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Renormalization-group analysis is employed to investigate the critical behavior of coupled XF
models. Recursion relations for small vortex fugacities and Migdal recursion relations in the
strong-coupling limit are used to obtain the phase diagram. Several distinct phases are possible,
separated by an XF-like and a p-state clocklike transition (p =2,3). The results are relevant for a
number of systems that can be mapped onto coupled XFmodels.

I. INTRODUCTION

There has been much interest in two-dimensional classi-
cal XY models where the ground states exhibit both con-
tinuous and discrete degeneracy simultaneously. Among
such systems one can mention the fully frustrated XY
model, ' which can be realized by a Josephson junction
array in a transverse magnetic field with half a flux quan-
tum per plaquette; the antiferromagnetic XY model on a
triangular lattice; the double-layer XY models and the
helical XY model. From general symmetry arguments
or by using a Hubbard-Stratonovich transformation, 2 one
expects that the phase transition in these systems can be
analyzed by studying the critical behavior of coupled XY
models described by the action

Hlktt T =—ct g cos[8(r) —8(r')]
{rr'&

+P g cos[P(r) —P(r')]
(~')

+h g cosp [8(r)—P(r)],

where p is an integer and 8(r),P(r) are phases defined at
the sites r =(ma, tta) of a square lattice with lattice spac-
ing a.

The model has been analyzed previously for p =1 and

p =2. ' More recently, it has also betm studied in Ref. 7.
The analyses, however, were performed along the line
a =P of initial coupling parameters.

In this paper we study the phase transition in coupled
XY models using renormalization-group arguments. We
analyze this model for p =2 and p =3 and tz+P using an
electrodynamic representation and derive the recursion re-
lations for small vortex fugacities as well as Migdal recur-
sion relations in the limit h ~ ao. Figure 2 shows the re-
sulting phase diagram. The line AM corresponds to an
Ising (p =2) or a 3-state Potts (p =3) transition. If the
initial points of the Hamiltonian are along the line a =P a
single transition occurs separating a locked phase with XF
and Ising (p =2) order from a high-temperature XY and
Ising disordered phase. The transition is a complicated
point which we predict to be tetracritical in an as yet un-
det~mnined universality class. Further work needs to be
done to determine this class for p =2 or p =3 although

there are some intriguing indications from the numerical
work'~'s that this point may have simultaneous Ising and
XY-like behavior.

The model with ct&P has no experimental realization
known to the authors except for p =6 when a slight modi-
fication describes a smectic C liquid-crystal film, where
one angle describes the projection of the molecule into the
plane and the other the bond angle. It does however
describe a frustrated XY magnet on a square lattice in
which the strength of the antiferromagnetic and fer-
romagnetic bonds are not equal.

Unfortunately our analyses cannot determine the
behavior of the system on the a=P line except for argu-
ments which are fairly conclusive that there is a single
transition directly from a locked to disordered phase with
no intervening phase with partial order. Also, it cannot
unambiguously determine whether the transition from the
locked to disordered phase for tz=—P is a single transition
or a double transition with an intervening unlocked phase
with algebraic order in one of the phase and disorder in
the other. We incline to the view that there is such an un-
locked phase in a region of the (ct,P) plane except for a
multicritical point on the a =P line. Thus we predict that
such systeins as the Josephson junction array on a square
or triangular lattice with half a flux quantum per pla-
quette, the triangular XY antiferromagnet in zero magnet-
ic field and the fully frustrated XYmodel on a square lat-
tice, all have a single transition from the completely or-
dered to completely disordered phase. The analysis for
the corresponding Ginsburg-Landau action in 4—e di-
mensions gives a first-order transition. ' The mathemati-
cal model with a&P has a double transition, with an XY
transition to a state of partial order followed by a transi-
tion in the p-state universality class to the locked phase.

Another model with similar but simpler properties is an
XY tnodel with interactions of different but commensu-
rate periodicities.

A =a g cos[8(r) —8(r')]+P g cosp[8(r) —8(r')],
&n'&

(1.2)

where the second term has periodicity 8~8+2+/p. This
can be generalized to a similar model to that discussed
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previously by introducing two angles and a coupling term:

A =a g cos[8(r) —8(r')]+P g cos[P(r}—P(r')]
(rr') (rr' )

+h g cos[p8(r) —P(r)] . (1.3)

Eg g—[n (r)n~(r) —n (r')n~(r')]2
~,P |,'rr'&

=const+K sin p g I4coszp cos[8(r) —8(r')]
(rr')

+sin Pcos2[8(r) —8(r')]J,

Figure 3 shows the resulting phase diagram. The model
defined by (1.2) has also been studied recently in Ref. 11,
using a different analysis.

This model may be related to fiuid layers of liquid crys-
tal where the molecules make a constant angle 8, P rela-
tive to the normal to the plane. Then the local director is
given by n (r) = [sing cos8(r), sing sin8(r), cosg]. When
the angle P=m/2, the molecules lie in the plane and the
periodicity 8~8+m must be observed. %'hen they are
not in the plane, 8 and 8+m are no longer equivalent and
a possible action describing this is

tions. Unfortunately there is no experimental realization
of a two-dimensional nematic because of rupturing of the
film.

II. ELECTRODYNAMIC REPRESENTATION
FOR COUPLED XFMODELS

=g expIipS(r)[8(r) —P(r)]+Iny, S (r)j .
S(r)

(2.1)

If y, ~O, only the terms S=0 and S =+1 contribute
and the left- and right-hand side of (2.1) are equal provid-
ed y, =it /2. When y, ~1, 8(r) —P(r) is forced to take the
values

(2ir/p)~(r), r(r) =0, 1,2, . . . ,p —1 . (2.2)

Using the Villain approximation'i for the first two
cosine terms in (1.1), we consider the following partition
function:

In order to proceed with the investigation of the critical
behavior in the model (1.1), we need to treat vortex excita-
tions explicitly. This can be achieved by transforming the
model to an equivalent electrodynamic representation.

First we write the symmetry breaking term as

exp[ & cosp(8(r) —P(r) )]

which has the correct hmit when P=n/2 and describes a
nematic. Depending on the tilt angle P, the transition
smectic ~ isotropic will take place either directly via an
XY transition or through an intermediate nematic (un-
locked) phase with an XY followed by an Ising transition
as the temperature is lowered. This ignores the possibility
of crystallization which may preempt one or both transi-

Z= g f,
'

d8(r)f dP(r)g
S(r)

X g g g e",
(rr') m (r, r') n (r, r')

where

(2.3)

A = ——g [8(r) 8(r') 2—mm (r, r—')] gg [8(—r) —8(r') —2irm (r, r')][/(r) —P(r') —2nn (r, r')]
& rr'& (rr')

——g [P(r)—P(r') —2mn(r, r')] +ip QS(r)[8(r) —P(r)] . (2.4)

The additional coupling parameter g is introduced above because it is generated by t„e renormalization proc ure that
we shall use. Following Kadanoff, ' we introduce integer valued variables M(R)= i m(r, r') and N(R)= i n(r, r')
defined on the sites R of the dual lattice, so t t E(R) and M(R} are regarded as vortex variables associated with the
fields 8(r) and P(r) respectively. The symbol i indicates a discrete curl around the dual site R.

With these definitions it is found that the equivalent electrodynamic representation of (1.1) is

Z g yi ' 'g yi yi ' A(M, N, S)

r S(r) R M(R) N [R)
(2.5)

~ (M, i',S)=~a g M(R)G(R R)M(R')+~p g—i'(R}G(R RW (R )—
R,R' R, R'

+2mg g M(R)G(R —R')iii(R')+pi g QS(r)8(r R)[M(R)—X(R—)]+my QS(r)G(r r')S(r')—
R,R' r R

(2.6)

p (a+p+2g)
4n (ap g)— (2.7)
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The primes on the summations over the three integer fields indicate that they are subject to the neutrality condition

gM(R) =gN(R) =+S(r)=0.
R R r

The large-distance behavior of the Green's functions G (R —R') and 8(r —R) are

G(R —R')=ln(
I
R —R'

I
/a)+n/2,

8(r) =tan '(y/x),

where r =(x,y). Correlations functions can be treated similarly. We find, for large displacements
I p —p' I,

&expiq(@p) —@p'))&= Ip —p'I '~"" ~ ' 'Z ' gg' 'ff g' g' exp~(M, N, S)
r S(r) R M(R) N(R)

(2.8)

(2.9)

Xexp iq Q M (R)[8(p—R)—8(p' —R)]+ qp (P+g) QS(r)[G(r p) G(—r —p—')], (2.10)
R 2m(aP —g2) „

'(expiq(4'(p) —4(p'))&= Ip —p'I ' " ~ ' 'Z ' gg'' Q g' g' exp&(MN, S)
r S(r} R M(R) N(R)

Xexp iq g N(R) [8(p—R }—8(p' —R)]- qp (a+g)
z g S(r)f G(r —p) —G(r —p')]

R 2n(aP g)—
(2.11)

(expiq(8(p) —P(p')))= Ip —p'I& s ~ s 'es ' +~+ I' ' ~ s 'Z Qg' g g' g' exp'(M, N, S)
r 5(r) R M(R} N(R)

Xexp iq+M(R)8(p R) iq+—N(R—)8(p' R)—

+ 2 QS(r)[(P+g)G(r p)+(a—+g)G(r p')]-
2m(aP —g ) „

(2.12)

for integer values of q.

III. RECURSION RELATIONS
IN THE WEAK-COUPLING LIMIT

In order to remove the short-ranged interactions from
the representation (2.6), we shall extend the
renormalization-group method for the XY model. ' The

I
R —R'

I
=a and

I
r r'

I
=a term—s in (2.6) generate the

followings terms:

fugacities. The effect of small y, is to unlock the vari-
ables 8(r) and P(r) in the partition function (1.1) and cor-
responds to h small.

The recursion relations for the fugacities are
(dl =da/a),

i
=(2—na)y

g M (R )lny +g N (R )lny„+ g S (r )lny, ,
3'n

dl
=(2—mP)y„, (3.2)

where

y =exp( —Ha/2 ),
y„=exp( —HP/2),

y, =(ii/2)exp( —n y/2)

(3.1)

d3's

dl
=(2—my}y, .

The coefficient a is renormalized by considering all con-
tributions from the rescaling of the lattice spacing
a~a+da which are proportional to MGM. These con-
tributions are

are the fugacities for their respective charges. There is an
additional term m gpa M(R)N(R) that can provide a
fugacity associated to hybrid vortices, i.e., configurations
in which M vortex and N vortex reside at the same site.
The resulting recursion relations are discussed in the Ap-
pendix. In order to restrict the charges to take only the
values 0 and +1, we consider only small values of the

(2m a) MGMMGM,

(2rrg)2MGNNGM,

( ip) MSSSS—M .

(3.3)

The last term presents no special problems since one can
make use of the property (VG) =(V8) . For the other
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coefficients the procedure is the same. The corresponding
recursion relations are

the line ma =p/2, ng = —p/2 with y =y, = l.
From Eqs. (3.4), with y„=O, it is found that

4~3~2@2 4~3g2@ +~p 2y —(a+g)= —4m a(a+g)y
dl

(3.8)

2 24n—agy 4n—. pgy„—mp y, ,

= —4m'p'y„' —4m'g'y +mp'y, ',

= —4~y y, +mp y +spy„.
1

(3.4)

This suggests that this surface is given by a+g =0 with

y~ =y, = 1, in the vicinity of the fixed points.
Using a+g =0 in (2.7), we have my =p /4ma and the

action (2.6) with N(R) =0 reduces to

A(M, S)=ma g M(R)G(R —R')M(R')
R,R'

Using Eq. (2.7) one finds that the recursion relation for y
is consistent with the other three and therefore is redun-
dant.

By considering the region of the (a,g,P) parameter
space for which nP» 2 and using Eqs. (3.2), it is apparent
that the fugacity y„ is irrelevant in this region. This ir-
relevance allows us to consider N(R) =0 in (2.6). A nu-
merical iteration of (3 4) shows that there is a region in
which y„ is irrelevant. The action is consequently simpli-
fied to

A (M, S)=ma g M(R)G (R R')M(R—')
R,R'

+pi Q Q S(r)8(r —R )M (R )
r R

a+ +2+, g S(r)G(r —r')S(r') . (3.5)
4m(ap —g )

It is now possible to exploit the dual symmetry'3 of this
action under the transformation M~S. Provided one
chooses y =y„ there is a self-dual surface in the (a,g,P)
parameter space given by

4da(aP g) =p (a, +—P+2g) . (3.6)

For p =2 and p =3 this must represent the boundary be-
tween two low-temperature phases. The renormalization-
group recursion relations (3.2) and (3.4) on the self-dual
surface y =y, =y now reads

+pi Q Q S(r)8(r —R)M(R)
r R

2

+ Q S(r)G (r r')S (r')—,4va „. (3.9)

which is recognizable as that of a p-state clock model. '

This indicates that the phase transition is governed by a
line of fixed points of Ising character (p =2) or 3-state
Potts character (p =3). The same analysis can be per-
formed for the region of the parameter space na & 2. By
symmetry we then obtain another line of fixed points at
nP=p/2 and y„=y, =1.

In addition to those lines of fixed points we also expect
two lines of fixed points along the axis for a=0, mP & 2,
and P=O, and ma & 2 corresponding to the usual XY' line
of fixed points for a single XY model. In the limit P~ ao,
(1.1) reduces to an XF model with symmetry breaking
field, ' one then expects an Ising-like and a 3-state-
Potts —like transition for p =2 and p =3, respectively.
For a near zero, the I vortices are highly relevant and
can be integrated out. This procedure leads to an effective
P ff

——P—g /a and the S variables bound together by
strings with a linear interaction and therefore irrelevant
(see the discussion in Sec. V). So the transition tempera-
ture at finite g should be decreased. The expected pattern
of renormalization-group trajectories is indicated in Fig.
1.

dl
= (2—m.a)y,

da
dl

=4ny (p /4 ma'), —

2 2

dl
= —4~y (p /4+m ag),

dP
l

=4my (p /4 —Hg ) .

(3.7)

It is clear from these equations that mn will decrease from
an initial value greater than p/2. It must eventually flow
to a line of attractive fixed points somewhere else in the
self-dual surface. Assuming that Eqs. (3.7) are qualita-
tively true for all values of y, it can be speculated that
these fixed points occur for na=p/2 and mg= —p/2
with y —= 1, independent of P. Therefore the renormalized
action must be characterized by a surface in the (a,g, P)
parameter space, intersecting the self-dual surface along FIG. 1. Schematic renormalization-group trajectories.
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A numerical iteration of Eqs. (3.4) performed until the
fugacities are of order 1, confirms Fig. 1 and gives the
phase diagram of Fig. 2. A distinct point P along the line
of initial points a=P separates the low- and the high-
temperature phases. The locked phase corresponds to a
power-law decay of correlations for 8(r) and P(r) fields,
and in this region, fiuctuations in 8(r) are tied to fiuctua-
tions in P(r) Ph. ase B corresponds to Ising-like (p =2) or
3-state-Potts —like (p =3) disorder and XY-like order in
the field P(r} and it is separated from the locked phase by
an Ising (or 3-state Potts) line PB. Phase A corresponds
to the analogous behavior for the field 8(r). Both phases
in turn are separated from the high-temperature phase
corresponding to Ising (3-states Potts) disorder and XY
disorder by the line CPD. We are unable to determine in
which form the two lines meet at the point P.

The difference between our model and the p-state clock
model transition along the line APB lies in the behavior of
the correlation functions. If a+g=0 and N(R)=0 the
expression (2.10) reduces to

&exp[iq(8(p) —8(p'))]& =
I p —p'

I

' "+,'(p —p')

Here Fg(p p') is the c—orresponding correlation function
for the p-state clock model'5 with Fg =1 and

gg(s)=g f dPg(P)e (3.13)

after integrating over the continuous field introduced by
(3.13), the correlation functions (2.10) and (2.11) factorize
into a power-law term times the corresponding correlation
function for the roughening model in the low-temperature
regime. Since one expects that this correlation function
will tend to a nonzero value as

~ p —p'
~
~oo, we obtain

where g is the correlation length of the p-state clock
model. Similarly, for phase B,

&exp[i(P(p) —P(p'))] & =
~ p p—'

~

&exp[i(8(p) —8(p'))]&=
~ p p'

~

" ' '
e

—Iu e'—
I C

Note that for q =p, all correlation functions are algebraic
in all ordered phases. In the high temperature phase all
correlation functions decay exponentially.

In the region where ma&2 and mP&2 we can take
M(R),N(R) =0. In this region S(r) is relevant.
Nevertheless, one can transform (2.10) and (2.11) to
another representation with the corresponding integer
fields dilute in that regime. Using the Poisson summation
formula,

i)= 1/2n(P —a).
for the field P(r) we similarly find

(3.11) & exp[~'q(8(p) —8(p') )]& =
~ p p' ~—

& exp[iq(y(p) —t)}(p'))]& =
~ p —p'

~

(3.14)

&exp[i(8(p) 8(p )]&
~ p p ~

&exp[i(P(p) —P(p'))]&= )p —p') "" ' '
e

PHASE
A

) I

I I

I I

I
I

I
l l
I

L

&exp[iq(4(p) —0(}o'}}]& =
I e u'

I

' " ~-

Near the line PB the correlation function Fg
='

(p —p')
approaches a constant or decays exponentially to zero as

~ p —p'
~

~ oo if we are above or below this line, respec-
tively. It follows that for phase A,

-gg (e,g,p)

and

&exp[iq(8(a) —0(p ) }l&
= Ia —a'

I
(3.15)

with ri = I/2m(a+P+2g)
Therefore in this region these correlations decay alge-

braically and are characterized by the same renormalized
constant (3.15) and the corresponding phase is locked. Al-
though this analysis was performed for the region ma & 2
and mP & 2, the Migdal renormalization-group analysis to
be discussed later, suggests that the low-temperature side
of the line APB is all locked and the behavior described

by (3.14) and (3.15) extends throughout the region. In the
unlocked phases A and 8 standard arguments imply that
0& riz a & —,', the upper value being reached on the phase

boundaries between the partially ordered and completely
disordered phases.

LQGKED PHASE

L

I HIGH T EMP
PHASE

1
( I

I

I

8 l

I

}
I

ASE B

IV. STRONG-COUPLING LIMIT
AND THE MIGDAL RECURSION RELATIONS

The analysis of the preceding section shows that in the
locked phase, y, is rdevant; this corresponds to A~00 in
(2.1). In this limit 8(r) P(r) assumes the valu—es given by
(2.2). For p =2 one can define the Ising variables
S ( r) =2r( r }—1 and obtain

A =P g cos[P(r) —P(r')]
& rr')

FIG. 2. Topological features of the phase diagram. The
manner the lines merge at P is not determined. Two possibili-

ties are indicated in the insets A and 8. Phases A and 8 are
partial ordered unlocked phases.

+a g S(r)S(r')cos[P(r) —P(r')] . (4.1}

This action will describe the critical behavior associated
to the field P(r) We can inves. tigate the phase diagram of
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+ g S(r)S(r')F(P(r) —P(r'))
( rr'&

+L g S(r)S(r'), (4.2)

where V(P) and F(P) are periodic functions with period
2ir. The original expression (4.1) is recovered upon setting
V(P)=Poop, F(P)=acosg, and L =0. The additional
term has to be included since the form (4.1) is not
preserved under renormalization. To apply the Migdal
transformation one first moves bonds on the lattice such
that the sites to be integrated out at each stage are linked
to their neighbors only in one spacial direction. This bond
moving allows us to perform a one-dimensional decima-
tion to obtain an effective interaction between the remain-
ing degrees of freedom. In terms of u($)=exp[V(P)
—V(0)], z =exp[F(0)+L], and f(P) =exp[F(((})—F(0)]
the parameters (primed) of the new Hamiltonian are
therefore given by the recursion relations:

z Ai(0)+z A4(0)(z')'=
A, (0)+A, (0)

this model by using the approximate position-space
renormalization-group transformation introduced by Mig-
dal. ' Here we apply this transformation in a form due to
Kadanoff. "

First we need to consider a more general form of the
action (4.1):

A = g V{/(r) —P(r'))
& ~')

after a few iterations, f(P)~1 and u (P} relaxes to a Vil-
lain potential. ' Unfortunately the Migdal transformation
does not actually lead to a fixed line and a small drift to-
ward higher temperatures is always present. ' Therefore
the line CD separating the disordered high-temperature
phase from the fixed line P & PD cannot be precisely deter-
rnined.

The line APB corresponds to Ising-like transition. In
fact for P y a, f(P) and u(P) renormalize to f'(P) =1 and
u'(P) =u'(P). Using the recursion relations (4.3) we find
5L'=e"' 5L, where 5L' and 5L are the deviations from
the fixed point and A, =0.74. This is the same result one
finds for the two-dimensional Ising model using the same
approximation.

Near the point P, however, we cannot estimate the criti-
cal exponents due to the drift to high temperatures in the
Migdal approximation. Again we cannot determine the
way the two lines join or the kind of transition at that
particular point. It is apparently consistent with a single
transition but if two successive transitions do in fact occur
the Migdal approximation then indicates they are very
close together with an XI' transition followed by an Ising
transition as temperature is increased. In particular we
find that the region above the Ising line PB is a locked
phase with power-law decay of correlations. Although we
have studied the limit h ~ao for the case p =2, we also
expect similar results for p =3, where instead of an Ising
we would have a 3-state Potts transition.

V. LINEAR AND LOGARITHMIC
INTERACTING VORTICES

(u') (P)=
[~i(0)+~3(0)][z"~i((t )+z '~4(4)]

(4.3)
[&z(0)+&p(0)][z Ai(0)+z A4(0)]

In the model (1.1), vortex excitations can appear as a re-
sult of the continuous symmetry of the action in both 8(r}
and p(r) fields. Not all the ground states can be connect-
ed by a continuous transformation and the ground state
has a discrete degeneracy. A domain wall excitation
therefore separates a ground-state configuration corre-
sponding to 8(r)—P(r)=0 from another nonequivalent
ground state 8(r) P(r) =2m Ip. —

The energy of an isolated vortex is proportional to lnL,
where L is the linear dimension of the system. Therefore
one expects logarithmic interacting vortex pairs of oppo-
site vorticities at low temperatures. Since the entropy of
such a pair is also proportional to lnL, they can unbind at
some higher temperature.

On the other hand, since there is a change of phase of
2n. /p when crossing a domain wall, one can also produce
a vortex by joining to the same point the ends of P domain
walls. ' The energy of such a vortex is proportional to the
linear dimension of the system because a domain wall has
a finite energy per unit length. Therefore, at low tempera-
tures one expects they are connected by strings (domain
walls) in pairs of opposite vorticities. This linear interac-
tion suppresses an XF-like unbinding.

In the locked phase y, is strongly relevant. One can
now transform (2.6) into another representation where the
corresponding integer fields are dilute in that regime using
(3.13) again. The necessary manipulations are essentially
the same as described in Ref. 20. Dropping an overall
constant factor, we get

(f') ((t)=
[A2(0)+Hi(0)][z Ai($)+z A4(P)]

[z Ai(0)+z A4(0)][Az(P)+Ay(P)]

where

Ai($)= f u (8}u (8 P)f (8)f (8 —P), —

&i(P)= f u'(8)u'(8 —P)f '(8)f'(8 —(t ),
(4.4)

A numerical iteration of Eqs. (4.3) gives a phase dia-
gram similar to Fig. 2. The line APB separates the low-
temperature region where L~oo (Ising order) from the
regions 8 and A where L~O (Ising disorder). In this
figure the axial parameters are now defined by
a ff—( 2 )lnf ( ir) and P,rr= ( ——,)lnu ( ir). They reduce
to a and P, respectively, for the initial values
u (P)=e~"~ ~ and f(P) =e ~ Actually, o.ne
should observe the evolution of the functions u(P) and
f(P) in the whole interval 0(P(2~, but the above de-
fined parameters provide a convenient way of following
the renormalization flows. Above and below the line PB,

&i(P)=f u'(8)u'(8 P)f'(8)f '(8 P)—, —
2n' jg

A4(P)= f u (8)u (8—P)f (8)f (8—P) .
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A {M,N)

R M(R) N(R) .
(5.1)

e"' '=exp n(a p —/4n y) g M(R)G(R R—')M(R')+mr(P p —/4ir y) g N(R)G(R R—')N(R')
R,R' R,R'

+2m(g+pi/@r y) g M(R)G(R —R')N(R')
R,R'

X ff g exp —(1/2y) g h (r) —h (r') pg i}—(R)[M(R)—N(R)]
r h(r) &rr'&

(5.2)

ri~ (R) is the operator introduced in Ref. 16, it is + 1 if r
lies just to the right and r' just to the left of an arbitrary
path going from R to oo in the positive x direction, —1 if
r and r' are reversed, and 0 otherwise.

The first three terms in (5.2) represent logarithmic in-

teracting vortices now corrected by a term p /4' y due to
domain walls. The last term corresponds to the partition
function for a set of domain walls of strength p running
from R to R' in the roughening model. ' Thus this term
represents vortex pairs interacting linearly and connected
by p domain walls of unit strength. The interaction ener-

gy for a vortex pair has therefore two contributions: a
logarithmic and a linear distance dependence. If the
strings have not melted these vortex pairs interact linearly
for large distance separations and an XY'-unbinding tran-
sition is suppressed. However when the strings melt these
vortices interact logarithmically, as can be seen by replac-
ing the sum of the integers h (r) by an integral over a con-
tinuous field. The corresponding phase now depends on
the behavior of these vortices. The M(R} vortices would
unbind for na &2 and the N(R) for mP & 2. If the melt-

ing of the domain walls occurs inside these regions the
relevant vortex pair will unbind at that temperature and
disorder the corresponding field.

From (5.2) we can identify the free energy per unit
length (divided by keg of a domain wall as 1/2y when
T~O. Using a Peierls argument to determine when the
free energy of a domain wall goes to zero we obtain that
the string melting occurs at temperatures given by

y =1/21n3. This gives melting curves similar to APB in

Fig. 2. %%en g =0, this curve intersects the region where

a& 2 and mP &. 2 only for p =2. However, the effect of
a renormalized g &0 is to move these lines further inside
that region. In particular, for g= —a along the line
a=/, the p =3 melting curve also intersects this region
but p =4 curve does not. Thus we expect that for p =2
and p =3 there is no intermediate phase with XF order
and p-state clock disorder (p =2,3) and we are left with
the two possibilities indicated in Fig. 2.

On the a =P line, which is, of course, the most interest-
ing from an experimental point of view, the weak cou-
pling recursion relations do not say very much because
one ean construct a large number of relevant operators.

In particular the M, N, and S charges are all relevant
with increasing fugacities. Also, the hybrid vortices with
M(R}=N(R) on the same site are highly relevant, while
the hybrid vortices with M(R)= N(R} a—re irrelevant
and will be ignored. Now at large a the M, N, and H
vortices are irrelevant but y, is strongly relevant which
when integrated out gives the string picture. When the
temperature is increased (a decreased) although the recur-
sion relations seem to indicate that the M and N vortices
are relevant they are still bound together by strings. The
hybrid vortices are not bound by strings [Eq. (5.2)]. So,
the important configurations are: (i) a pair of M(N} vor-
tices of opposite signs bound by strings well separated
from any N(M} vortices; (ii} one M and one N vortex of
the same sign close together bound by strings which can
be regarded as a hybrid (H} vortex with a core size of the
order of their separation.

These extended objects interact logarithmically with
each other on length scales large compared to their size.
The separation of the M and N of the same sign can be
interpreted as the core size of a hybrid vortex. For p =2
and 3, simple estimates for the sequence of transition tem-
peratures give TM ~ Tq ~ TH, where TM is the unbinding
temperature of M or N vortices, Ts is the string melting
temperature, and TH is the hybrid vortex unbinding tem-
perature. The M vortices are bound by p strings so the
transition in the absence of hybrid vortices would be in
the p-state universality class by the string melting. How-
ever, the hybrid vortices are screened at T & Ts by the M
and N vortices so that they must unbind when the M and
N do. Below T's the M and N vortices are bound for
separations less than g~, the correlation length of the p-
state model, which can be interpreted as the core size of a
hybrid vortex. Thus, in the presence of hybrid vortices,
the XY order is lost by the divergence of the hybrid vortex
core size which leads one to expect a first-order transition.
Note that this picture is fairly close to that described in
Ref. 3, where it was derived on very physical grounds.
Furthermore, this picture gives an explanation of the
mixed p state and XF character of the system as one ap-
proaches the transition provided it is rather weakly first
order.

These arguments can be applied to the same model with
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p =1 which is the ViBain representation of the double-
layer XF model. However the sequence of transition
temperatures is TM ~ TH ~ Ts. So this scenario means
that the M and N vortices remain bound by strings and
the transition is controlled entirely by the hybrid vortices
leading to the expected XY transition.

Unfortunately, there is no evidence for such a first-
order transition from the extensive Monte Carlo simula-
tions performed on this and related models' ' in 80X80
systems which indicate a transition of mixed Ising and
XF character. However, because the unit cell in the tri-
angular antiferromagnet is go ——v 3a and in the frustrated
XF model on the square lattice 2a, the largest correlation
length is about 30 unit cells long. So there is no sign of a

first-order transition up to g/go-30 and so the transition
is at best weakly first order.

VI. COMPETING PERIODICITIES

In this section we will discuss the XY model with com-
peting interactions described by Eq. (1.3) in the Villain ap-
proximation. A related model was discussed in Ref. 11.
The electrodynamic representation of the action is found,
by the methods of Sec. II, to be

z=nx nr r
r S(r), R M(R) N(R),

where

A(M, N $)=ma g M(R)G(R R')M—(R')+m'13 g N(R)G(R R')N(—R')
R,R' R, R'

+2mgg M'(R)G(R R')N—(R')+i g QS(r)8(r R)[pM—(R) N(R)]—+my QS(r)G(r r')S(r'), —
R,R' r R

(6.1)

where

(~+I 'P+ ~m) (6.2)
4m (ap —g )

The analysis is almost identical and we find a self-dual
surface when the N(R) vortices are irrelevant given by
a=y which corresponds to a p-state transition. The
renormalization-group equations on this surface seem to
flow to the fixed point at ma=p/2 and ng= ——,

' in-

dependent of P. Identical arguments to Sec. V show that
this is a string melting transition between the fully and
partially ordered phases of Ref. 11. The other self-dual

line at small values of P does not correspond to a phase
transition since it is the XF model in a magnetic field.
The phase diagram is sketched in Fig. 3 in which phase A

is the locked phase and phase 8 is a partially ordered un-

locked phase. The nature of the multicritical point I' can-
not be determined by these methods although applying the
arguments of the previous section indicate that there is a
first-order segment on the line CP in the neighborhood of
I'. Note that this p-state transition is not a consequence
of an extra Zz symmetry in the Hamiltonian, but simply
due to extra minima in the action for a ~ 4P.

VII. CONCLUSIONS

PHASF A

G

FIG. 3. Schematic phase diagram for an XY model with
competing periodicities. Phase A is a locked phase and phase 8
is a partial ordered unlocked phase.

We have investigated a class of coupled XY models
with and without degenerate minima in the action by
weak-coupling renormalization-group methods, approxi-
mate Migdal recursion relations and by qualitative argu-
ments based on vortices and strings. A rich phase struc-
ture is found with several ordered and partially ordered
phases. The universality classes for the transitions be-
tween ordered and partially ordered phases assuming
them to be continuous is elucidated. The transitions from
the locked fully ordered phase with long-range p state and
algebraic XY order are argued to be single transitions in
contrast to Miyashita and Shiba and Garel and Doniach
and probably to be weakly first order. We have also ar-
gued that the observed simultaneous XY and p-state char-
acter of the transition found in Monte Carlo simula-
tions ' is obtained from the theoretical models.

However, the a=@ line of the action of Eq. (1.1), which
is the most interesting from the experimental point of
view, is the least amenable to theoretical analysis. This
with p =2 corresponds to Josephson junction arrays with
half a flux quantum per plaquette and when accurate ex-
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perimental determinations of the I-V characteristics be-

come available it would be of great interest to compare
them with theory. To do this, one would very much like
to know what sort of transition one is dealing with but the
methods used in this paper are not sufficiently powerful
and this problem must be left to the future.
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APPENDIX

We consider the recursion relations for (2.6) when hy-
brid vortices are also included. Only hybrid vortices in
which an M vortex and an N vortex have the same sign
are found to be relevant when g & 0. We can rewrite (2.6)

A =ma g M(R)G(R —R')M(R')+nP g N(R)G(R R')N—(R')+2m'g g M(R)G(R R')N—(R')
R, R' R,R' R,R'

+ip g QS(r)8(r R)M(—R) ip g —QS(r)8(r R)N(R—)

+my g S(r)G(r r')S(r—')+2m(a+g) g M(R)G(R —R')H(R')

+2m(P+g) g N(R)G(R —R')H(R')+m(a+P+2g) g H(R)G(R R')H(R—'), (Al)
R,R' R,R'

where H(R) is a hybrid vortex at site R and the summa-
tions over M(R) and N(R) exclude positions where they
reside at the same site. Similarly to (3.2) and (3.4) we now
obtain

i
=(2—na)y

3'e = (2 nP)y„,—

dg 3 2 3 2 2 2
4n agy ——4n. Pgy„—mp y,

4~'(a+ g)—(P+g)yH

da 322 3z24n 3P2y—„4n3g ~y—

+mph,
' 4n'(P+g —)'yH .

(A2)

=(2—ny)yg,

AH
I

=[2—n.(a+P+ 2g) P

I
4n3a y2 4—fr'g y2+rrp —y, 4n'(a+g) y~—,

We note that the initial relation (2.7) and the initial form
of the couplings a+g, P+g, and a+P+2g in (Al) are all
preserved under renormahzation.

From the recursion for the y~ fugacity we find that the

y~ is irrelevant for na+nP&2 when g=0 initially.
However as g &0 hybrid vortices are relevant in the re-

gion where the two lines of Fig. 2 meet.
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