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Random binary alloy. I. Formulation of the method of the distribution function
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%e present a model of a binary alloy in which the pair interaction potentials (both nearest and

next-nearest neighbor) are assumed to be randomly distributed over the lattice bonds. In this paper

we derive the statistical mechanics of the alloy using the method of the distribution function. Sub-

stantial modification of the method is required to account for the nature of alloy ordering, which

necessitates the introduction of sublattices of the basic lattice, and to accommodate the inclusion of
second-neighbor interactions. %e derive the thermodynamic potential for the alloy and show that it

has the required stationarity properties.

I. INTRODUCTION

Studies of ordering in alloys have been carried out using
many different techniques since the earliest theoretical
discussion of the phenomenon by Bragg and Williams. '

Describing a binary alloy using a lattice model, which is
equivalent to an Ising model for an antiferromagnet, they
applied a mean-field approximation to derive the behavior
of the system. Subsequent work by Bethe and Peierls, i

Cowley, and Clapp and Moss5 included considerations of
short-range order in such alloys. In all of these studies
the model for the alloy was essentially the same and, in
particular, the interaction potentials between atoms on
neighboring sites were assumed to be constant over the en-
tire lattice. The effect of any irregularities in the lattice
was ignored. We attempt to include such features by al-
lowing the interaction potentials between atoms to vary
from site to site over the lattice. Also there have recently
been developments in the preparation and study of metal-
lic glasses which are formed by rapid cooling from a
melt. There is evidence that some metallic glasses pos-
sess a degree of chemical ordering. The model we present
in this paper for an alloy with quenched randomness
could describe such metallic glasses, provided the time
scale for the ordering process (i.e., the interchange of
atoms of different species) is shorter than the time scale
for quenching the system.

Vfe introduce a model which describes a randomly dis-
torted, loose-packed structure. We maintain a lattice, but
the distance, and therefore interaction, between atoms
varies randomly. We describe the variation of the pair-
wise interatomic potentials (both nearest- and next-
nearest-neighbor) using random probability distributions.
In this paper we derive the thermodynamic potential of a
random binary alloy (RBA) on a body-centered-cubic
(bcc} or simple cubic (sc) lattice. Our model is closely re-
lated to the spin-glass model of Sherrington and Kirkpa-
trick (SK} and the disordered lattice gas described by
Inawashiro, Frankel, and Thompson' (IFT'). However,
our model is characterized by the presence in the Hamil-
tonian of random potentials (or random fields in magnetic
terms). These random potentials are generated by the ran-
dom pair interactions and hence the two terms in the

Hamiltonian (see Sec. II) must always occur together.
Since the work of Imry and Ma, " random-field problems
in magnetic systems have been studied extensively. ' '
Our model is therefore of interest as we are modeling sys-
tems (the metallic glasses) in which the effects of random
interactions and random potentials may be observable at
the same time. In magnetic systems, however, random-
field problems can occur in systems without random in-

teractions and, perhaps more importantly, random in-

teractions do not necessarily imply the presence of ran-
dom external fields. '

There are two main techniques used for deriving the
statistical mechanics of random systems. The first,
developed by Edwards and Anderson' in their original
discussions of spin glasses, is the "n-replica" method.
This approach was also used, within the framework of the
mean-field approximation' (MFA), by SK to derive the
order parameters and thermodynamic functions for the
spin-glass phase. The second technique, the method of
the distribution function, was initiated independently by
Marshall and Matsubara ' and was used by Ip-I', also
within the MFA, to study the disordered lattice gas. In
this work we use the latter technique and follow closely
the development of the method given by IVI'.

The SK solution has been shown to be incorrect at
low temperatures (where it predicts negative entropy). In
addition, Parisi and Sompolinsky have shown indepen-
dently that the single Edwards and Anderson (EA} order
parameter ((s)T)x (where ( )T is a thermodynamic aver-

age and ( )x is an average over the randomness in the
system}, which is also used by SK, is insufficient to
describe ordering in the spin-glass phase. A recent review

by Young describes the current theory of spin glasses
and, in particular, discusses the nature of the order pa-
rameters required to describe the spin-glass phase. How-
ever, in this paper we only consider the simple one-
parameter description of glasslike phases. The main in-
terest in this work lies in determining whether there are
any significant differences between the random order-
disorder system and random magnetic systems.

In extending the method of the distribution function to
study alloys, we encounter two problems. Firstly, the na-
ture of alloy ordering requires the introduction of sublat-
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tices to describe the ordered state. For both the bcc and
sc lattices a two-sublattice structure is considered here for
simplicity. Of course, more complicated ordered struc-
tures other than those we have considered do exist, but
they require the subdivision of the lattice into more sub-

lattices. The second difficulty arises from the simultane-
ous treatment of both nearest- and next-nearest-neighbor
interactions. The inclusion of both nearest- and next-
nearest-neighbor interactions does however seem natural
in view of the fact that to derive detailed numerical re-
sults we need to work within the MFA.

This paper addresses these two problems and presents a
formulation of the method of the distribution function
which takes them both into account. In Sec. II we
describe our model of the RBA and set up its Hamiltoni-
an. We apply a pair approximation to this system in Sec.
III. This requires the definition of several effective poten-
tials at each lattice site, and in Sec. IV we introduce distri-
bution functions for each effective potential. Here, we
also derive integral equations which the distribution func-
tions must satisfy. Section V contains a discussion of the
thermodynamic potential for the RBA and we show that
the integral equations for the distribution functions found
in Sec. IV ensure the stationarity of the potential. Section
VI contains a brief discussion of the results we have de-
rived. In the following paper we will present results of
some detailed calculations on the RBA with specific
forms chosen for the probability distributions of the pair
interaction potentials and discuss the physical significance
of our results.

II. THE MODEL AND HAMILTONIAN

1 if site i is occupied by an A atom,
t

0 if site i is occupied by a 8 atom .

The Hainiltonian for the RBA is given by

8= —
Q I(Wgg )tttttJ+( Wtiti) J(1 tr )(1 tJ)——
(ij)

+(W» },,[t, (1—t, )+(1—t,.)t,.] I

(2.1)

(2.2)

where ( Wxr);J represents the interaction potential be-
tween an X atom at site i and a F atom at site j and pz
and pii are the chemical potentials of species A and 8,

Our model of the RBA is based on the lattice model of
a binary alloy described by Huang2 and Thompson. 2 We
consider a regular bcc or sc lattice of N sites which is sub-
divided into two regular sublattices, denoted by A, and a.
Each sublattice contains —,

' X sites and they are arranged
so that all sites in each sublattice have nearest neighbors
only in the other sublattice. There are two species of
atom, A and B, of concentrations nz and nz, respective-
ly. At each lattice site there is an atom of type A or type
8. We do not allow for the possibility of vacant lattice
sites, consequently, we have the relation n„+nz ——1. We
assume throughout that n„&n~ Operat. ors t; (=0, 1) are
used to describe the occupation state of site i, where

T

respectively. We assume that the interaction potentials

(Wxr)tJ are randomly distributed with some specified
probability distributions.

We simplify the Hamiltonian (2.2) by introducing two
linear combinations of the interatomic potentials,
WJ ——( Wzz ),1 + ( Wiiii ),z

—2( W» ),J and M,z
——( W» ),z.

—( Wzz ),J, and the chemical potential difference
p=JM& —p~. %e now have

(2.3)

which is the same as (2.2) to within an additive constant.
In this work it is necessary to distinguish interaction

bonds between pairs of atoms on sites within the same
sublattice (called here intrasublattice bonds) from interac-
tion bonds between pairs of atoms on sites in different
sublattices (called intersublattice bonds). We therefore in-
troduce the following notation:

UJ if sites i and j are in different

sublattices (intersublat tice),
VJ if sites i and j are in the same

sublattice (intrasublattice),

(2.4)

k;~ for intersublattice bonds,

&;J for intrasublattice bonds,

g'denotes a sum over pairs (ij ) with i
(ij )

and j in different sublattices,

g" denotes a sum over pairs (ij) with i
(ij )

and j in the same sublattice,

which enables us to write the Hamiltonian (2.3) as

8= &'U tt —&"k "(t +—t ) &"V. . t t—tJ l J ~ lJ t J ~ tJ l J
(ij) (0) (ij )

N—$"v; (t;+t ) —p$tg .

(2.5)

(2.6)

(2.7)

We now consider the quantities UiJ, k,J, V~, and P";J.
to be randomly distributed over the lattice bonds.
Separate probability distributions are taken for the in-
trasublattice interactions (V and F ) and the intersublat-
tice interactions (U and k). We denote their respective
joint probability distribution functions by B(V,&} and
9'(U, +). We note that in general we would expect the
interactions Wz&, 8'zz, and 8'zz to have the same type
of distribution and these distributions would determine
the probability distributions of U, O', V, and W.

We note that the Hamiltonian (2.7} can be rewritten yet
again, introducing site-dependent potentials +; and P;
which are sums over the appropriate neighbors of the site
i of k,J and P,J, respectively. In magnetic systems these
would correspond to random applied magnetic fields. We
prefer however to leave the Hamiltonian in the above
form for the purpose of applying the pair approximation.
Note that in a nonrandom alloy, the terms involving
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H = —( Ii+!'" +k'')t

H„= (I +I(*)+—k(")t„,
(3.1)

(3.2)

where l~'[k' '] is the effective potential at a site in sub-
lattice cr from the z [z'] nearest neighbors of the site in
the other sublattice (in the same sublattice) (see Fig. 1).
The effective potential I~"[k"'] includes contributions
from both the pair interaction term Ujt;tj [Vjt;rj] and
the site-dependent potential term k,&(t;+rj) [WJ(t;+cj }]
in (2.7). This must be taken into account when we consid-
er the pair-site Hamiltonians. These are

(3.3)

and W,J would normally be absorbed into the chemical
potential term in (2.7). Here, however, they must be re-
tained in full. This makes the Hamiltonian (2.7) different
from that of an antiferromagnet (AF) with random pair-
wise interactions, since for the AF the Hamiltonian does
not contain a random applied field as a consequence of
random pair interactions. We will discuss this further in
the following paper.

III. THE PAIR APPROXIMATION

We now derive the statistical mechanics of the RBA us-

ing the method of the distribution function. Following
IFT (Ref. 10), we formulate the problem using the pair
approximation. However, due to the sublattice structure
inherent in lattice models of binary alloys, we must con-
sider each type of site Q, sites and» sites) separately, as
well as consider three types of pairs of sites: A,» pairs, A,A,

'

pairs, and ax pairs. Consequently, within the pair ap-
proximation for this model, we consider simultaneously
two single-site Hamiltonians and three pair-site Hamil-
tonians and we require self-consistency between the pair-
site density matrices and the single-site density matrices.

The two single-site Hamiltonians are given by

where l(k -1)(kk('-i) } represents an effective potential at
the A, site of a 4c [A,A, ] pair which comes from its interac-
tion with its z —1[z'—1] nearest neighbors in the sublat-
tice» [A,] outside the pair sites. The effective potentials
I„' " and k„' " have similar interpretations, while I'"
and k~ ' are as defined for the single-site Hamiltonians.
We will refer to the effective potentials I' ' and k' ' as
m-bond potentials at o, where it is understood that the
former refers to intersublattice bonds and the latter to in-

trasublattice bonds (see Fig. 2}. The single-site density
matrices are given by

pal=exp( PH —), cr=A, »,

and their traces are expressed as

Trp =Z, (l"+k' '),
where

Zi(x) =1+exp[P((u+x)] .

There are three pair-site density matrices:

p~~ =exp( PH ~ )—,

(3.6)

(3.7)

(3.8)

(3.9)

Trcr'pcrcr' ~ pc (3.10)

where Tr means partial trace with respect to the site o.
For the case cJ=A,,o'=», this condition gives us a rela-
tionship between the (z —1)—bond potential II(*

" and
the z-bond potential l~" in terms of the (z —1)-bond and
z'-bond potentials at the pair site I'„' " and k„" ', as we
will now show.

Writing the pair-site density matrix pi„ in the form

where oo'=Dc, AA, ', or»»' for the three types of pair sites
we have to consider. Throughout this paper we will use cr

and o' to denote either A, or» and oo' to denote any of the
(unordered) pairs 4c, A.A, ', and»»'.

The consistency relations which we require the density
matrices to satisfy can be summarized as

(3.4)
p~= exp[PUtit„+13(p+I~' "+++k&")4

+I3(p, +I„" "+4+k„"')r„), (3.1 1)

(3.5)

we evaluate the partial trace over the site» to find

z')
k,

(z')
K

z')
I

{z')
K

]{z) ]{z)
K

FIG. 1. z-bond and z'-bond effective potentials at each type
of site. This diagram represents the single-site approximation.

{z—1) {z-1)
t,q

FIG. 2. A,~ pair of sites and the effective potentials associated
with each of them in the pair approximation. Similar diagrams
can also be drawn for a pair of A, sites (A,A, ') or a pair of a sites
(mc').
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Tr.I i = exp[P(@+~i "+++k~")ti.]
X I 1+exp[PUti, +P(@+I{' "+++I„"')] j .

(3.12)

This is simplified using the identity

e '=1+t(e —1), t=0, 1

to give

(3.13)

Tr~i„——Zi(l„" "+4 +k„''}exp[P(p+Ii "+ 1+k'i ')ti]
(e~U 1)e—xp[P(@+I„' "+++k„"')]

X 1+t&
Z (1{z—i)+ @+k{z'))

(3.14)

From the constraint placed on the pair-site density ma-
trix by (3.10), we see that p~ may be expressed as

Pt.=exp[P(I +I~' "++Lt, +ki. ')4,]. (3.18)

This may be interpreted as saying that the z-bond poten-
tial lq" is the sum of a (z —1)-bond potential lq' "and a
single-bond potential li„as illustrated in Fig. 3. There-
fore, we can write

l„"=l' "+I,with

lii ——Li(U, +,1„' ",k{*')+4,
(3.19)

where there are two distinct contributions to the single-
bond potential lii. a contribution (Li) from the two-
body interaction, and a contribution (4') from the site-
dependent potential term in (2.7). Finally, from (3.15) we
see that the trace of Pi„can be expressed as a product of
traces of single-site density matrices:

Using (3.13) again on the term in large brackets, we find
that

Tr„pi{„=Z{(l„""+1+k„"')exp[P({u+I'i', "+4'

+L.+k")t~]
(3.15}

where

(e~U —1)exp[P({{t+I„""+ z't+k„" ')]
Z (I{z—1) + @+k{z')

)

(3.16)

Solving for Li„gives

L„(U,+,I" "k"')-
Z (I{z—i) + @+ U+k{z') )

ln
Z (I' "+4+k"'}

(3.17)

l

o'=a'). The results which are used in this paper are sum-
marized in Appendix A.

IU. DISTRIBUTION FUNCTIONS FOR THE
Er j.'ECTIVE POTENTIALS

In our model the single-bond potential at each site (li
and ki at each A, site and l„and k„at each a site) vary
from bond to bond. We introduce four single-bond distri-
bution functions, denoted gi(li), g„(l„), fi(ki), and
f„(k„),which we assume describe the distribution of the
four types of single bond over the entire lattice. Note that
we consider separate distribution functions for each type
of bond. We also introduce four multimile-bond distribu-
tion functions, which we denote by g{i (li '), g„' '(I„' '),
fi '(k& '), and f„' '(k„' '). We assume that these func-
tions describe the distribution of the multiple-bond poten-
tials at each site (l~",k„" ", etc.) over the entire lattice.
The single-bond and multiple-bond distribution functions
can be related to each other using the relationships given
in Sec. III between the single-bond potentials at a site and
the multiple-bond potentials at a neighboring site. For ex-
ample, the single-bond potential at a tt site is related to the
(z —1)-bond potential li "and z'-bond potential ki' ' at
a neighboring A, site through (3.19), and thus the single-
bond distribution function g„(l„) is related to the
multiple-bond distribution functions g~' "(l~' ") and
fq' '(k" ') through

g,(l„)=J 5(l„L„(U,%',1{i' —",ki{ ') —+)
&&9'(U, 4 )dUd4

{z—i)(I{z—1) )d1{z—1)f{z )(k{z ) )dk{z') (4 1)

Similar expressions may be found for the other single-

k{z')

Trp =Z, (l'„' "+ zt+k'„' ')

xZ, (i,"-"+++L,+k,"') . (3.20)

There are three other choices for o and o' in (3.10)
which give different results, that is, establish relationships

k~' ' (o =Ao'=A'), and k„" ' and k„" " (o =it,

FIG. 3. 4r pair of sites showing the single-bond potentials
Eq& and l„~. This diagram is equivalent to Fig. 1 with
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bond distribution functions using the results given in Ap-

pendix A:

gi(li )=f 5(li —L i(U, 4', I„" ",k„" ') —4'}

(4.5)

X 9'(U, 4 )dUd W

"(I' ")dl' "f' '(k" ')dk' '

(4.2)

and

f' '(k' ')= f 5 k™—gk gf (k )dk (4.6)

fi(ki)= f 5(ki —Xi„(V,P, lg",kg' ")—P )

XB(V,P"}dVd&

X '"(I"')dl"'f" '(k" ")dk' " (4 3)

f„(k„)=f 5(k„—E,(V, P",I„",k(' ") P)—
XB(V,P }dVdP

(s) (I(z) )dl(z)f (z' l )
(
k(z' ——1) )dk(z' —i)

(4.4)

In writing these relations we are ignoring any correlation
between the multiple-bond distribution functions and the
random distributions 9' and B for U, k, V, and P .

We now assume that general m-bond distribution func-
tions may be written in terms of single-bond distribution
functions as

With appropriate choices of o and m [z or z —1 in (4.5)

and z' or z' —1 in (4.6)], Eqs. (4.1)—(4.6) form a closed set
of integral equations for the single-bond distribution func-
tions of the effective potentials. We wish to find the

(z —1)-bond and (z' —1)-bond distribution functions. '

However, from the form of (4.1)—(4.4) it is clear that we

will not find a closed set of equations for the (z —1)-bond
and (z' —1)-bond distribution functions. Nevertheless, in

the limit of infinite-range interactions (z,z'~00 ) we can
solve the equations for the (z —1)-bond and (z' —1)-bond
distribution functions. We will discuss this further in the
following paper 6 and will now proceed to derive expres-
sions for the (z —1)-bond [(z' —1}-bond] distribution
functions in terms of other (z —1)-bond [(z' —1)-bond]
distribution functions and z -bond [z-bond] distribution
functions.

Substituting (4.1) and (4.2) into (4.5), with m =z —1

and the appropriate choice for cr, and evaluating the in-

tegrals over l~j, we find that

z —] z —1

g" "(I" ")=f5 I" "—g[L (U, %'l, l" ",k"')+4' ] +[9'(UI,+ )dUd4'lg" "(I".")

(4.7)

Here, UJ and kl are the interaction potentials between the site (T and each of the (z —1) neighboring sites (in the other
sublattice} which are contributing to I' ", while I~1

"and k "1' are the effective potentials felt at each of these neigh-
boring sites from all their neighbors excluding the site cr. We may rewrite (4.7) in a more convenient form using the rela-

tion

5(x —a) = e "'" "ds,1

2%

which gives

g~ "(I" ")= f exp( isl" ")—[6 (s)]' 'ds,

(4.8)

(4.9)

where

6 (s)= fexptis[L (U, k, l' ",k"')+ k]IH(U, +)dUd kg" "(l~ ")dl" "f"'(k"')dk"', (4.10)

which is the Fourier transform of the single-bond distribution function g .
Turning our attention now to the distribution functions for intrasublattice bonds, we substitute (4.3} and (4A} into

(4.6), with cr =A, ,m =z' —1 and (r'=I(', m =z' —, 1, respectively, and find

f~ '(k~ ")= exp( isk~ ")[—F~(s)]' 'ds,
2'lT'

with

F (s)= fexpIis[I(. (V, P, I"'k" ")+P ]IB(VP )dVdP g"'(I"')dl"'f" "(k" ")dk"

which is the Fourier transform of the single-bond distribution function f~.

(4.11)

(4.12)
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The z-bond distribution functions g'*' [f'"]can be expressed in terms of G [F] by replacing z —1 [z' —1] by z [z'] in
(4.9) [(4.11)]. Then (4.10}and (4.12) constitute a closed set of integral equations for the Fourier transforms of the single-
bond distribution functions, G and F. These equations are useful for numerical calculation of the distribution functions
in the case of a finite coordination number.

Equations (4.9)—(4.12) are in a convenient form for further calculations and we shall return to them in the following
paper when we specify the probability distributions H(U, %') and B(V, P") and derive detailed results for the order pa-
rameters of this system.

It is also possible to derive expressions for the single-bond distribution functions in terms of other single-bond distribu-
tion functions using (4.1)—(4.6). Substituting (4.5) and (4.6), with appropriate choices of cr and m, into (4.1), we find that

T s-1 z' z —1 z'

g (I )= f5 I I. U—, +,gl I, gk; —4 P(U+)dUdC gg (l )dl )gf (k;)dk; (4.13)
j=1 i=1 j=l i =1

z s' —1 s z —1f (k )=f5 k —E V,P, +I ~, gk; —~ &(V,~)dVd~gg (I;)dI;gf (k;)dk;, (4.14)

with the general relations

l' '=pl J, k(™=gk,,
j=l j=l

(4.15)

where, as usual, o =A, or ~. This means we can consider the m-bond potentials as sums of m single-bond potentials, as
illustrated in Fig. 4.

The thermal and configurational average of a function of the operator t~ can be written in terms of the density matrix
at a site in sublattice tr (P ) and the distribution functions of the effective potentials by

((A(t )) ) =f gag (I;)dl;f (k )dk
Tr[A(t )p~]

Trpo i=lj=1
(4.16)

and also using the pair density matrix p ~ as
'~

((A(&, )) ) =f „&(U,+)dUd+&(V, ~)dVd~ g gg, (I )d&„gf,(k„)dk„.
Tr[A (t }p ]

T1Pcro'
(4.17)

Clearly for our theory to be consistent, we must have that

((A(r. )).) =((A(r.)), )

for all o and tr'. We show in Appendix 8 that the relations we have derived among the distributions functions do ensure
that the different ways of taking the average do give the same result.

V. THE THERMODYNAMIC POTENTIAL

kgb k„2 k„z
I

1 I
I

I
14 ~ 0 I
1 I

%L I

$1,K2 KZ'

I
1 I
l I

I

l I
%1 I

We are now in a position to calculate the thermo-
dynamic potential per bond of the binary alloy in the pair

I

approximation. We begin by defining three pair poten-
tials Pi„, P~, and P„„which are given by

kltT f—ln(Trpb„)9'(U, k)dUd+
z —1

X gg (I;)dI;g„(I,)dI„,
i=1
j=l

z'

X g fi (ki )dig~„(k„„}dk„„, (5.1)
m=1
n=1

k~T f 1n(TrP —)B(V,&)dVdk"

L~t L),2 L~z L„) LK2

FIG. 4. Single-bond potentia1s I ~ and k J. Figure 4 is
equivalent to both Figs. 1 and 3 using Eq. (4.15}.

Xgg (I;)dI;g (I;)dI;
i=1
j=l
z' —1

X g f (k )dk ~ (k „)dk „, (5.2)



482 J. M. BELL, N. E. FRANKEL, AND S. INA%ASHIRO 33

where (T and (T' represent sites in the same sublattice and

Tr)()i„ is given by (3.20) and (A4), Trp~i by (AS), and

Trp«by (A12). We also define two single-site potentials

Pi and ()()„by

g Z'

(}) = k—Tf ln(Trp )g gg (l;)dl;f (ko, )dk
i=1j=l

(5.3)

Xf(z') (k(z') )dk (z')f (z') (k (z')
)dk

(z') (5.4)

with similar expressions, involving only multiple-bond
distribution functions, for Pqq, P„„,(()q, and (I)„.

The thermodynamic potential per bond for the binary
alloy in the pair approximation is given in terms of P
and P by

t

6 +2, ((()u. +((t:)z+z' Z +Z

(4+4.)

A physical insight into the form of (5.5) may be gained
by considering the limit of absolute zero temperature. In
this limit the pair potential 4i„represents the energy of a
bc pair of sites, which includes the energy of a 4c bond as
well as the energies of (z —1) interaction bonds between
the l(, site of the pair and )( sites outside the pair, (z —1)
interaction bonds between the ~ sites of the pair and A,

sites outside the pair, and z interaction bonds between

1

where Trp is given by (3.7). Throughout we are using
(4.5) and (4.6) to represent the multiple-bond potentials.
We note, however, that the potentials (5.1)—(5.3) may also
be written in terms of multiple-bond distribution func-
tions. For example, P)(„may also be written as

k&T—f 1 n( Trp x)H( U k)dUd%'gi„' "(li„' ')

Xdl(z —i) (z —l)(l(z —i) )dl(z —i)
ga x a

TABLE I. Contributions to pair and site potentials at abso-
lute zero temperature.

Potential Pair bond
Number of other bonds

A,K KK

4c
( Nz/2)'

( ¹'/4)'
KK

( ¹'/4)'

2{z —1) z'

2{z' —1)

z'

z'

2(z' —1)

z'

'These numbers are the total number of each type of nearest-
neighbor pair bonds over the entire lattice.

The variation of (t) with respect to gq(l)() clearly will only
involve terms which depend on g)((li ). Therefore, in this
case, we need only consider variations of (})i„, (())„)(,and P),.
The variation of (()i„gives

both sites of the pair Q, and )r) and, respectively, l(, and a
sites outside the pair. Similar interpretations can be given
for the pair potentials P~ and P«. The single-site poten-
tials in this limit represent z intersublattice bond energies
and z' intrasublattice bond energies (see Table I).

From the information in Table I we see that the first
three terms in (5.5) are calculating a weighted average of
the energies of the three types of bonds, hc, A, )(,', and ~~',
in the alloy. This, however, counts too many bonds and
the last term subtracts away all the energies of bonds be-
tween the pair sites and the surrounding medium.

We now show that P is stationary with respect to varia-
tions of the single-bond distribution functions. Consider
firstly an arbitrary variation of g)„(li ) which preserves the
normalization of gx(li ). Hence,

g~ ~ (5.6)

s —1

/i„———(Z —1)k Tf»(Trpb„)&(U, )dUd g gi, (li,;)dli,;g.(l.j)dl„J
l =2
j=1

&& /fan. «i, )dki.a.«-)dk-~gi. (4l)dl) 1 (5.7)

and that of ((t'ai gives

= —2zk T fin(Trp )B(V,P )dVdP g g„(l;)dl;g„(l ')dl '
i =2
j=l

z' —1

x ff fi.(ki. )dki~i, (ki. „)dli, „&gi,(li.) )dl)(), (5.S)

while that of P~ gives
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z z'

5gg ———zka Tf ln(TrP„) g gg„(l;)dl;f„(k )dk 6gg(lg) )dig) .
i =2j=1

(5.9)

Substituting for the traces from (3.20), (A8), and (3.7) into (5.7)—(5.9} and combining to give the variation of P, we

have

z —1 z' —1

k—Tfag, (l, )dl, ff g g„(l;)dl If (k )dk„.
i =2 j=1

z —1 z'

(z —1)f lnZ& g l„+k+ g k„„9'(U,+)dUd%z'+z m=1 n=1

z —1 z'

X g gg„(l„)dl„~„(k„„)dk„/„(k )dk
m =1 n=1

r

z —1 z'

(z —1)f1nZ, pl~;+4+Lq+ /k' H(U, k)dUd kz+z' i=1 j=l
J

z —1 z'

X g gg„(1„)dl„~„(k„„)dk„g„(k )dk
m = ln =1

I z z' —1+, z lnZ1 pm+ gn+W V, Pz+z' m=1 n=1
r

z z'-1
X Q gg (l ~ )dl ~ (k, )dk „(l )I

m=1 n=l

z z' —1

z lnZ1 g;+ gj+P +Kg V, F Vz+z' i =1 j=l

z z'-1
X g ggq(lq )dl ~ (k „)dk „g (1 )dl

m=1 n=l

z+z' —1
z f 1nZ) g4;+ g kgj gg(l~)dl~~(k~. )dk~.z+z' i=1 j=1

(5.10)

The first and third terms in the square brackets are independent of 4& and so, by the condition (5.6), give no contribu-
tion to the variation of P. The remaining terms in the square brackets must therefore combine to give zero for the poten-
tial tI} to be stationary. Thus, stationarity of the potential imposes the following constraints on the single-bond distribu-
tion functions g~(4) and f~(kg)

z —1 z' —1 z —1 z'

fg gg„(l„)dl„g,(k„)dk„ flnZ, gl;+++L ++kg ~(U, +)dUd+
i =2 j=l i=1 j=l

z —1 z'

X g gg„(1„)dk„~„(k„„)dk„j"g(k~)dk~
m = ln =1

z z'
—f1nZ1 /4+ ykAJ gk(1A )d4JA(kA )d4'

j=l
(5.11a}
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z —1 z' —1 z z' —1

f p ggi(l~)dl„J'i(kij)dk„, f lnZ, gl„,.+ g k&, + P +Xi B(V,W)dVdP
i=2 J =2

z z' —1

X g Pg (I ~ )dl ~„(k „)dk „g (I )dl
m =1 n=1

z z'
—flnZi flu+ ski~ gdIi )d~iJ'r. «i )dkr (5.11b}

since z and z' are arbitrary.
Substituting the integral equations (4.13) for gi(li )

and (4.14} for f(ki ) into (5.11a) and (5.11b}ensures that
both equations are satisfied. Following a similar pro-
cedure for arbitrary variations of g„(l„), fi(ki, ), and

f„(k„)leads to the conclusion that the integral equations
(4.13) and (4.14) are a sufficient condition to ensure the
stationarity of P.

Finally, the thermodynamic potential per site for the
RBA is given by 4=(z+z')P/2 since there are z+z'
bonds emerging from each site and each bond contributes
to the energy of two sites. This may be rewritten using
(5.5) as

4= (zl2)gi„+(z'l4)(gi. i. +P„„)
—(z+z' —1)(gi+P„) . (5.12)

VI. DISCUSSION AND CONCLUSION

In this paper we have presented a formalism which en-
ables us to find the thermodynamic potential for a binary
alloy system with pair interactions randomly distributed
over the entire lattice. In a following paper z we will use
the formalism and introduce specific forms for the proba-
bility distributions 9'(U, %') and B(V,P ). We will then
present a detailed analysis of the behavior of the alloy in
certain cases of special interest.

We have shown in Sec. II that the alloy must be treated
differently from the Ising antiferromagnet, despite the ob-
vious similarities between the two models used to describe
them. %e showed that with the RBA, random pairwise
interactions necessarily produce random site-dependent
potentials, while in the antiferromagnet, random magnetic
fields and randomness in the pairwise interactions can
occur independently.

The problems caused by introducing sublattices and by
considering both nearest- and next-nearest-neighbor in-
teractions simultaneously were overcome in Secs. III and
IV by defining effective potentials (and corresponding dis-
tributions for each effective potential) at each type of site
(i.e., from sublattice A, or a) and for each type of bond
(i.e., intersublattice or intrasublattice). We have derived a
closed set of integral equations for the single-bond distri-
bution functions. Although our treatment of the second-
neighbor interactions is simple, we note that an analogous
treatment was applied to a magnetic mixture and gave
reasonable results for magnetic phase boundaries.

The derivation of the thermodynamic potential in Sec.
V is relatively straightforward. We have shown that our
theory is consistent by showing that the thermodynamic
potential is stationary with respect to variations in the
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APPENDIX A

In this Appendix we present the results obtained by the
requirement of self-consistency placed on the pair density
matrices. The consistency condition is

Tra'pcra' ~ per ~ (3.10)

and there are three choices for the values of n and o' dif-
ferent from that given in the text (case 1: o =k, o'=a).
The important results are the following for cases 2—4.

Case 2: cr=a, cr'=A:, Tr~i„ccj„. We have

p„=exp[P(@+1„" "+1„,+k„"')t„], (A 1)

where

I„i=L„(U, 2r, lg* ",kj", ')+4 (A2)

L„(U,%',Ii,ki )=—ln
P Z, (l&+ 4 +k~)

"+++k'i". )Zi(I." "
+'P+L„+k„"') .

Case 3:o.=k, cr'=k'; Tr~p~~ ~p~. %'e have

pz ——exp[P(@+ le" +kg' "+ki i )4],
where

ki i
——Ki ( V, P",1i",k'i' ")+&

and

(A3)

(A4)

(A5)

(A6)

I

single-bond distribution functions.
Clearly, it would be possible to extend the method of

distribution function to include the effects of a subdi-

vision of the lattice into more sublattices and hence to for-
mulate the method for face-centered-cubic lattices. Simi-

larly, the inclusion of magnetic interactions would also be
possible and may in fact be interesting since spin glasses
are indeed dilute alloys of a magnetic atom in a nonmag-
netic medium'. However, both of these extensions of the
method involve a considerable increase in the complexity
of the notation.
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Z, (l, +k„+V+W)
I(.)((V,F l)(,kg )= 1n

k &)

I

Trp» = Z)(1")+k"-"+~)
xZ, (l'„'+k~ "+&+K~) .

Case 4: O.=x, o'=a'; Tr~p„„~p„. We have

p„=exp[P(@+I„"'+k„' "+k„))t„],
where

and

(A7)

(AS)

(A9)

(A10)

«A(t„})~)„=f H(U, 4 }dUd eTr[a (r, )l"),]
Trp~

Xgg g g g~ g
(z —1)(l(z —1) }dl(z—)) (z —1)(l(z —1) }

Xdl(z —1)f(z') (k (z')
)dk

(z')

xf (k' ')dk' '

Now,

((4t4» l&R= J „sk ~4 &s&1**

Trpb

(83}

Z, (l~ +k„+P + V)
1(.„(V,P, l„,k„)=—1n

Trp„„=Z, (l„"'+k„" "+&)

xZ (l"+k' "+P +I(, )

(A11)

(A12)

+f(z')(k(s') }dk(z')

but using (3.18) and (3.19), we can write p~ and lx" as

P) =exp[P() +lI' "+4)+k~')]
and

lz =lP +I)() ~

Therefore, (84) can be rewritten in the form

(84}

(85)

APPENDIX 8

In this Appendix we show that the two alternative ways
of evaluating the average of a function of the operators t
and t ~ both give the same result. Consider Eq. (4.18}for
(r=&)(. and o'=)r

«~(t )) ) = Tr A(t)„)p),

Trpb

xdl~' "g~(1~ )dl~

+f(z')(k(z') }dk(z') (86)

((A(4&4 &R=I „z(U, %&dUd%
Tr[a (r, )P~]

Trpb'

and substituting for g~(l)()) from (4.2) and integrating
over /~) gives

y dl (z —) &f(z )
(k (z ) )dk (z )

)(f(z')
( k (z')

)dk
(z') (81)

We write the trace term as

(z —))(l(z —)) }dl(z—)) (z —))(l(z —))
}g~ «&(r )) & = Tr A(tg)P)(

Trpb

&(dig' "H( U, %' )d U d%'g„'

+ ( l (z —) ) }dl(z —1)f(z')
( k (z')

}

Xdk(z )f(z )(k(z ) )dk(z ) (87}

Tr[A (t„)px„]

Trpb

Trx(~(4)Tr phr) Trk[~ (4)PA.]
Trx(Tr„px„) Trxpx

which is identical to (83). Hence,

using (3.15) and (3.18). Hence, we have

(82} and our theory is consistent in evaluating simultaneous
averages of operators over the thermal distribution and
the randomness in the system.
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