Table I. Hopping energies between different species,
tzii qr(r), were calculated using

A. Hamiltoniaa

A tight-binding Hartree Hamiltonian was used which
included both intersite and intrasite-Coulomb interac-
tions. ' This Hamiltonian incorporates the essential
features required for a self-consistent treatment of charge
transfer. It can be divided into three terms:

+en +HIOn-iOn ~ (2.1)

where Hi, is the one-electron tight-binding Hamiltonian,
H, , is the electron-electron interaction (subtracted from
the one-electron Harniltonian since this interaction is
counted twice in Hi, ), and H;,„;,„ is the interaction be-
tween the ions.

The one-electron tight-binding Hamiltonian incorpo-
rates the effective potential from the ions and other
valence electrons due to charge transfer. We have em-

ployed a minimal tight-binding basis (one s orbital and
five d orbitals; s-d hybridization included) of localized
orthogonal orbitals centered on each atom. In terms of
this basis,

(2.2)
i,p

where
~
iP & is the ket for the orbital P at site i

The diagonal Hamiltonian matrix elements E;p are as-

Hq q
=

2 g Gy g uy Iij Ii y +
p, y ij py iJ

8 ZZJ
10ll-lOIl g y ~ ~ 7

~v I J ~LrV

(2.5)

1

Hion-ion ~e e= I &-(o') g cl (iil 2 &ril )&iil
I

g CI Q Ql til i(I
I p, y

(2.6)

where V denotes the nearest-neighbor contribution to the
average intersite potential per transferred electron, nl is
the total valence of species I, b,nl is the total charge
transfer to species I, and a(o) is an effective Madelung
sum which depends only on the Cowley SRO parameter
o. The SRO parameter cr is a measure of the degree of
correlation between pairs of atoms. Values for o range

where cr is the concentration of species I, uP' are the ef-
fective direct-exchange interactions, 2'~ nP denotes the
electron occupation of orbital P for species I, —

~

e
~
nP

and
~

e
~
Z; are, respectively, the P-orbital valence and

ionic charges at site i, e is the dielectric constant, and r;~
is the distance between sites i and j. As shown by Rob-
bins and Falicov, 34 the difference H;;,„H, , largely—
cancels and can be written
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TABLE I. Hamiltonian parameters in eV. %'e have used the notation of Slater and Koster (Ref. 51)
for the overlap integrals. They are denoted by the type of orbital on each site, s and d, and the magni-
tude of the orbital's angular momentum m about the axis connecting the sites: cr, m, and 5 correspond
to

~

m
~
=0, 1, and 2, respectively. Integrals between nth-nearest neighbors have subscript n.

Onsite
EO

Eo

Chromium

—4.190
—3.140

Molybdenum

—4.320
—3.950

Tungsten

—5.350
—3.560

Intersite

($$Q'))

(sdo)q

(ddt)~
(ddt )i

(dd5)l

—1.707
—0.833
—0.921

+ 0.497

0.000

—1.442
—0.954
—1.433

+ 0.774

0.000

—1.421
—1.013
—1.637

+ 0.884

0.000

($$&)2

(sdo )2

(ddo )2

(ddt)2
(dd5)q

—1,280
—0.500
—0.451

+ 0.244

0.000

—1.082
—0.572
—0.702

+ 0.379

0.000

—1.066
—0.608
—0.802

+ 0.443

0.000

Effective direct-exchange and Coulomb energies

u =0.7, u~=0. 9, u~=1.9, V=0.3

b H (rr, c)=Hza(cr, c)—cH„—(1—c)Ha, (2.7)

where Hza(o, c} denotes the total energy of alloy AB at
concentration c of species A and $RO cr, and HI denotes
the energy of pure element I. The one-electron contribu-
tion to the total energy is related to the single-particle
Green's function through the local density of states
(LDOS). In terms of the LDOS, this contribution is writ-

ten

EF(H, )= [ p (, , )+(1—)p (, , )]
(2.8}

where e'F is the Fermi energy and pr(cr, c,co) is the LDOS
for species I at energy co, concentration c, and degree of
SRO a. The LDOS projected onto species I at site i is
given by

pr(a, c,co) = ——Im g (IP
~

G(cr,c,co)
~
IP)

p
(2.9)

from + 1, which corresponds to the completely segregat-
ed alloy, to —1, which corresponds to a perfectly ordered
stoichiometric CsCI structure. The values for V and uP"
used in our calculations are given in Table I. We have
taken these parameters to be the same for all atomic
species.

B. Enthalpy of formation

The energy of central interest in our study is the enthal-

py of formation, ~, defined by

where the sum on p is taken over all orbitals, and where

the overbar indicates configuration averaging of the
single-site Green s function which, in turn, is defined by

G(a)) =(co Hi.,)— (2.10)

In order to calculate the configuration-averaged Green's
function at arbitrary concentration and arbitrary SRO, we
have used the cluster-Bethe-lattice method. '

The specifics of this approach are outlined in the Appen-
dix. The alloy CBLM reproduces important features of
the mean local chemical environment of all atoms in the
alloy: the coordination number of the real lattice as well
as the mean distribution of nearest neighbors. This
mean-field approximation provides values for the total en-

ergy as a function of concentration and $RO. The SRO
dependence is particularly important since it is from this
that we shall obtain the effective pair interactions. Re-
cently the CBLM has been shown to predict the zero-
temperature stable-phase tendencies in transition- and
simple-metal alloys. This approach also appears to
predict correctly trends in the asymmetry of hH with
respect to concentration.

After computation of the LDOS in the manner
described in the Appendix, charge transfers [see Eqs. (2.5)
and (2.6}] are determined and the resulting Coulomb in-
teraction incorporated into the one-electron Hamiltonian
using Eq. (2.3). The calculation of the LDOS is iterated
until relative changes in the charge transfers are less than
10, at which point electronic self-consistency has been
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achieved. The electronically self-consistent total energy is
then used to calculate ~(n, c}at a given a and c.

C. Configurational entropy

Equihbrium SRO is obtained by minimization of a
properly constructed configurational free energy. To treat
the configurational entropy of the alloy, we use the CVM,
which provides a reasonably accurate description of

SRO. ' ' ' This nontrivial generalization of the
mean-field approximation treats spatial atomic correla-
tions (and, thus, SRO) within a chosen maximum cluster
of lattice sites. The maximum cluster used in our study is
the tetrahedron shown in Fig. 1 containing both first and
second neighbors in the bcc lattice. In the tetrahedron ap-
proximation, the entropy for a bcc disordered system is
written

8 = —ka 6 g zJJ»L, 1n(zJJ»J. )—12 g tJJ»ln(&JJ») +3+yJJ'In(yJJ')+4+yJJ'ln(yJJ") —+xi ln(xJ)
I,J,K,L I,J,K I,J I,J I

(2.11)

rIJ» = g zIJ»L
L

yIJ g rIJ» I

K

+I 3IJ '
J

(2.12a)

(2.12b)

(2.12c)

The Cowley SRO parameter' (introduced above) for the
kth neighbor, ok, is defined by the relation

ok (xAx8 yAB )J (xAx8 }(k) (2.13)

The equilibrium value of the SRO parameter ak follows
from the minimization, at constant concentration, of the
configurational free energy

(2.14)

where ~ and S are defined by Eqs. (2.7) and (2.11),
respectively. Alternatively, we may minimize the grand

where ka is Boltzmann's constant and zJJ»L, &JJ», yJJ',
and xJ (collectively referred to as distribution variables}
denote, respectively, the probability of finding tetrahedra,
triangles, kth-nighbor pairs, and points in the configura-
tion given by their subscripts (I equals A or 8 in a binary
alloy}. The distribution variables are related by the fol-
lowing consistency relations:

gl xA x8 . (2.16}

The minimization of the grand potential Q is carried
out as follows. We first calculate the alloy enthalpy of
formation ~(o,c) over a region of the cr-c plane in
which we expect to find equilibrium. The calculated
~(o,c) is then described (see Sec. II D) in this region by
an analytic function of 0 and c. This function is then
used with Eqs. (2.11) and (2.15) to obtain an analytic
closed-form expression for the grand potential which is fi-
nally minimized with respect to the distribution variables
given in Eqs. (2.11}and (2.12a)—(2.12c) subject to the con-
straints

zlJ»L
I,J,K,L

(2.17)

The resulting equilibrium values of crk and c are checked
to ensure that they fall within the chosen o-c region.

It may be shown that the equilibrium values, i.e., after
minimization, of the effective chemical potential and
grand potential can be written as

potential 0 at constant chemical potential. The grand po-
tential is defined by

(2.15}

where p is an effective chemical potential and gi is the
point correlation functionM given by

IJ =(IJa PJi)/2, —

&=(V~+} a)J'2,

(2.18)

(2.19)

where y, J is the chemical potential of component I. Con-
sequently, equilibrium between two phases, a and P, at a
given temperature is determined by

p =p&,

n =@I'.
(2.20)

(2.21)

FIG. 1. Basic cluster for the bcc tetrahedron approximation.

D. Random energy and pair interactions

As discussed in the Introduction, effective pair interac-
tions have been quite useful in phenomenological treat-
ments of alloy phase equilibrium and arise naturally in
other treatments of the electronic energy of alloys. To
test this form and to facilitate the calculations we fit the
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CBLM results for ddt(o, c) with pair interactions. The
enthalpy of formation ~(o,c}is written as

EH(cr, c)=E«„d(c)+E„e(rr,c), (2.22)

where E„,d(c) =EH(0,c) is the enthalpy of formation of
the random alloy, and where the ordering energy E,&
takes into account the contributions due to short- and, if
present, long-range order.

E d is a function only of the point correlation func-
tion gi. In all alloys studied here, E«„q was found to be
described well by the expression

E-.d(ki) =(~o+&oui)(1 —ki) . (2.23)

In terms of effective pair interactions, the ordering energy
is written

E-d= z g~kVk(kz '

k
(2.24)

where nik, Vk, and gz
' are, respectively, the coordination

number, effective pair interaction, and pair correlation
function for the kth-nearest neighbor defined by

42 3 AA +YBB 2YAB ~ (2.25)

Noting that in terms of gi and gz"' the Cowley SRO pa-
rameter is written

ok =(4"'—Ci)/(1 —ki»
Eq. (2.24) becomes

Eord(kl~rrk ) 2 (1 kl) g rgk Vk irk
k

(2.26)

where Vk is, in general, concentration dependent.
As shown below, in Cr-W, Cr-Mo, and Mo-W alloys,

ddl is found to be a rather linear function of SRO for
fixed concentration. The first- and second-nearest-
neighbor effective pair interactions are found to be fairly
linear functions of concentration and they are approxi-
mated by the expression

tions and temperatures, the calculated equilibrium SRO
was confined to the range 0&rr &0.2. The parameters in
Eqs. (2.23) and (2.28) were obtained by least-squares fit-
ting of the calculated enthalpy of formation and they are
given in Table II.

III. DISCUSSION AND RESULTS

A. Chromium-tungsten

The phase equilibrium of Cr-W was reviewed recently

by Naidu, Sriramamurthy, and Rao. Cr-W is found ex-
perimentally to be a bcc-based isomorphous system. The
experimental phase diagram reveals complete solid solu-
bility between 1950 K and the solidus: below 1950 K a
rather symmetric miscibility gap is found. Measurements
of the alloy lattice parameter indicate that Cr-W has a
slight positive deviation from Vegard's law.

The enthalpy of formation for Cr-W, calculated follow-
ing the procedure described in Sec. II and using the pa-
rameters listed in Table I, is shown in Fig. 2 for different
values of concentration and SRO. ~ was found to be
rather linear with respect to rr for fixed concentration,
with a slight asymmetry with respect to concentration.
This can be seen in Fig. 3, where the effective pair interac-
tions for first- and second-nearest neighbors ( Vi and Vz,
respectively), determined using Eq. (2.24), are shown. Vi
is much larger (about 10 times} than Vz and is a relatively
weak linear function of concentration. Both Vi and Vz

are negative, consistent with the fact that this alloy segre-
gates at low temperature.

Owing to the lack of thermochemical measurements in
this system, comparison between theory and experiment
is limited to the phase boundary. The calculated ~hase di-

agram is compared to the experimental results in Fig.
4. The experimentally determined critical temperature is
reproduced rather well in this calculation, the calculated
critical temperature of 2140 K being 10'///o greater than the
experimental critical temperature.

Vk(ki) =~k+&kki . (2.28)

We find that the analytic expression for ddX resulting
from Eqs. (2.22)—(2.24) and (2.28) describes the calculated
enthalpy of formation well over the region 0 & n & 0.5 and
0&c &1, the root-mean-square deviations for the fits to
b,H being 4X10, 5X10, and 3X10 ' meV/atom,
respectively, for Cr-W, Cr-Mo, and Mo-W. Parametriza-
tion of ~ in this range of SRO was found to be suffi-
cient for the systems investigated since, at all concentra-

TABLE II. Enthalpy of formation parameters in eV.
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E

Q
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o
0 0

0 ~ 5
5

50
0
cj
8

o

80

8)
A2

Bp

Cr-%

+ 0.106
—0.005
—0.023
+ 0.003
—0.002
—0.002

Cr-Mo

+ 0.040
+ 0.003
—0.007
—0.001

0.001
+ 0.001

+ 0.005
0.000

—0.001
0.000
0.000
0.000

0.2
I I

OA 0.6 0.8
CONCENTRATlON OF TUNGSTEN

FIG. 2. Calculated enthalpy of formation at 0 K of Cr-W as
a function of tungsten concentration for seven values of short-
range order cr (n= —0.25, 6; o = —0. 125, '7; o =0,
o =+0.125, ; cr=+0.25, o; can=+0. 375, G; o =+0.5, Q}.
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FIG. 3. First- () and second- (O ) nearest-neighbor effective
pair interactions of Cr-%' as a function of tungsten concentra-
tion.

Although the experimental phase boundary appears
quite symmetric, there is a positive deviation on the Cr-
rich side. To explain this deviation within the context of
the regular solution model an ad Itoc strain energy was
proposed in earlier work. However, this proposal was
countered by the equally tenable argument that the
phenomenological regular solution description of the alloy
internal energy was simply inadequate. Our results are
consistent with the latter view: In our treatment, the
asymmetry in the Cr-W phase diagram arises naturally
from the calculated electronic structure. The direction of
the asymmetry is consistent with the trend found for al-
loys of monovalent simple metals which, like Cr, Mo, and
W, are isoelectronic. Alloys with higher concentrations of
the metal with the larger bandwidth are less strongly
segregating (duV less positive). This trend is also found
for Cr-Mo and Mo-W.

To the authors' best knowledge, there are no experimen-
tal studies of the thermodynamic properties of Cr-W ex-
cept for the phase diagram. Many other thermodynamic
properties can be calculated with the CBLM and the
CVM. Experimental data for the activities, enthalpy of
formation, specific heat, and x-ray diffuse intensity would
be quite useful in further assessing the predictive nature
of the CBLM-CVM approach and of future first-
principles treatments of alloy phase equilibrium.

B. Chromium-molybdenum

A review of the phase equilibrium of Cr-Mo has recent-
ly been completed by Venkatraman and Neumann. Ex-
perimental studies of Cr-Mo (Refs. 40 and 41) indicate
that this system is qualitatively similar to Cr-W: a bcc-
based isomorphous system with a phase diagram charac-
terized by a miscibility gap, and an alloy lattice parameter
found to have a small positive deviation from Vegard's
law. Unlike the Cr-W system, thermochemical measure-
ments are available while direct measurements of the mis-
cibility gap are limited. Measurements of the chemical
activity and of the enthalpy of formation have been re-
ported by Laffitte and Kubaschewski 2 and Kubaschewski
and Chart. 3 An x-ray study of phase separation in Cr-
Mo at two concentrations has also been reported.

The enthalpy of formation for Cr-Mo, calculated fol-
lowing the procedure described in Sec. II using the param-
eters listed in Table I, is shown in Fig. 5 for different
values of concentration and SRO. For Cr-Mo„ the asym-
metry with respect to concentration and the nonlinearity
with respect to o of bH are somewhat more pronounced
than in the case of Cr-W. In Fig. 5 we see that ~ peaks
on the Cr-rich side. This asymmetry and the nonlinear
dependence on cr are also evident in Fig. 6, where the ef-
fective pair interactions, calculated using Eq. (2.24), are
shown. The relative variation in V, as a function of con-
centration is now about 30%, 3 times that of Cr-W, and
the relative strength of Vz to Vi is double that seen in the
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I

0.2 0.4 0.6 0.8
CONCENTRATION OF TUNGSTEN

0
Cr

I I I

0.2 0.4 0.6 0.8
CONCENTRATION OF MOLYBDENUM

FIGr. 4. Equilibrium phase diagram of Cr-W. The calculated
phase boundary is shown by the solid curve. The experimental
data indicated by the squares, circles, triangles, and diamonds
are from Refs. 34, 35, 36, and 37, respectively.

FIG. 5. Calculated enthalpy of formation at 0 K of Cr-Mo as
a function of molybdenum concentration for seven values of
short-range order o (a= —0.25, 4; o = —0. 125, ~; a =0, Q;
a.=+0.125, ; o =+0.25, 0; @=+0.375, ; o =+0.5, Q).
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CONCENTRATION OF' MOLYBDENUM

0

Cr

I I I I

0.2 OA 0.6 0.8
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1
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FIG. 6. First- () and second- (o ) nearest-neighbor effective
pair interactions of Cr-Mo as a function of molybdenum con-
centration.

FIG. g. Equilibrium phase diagram of Cr-Mo. The calculat-
ed phase boundary is shawm by the solid curve. The assessed
boundaries, the dashed and dotted lines, are from Refs. 39 and
37, respectively.

Cr Wsyst-em. The sign of Vq is also changed, but its
magnitude is small enough that the internal energy
remains consistent with a bcc segregating system.

The calculated chemical activities of Cr and Mo in the
Cr-Mo alloy, given in terms of p, and 0 by

(A+p, )/k& T
acr =e

(0-p)/k~ T
aMO =~ 7

are compared with experiment ~ in Fig. 7. All of the
qualitative features of the concentration dependence of
these activities are predicted well by the theory. The close
correspondence of experiment and theory is an indication
that the alloy free energy is predicted correctly. The posi-
tive deviation from ideality of the activity reflects a posi-
tive excess free energy, indicative of a miscibility gap.

The calculated phase boundary in Cr-Mo is compared

with two reported theriac. ochemical assessments of the
phase boundary in Fig. 8. The middle phase boundary
was presented by Laffitte and Kubaschewski, 42 who com-
bined their measurements of the alloy free energy together
with the Gorsky-Bragg-Williams approximation for the
entropy. Our calculated critical temperature of 860 K
differs from this assessment by 10%%uo, well within the ac-
curacy anticipated for the CBLM-CVM approach and
their entropy approximation. The highest phase boundary
was estimated by Kubaschewski and Chart. 43 These au-
thors used the ddI measurement shown in Fig. 9 with the
alloy free energy measured by Laffitte and Ku-
baschewski ~ to obtain the alloy entropy of mixing at 1400
K. To determine the miscibility gap, these authors as-
sumed that both ~ and the alloy entropy of mixing were
temperature independent. The limited x-ray study men-
tioned previously is consistent with the resulting phase di-
agram. The top of the miscibility gap in their and other
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FIG. 7. Calculated activity of chromium and molybdenum in
Cr-Mo as a function of molybdenum concentration. The open
circles indicate the experimental data taken from Refs. 37 and
39.

FIG. 9. Calculated equilibrium enthalpy of formation at
1400 K af Cr-Mo as a function of molybdenum concentration.
The open circles indicate experimental data taken from Ref. 40.
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thermochemical calculations (all of which are based
on these same two experiments) is located at 39 at. % Cr,
which is consistent with our results. However, their ther-
mochemical estimate of the critical temperature differs
from our result by 27%%uo.

Further experimental work would be helpful to clarify
the apparently confiicting evidence concerning the loca-
tion of the miscibility gap. It is surprising that while our
calculated free energy (cf. Fig. 7) is in good agreement
with experiment, the calculated values of the enthalpy of
formation differ significantly from reported calorimetric
measurements of this quantity (cf. Fig. 9). The two exper-
imental measurements taken together imply a substantial
nonconfigurational contribution to the entropy of mixing.
Unfortunately a full description of the measurements of
the enthalpy of formation has not been published and to

the authors' best knowledge there are no experimental
data for the entropy of mixing in Cr-Mo. Experimental
studies of the thermodynamic properties of Cr-Mo at dif-
ferent temperatures would enable an assessment of this
implied extra entropy term and would provide a clearer
indication of the source of the apparent discrepancy be-

tween the calculated and experimental values for b,H.

C. Molybdenum-tungsten

A recent review of the Mo-W system by Naidu,
Sriramamurthy, and Rao indicates that it, too, is a bcc-
based isomorphous system. All cited x-ray studies have
shown Mo-W to form a continuous series of solid solu-
tions at all temperatures. Measurements of enthalpy
and of specific heat 7 in this system have all been found to
obey an ideal law of mixing: any mixing contribution be-

ing below experimental resolution. There is some evi-

dence, however, indicating the existence of a miscibility

gap at low temperatures. In a study of diffuse x-ray
scattering, Ol'shanskaya, Nekrasov, and Umanskii~s re-
ported positive values for the Cowley SRO parameter in-

dicating clustering. Brewer ' has found that thermo-
dynamic data for Mo-W indicate clustering with a misci-
bility gap below room temperature.

The enthalpy of formation for Mo-W, calculated fol-
lowing the procedure described in Sec. II using the param-
eters listed in Table I, is shown in Fig. 10 for different
values of concentration and SRO. The effective pair in-

teractions calculated using Eq. (2.24) are shown in Fig. 11.
Although the effective pair interactions are of opposite
sign, their ratio ( Vi/Vi) is consistent with a bcc-based
segregating system. Our calculation indicates that Mo-W
segregates at low temperatures. The calculated values of
lLH (Fig. 10) indicate that the phase boundary should lie
at temperatures about an order of magnitude lower than
that of Cr-Mo. This is seen in Fig. 12, where we present
the Mo-W phase diagram calculated using the effective
pair interactions shown in Fig. 11. The low-temperature
miscibility gap is consistent with the fact that experimen-
tal measurements of the enthalpy and specific heat at high

0.5-
E

CL

Z -05-
lL

LaJ

I -is-
4d

o o & o

e o
0

120

100-

80-
LJ
Q

60-
CL
laJ
CL

40-

20-

6
INo

I I I

OA 0.6 0.8
CONCENTRATION OF TUNGSTEN

0.2

FIG. 11. First- () and second- (0 ) nearest-neighbor effec-
tive pair interactions of Mo-%' as a function of tungsten concen-
tration.

0 I l

0 0.2 0.4 0.6 0.8 1

hho CONCENTRATION OF TUNGSTEN

FIG. 12. Equilibrium phase diagram of Mo-W. The ca1cu-
lated phase boundary is showa by the solid curve.
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temperature show no mixing contribution. Note that be-

cause Mo and W have similar bandwidths, ~ and the
phase diagram are very symmetric.

begin with the electronic band structure of each alloy
component and end with thermodynamic properties of the
alloy that are in good agreement with experiment.

IV. CONCLUSIONS ACKNO%LEDGMENTS

We have calculated the equilibrium phase diagram and
some related thermodynamic properties for the Cr-W,
Cr-Mo, and Mo-W systems. In Cr-% the calculated
phase diagram is in good agreement with experiment. A
lack of experimental data precluded further comparative
study in this system. In Cr-Mo, the calculated activities
(and, consequently, the alloy free energy) are in good
agreement with experiment. While the calculated and ex-
perimental high-temperature enthalpies of formation
differ substantially, the predicted phase diagram is in
reasonable agreement with thermochemical assessments.
A low-temperature miscibility gap is predicted in Mo-W.

We found that the alloy enthalpy of formation was
represented well by a function consisting of a nonlocal
term describing the energy of the random alloy and an or-
dering term given by concentration-dependent effective
pair interactions betwo*.n first- and second-nearest neigh-
bors. This description of ddI is especially convenient for
use with the CVM.

The trends in the phase diagrams can be understood in
terms of previous studies of alloy enthalpies of formation.
The main contributions to ~ in transition-metal alloys
come from the d bands. A mismatch in d-band widths
provides a positive contribution to ~ favoring segrega-
tion. The other main contribution to lLH in transition-
metal alloys is usually from hybridization of the two ele-
mental d bands. However, this term is roughly propor-
tional to ddt, where ~d is the difference in the occupa-
tion of the elemental d bands. This term vanishes for the
isoelectronic series Cr,Mo, W. 9 Thus, all three alloys
segregate due to d-band mismatch. Other contributions
to M from charge transfer, s electrons, and s-d hybridi-
zation play a role in determining the magnitude of b,H
but are not dominant. The magnitude of ddt increases
from Mo-W to Cr-Mo to Cr-W as the size of the d-band
width mismatch increases.

The miscibility gaps found in these systems are rather
symmetric. This symmetry is peculiar to the alloys stud-
ied here and is not a general result. As observed by Wat-
son et al. , alloys of elements whose average d-band fil-
ling is near 50% tend to have symmetric phase diagrams,
as do alloys of elements from the same column of the
Periodic Table: Cr, Mo, and W satisfy both criteria.
There is, nevertheless, a small asymmetry in the miscibili-
ty gaps which may be understood in terms of the
mismatch between d-band widths. As shown for alloys of
monovalent metals, alloys with more of the element with
a larger bandwidth are less strongly segregating (b.H less
positive). This trend is seen in all three alloys studied.
The asymmetry is very weak in Mo-W, where the d band-
widths are nearly equal, and increases in absolute magni-
tude as the mismatch increases in Cr-Mo and Cr-%'.

In summary, we have presented a microscopic calcula-
tion of alloy phase equilibrium for binary transition-metal
alloys that includes SRO explicitly. In this calculation we

The authors wish to thank M. Venkatraman and J. P.
Neumann for providing a copy of their review of the Cr-
Mo system prior to publication. Two of us (R.J.H. and
J.M.S.) wish to acknowledge support by the National Sci-
ence Foundation under Grants No. DMR-82-06195 and
No. DMR-85-10594.

APPENDIX

The cluster-Bethe-lattice method is a real-space
embedded-cluster technique. In the single-site approxima-
tion, the self-consistency condition is equivalent to solving
the Hamiltonian on a Bethe lattice. For reasons discussed
in Ref. 4, we treat the bce lattice as having a coordination
number of 14 with the eight nearest neighbors and the six
second-nearest neighbors on the same shell. Using a
single-atom cluster and a multiorbital basis, Dyson's equa-
tion

(A 1)

where I is the identity matrix, is solved by introducing a
transfer matrix. This transfer matrix connects the
Green's function on successive shells of atoms and is de
fined by

~&a«)=Go,'o(G. ' i,o) ' (A2)

where r denotes the vector connecting the sites of atoms
E and J and n denotes the nth shell of atoms. In princi-
ple, this ratio of Green's functions depends on the occupa-
tion of other sites. In the CBLM a self-consistent mean-
field approximation is made for these occupations which
includes SRO through conditional pair probabilities de-
fined by

J JL ~+JJL (A3)

In this self-consistent mean-field approximation, Eqs.
(A 1) and (A2) yield

T

~ex(r) = coI EJ —g P g—~ti (r')~v(r')
L r'~ —r

X~&x( —r) . (A4)

The equation for the site-diagonal element of the Green's
function that determines the LDOS is

Pi(r) =~~a(r)L&rr( r)] '— (A6)

—1

gp p ——A@I Eg gP g~tL (r)~r—J(r)—J
L r

L

The number of equations specified by Eq. (A4) can be
halved by using the function '
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which is independent of I(.. Further simplification of Eq.
(A4) can be obtained using the symmetry of the hopping
matrices. ' Equation (A4) is generally solved using
fixed-point iteration which converges fastest at complex
energies. Consequently, it is useful to convert the integral

in Eq. (2.8) into a contour integral in the complex plane.
In addition to speed of convergence, the spectral function
is a smoother function at complex energies, which results
in more accurate as well as faster computation of integrals
of the LDOS.
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