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Observation of isotropic critical spin fluctuations in Gd
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Perturbed yy angular-correlation experiments on oriented single crystals of Gd, containing 1 ppb
of "'In, demonstrate that critical spin fluctuations are isotropic to within about 1 K above the Curie
temperature. Closer to T~ we frnd evidence that the critical spin fluctuations fall increasingly along
the c axis. Analysis of nuclear relaxation times in the isotropic region leads to spin autocorrelation
times that diverge with an exponent m =0.53(8). This value is not consistent with either spin-

nonconserved Heisenberg behavior or Ising behavior, but agrees with Mossbauer data for Gd ' 'Dy.

Gadolinium is an S-state ion which should have
predominantly isotropic exchange interactions, and, like
Fe and Ni, exhibit Heisenberg critical behavior. On the
other hand, Gd is noncubic, with uniaxial spin alignment
along the c axis below Tc, ' suggesting that like MnFi
it may exhibit Ising critical behavior. Ising critical
behavior is also suggested by the observation of Ising-like
domain walls near Tc.

Static critical exponent measurements span both the
Heisenberg- and Ising-model predictions. We have argued
that nonasymptotic data may be the cause of the incon-
sistency in static exponent measurements. In this context
we reported a new measurement of the exponent P which
was more nearly asymptotic than all previous magnetic
measurements. Although the result P=0.399(16) is close
to the prediction for the Heisenberg model; the presence
of large corrections to scaling leaves open the possibility
of eventual crossover to Ising behavior.

The question of whether Gd is described by Heisenberg
or Ising critical behavior may also be addressed through a
study of critical dynamics. In earlier work we have re-
ported a Mossbauer linewidth study of critical slowing
down for Gd '6'Dy, and found that the divergence of the
wave-vector-averaged spin autocorrelation time could not
be reconciled with either Heisenberg or Ising spin dynam-
ics.' A weakness of that work, however, is the fact that
we had to assume isotropy of spin fiuctuations in order to
analyze the Mossbauer data.

In experiments reported here we eliminate assumptions
about fiuctuation isotropy that were implicit in our
Mossbauer work on Gd ' 'Dy. This is accomplished
through nuclear relaxation studies of oriented single crys-
tals of Gd, using the method of perturbed yy angular
correlations (PAC).

I. EXPERIMENTAL DATA

Our samples were oriented single crystals of Gd (ob-
tained from Ames Laboratories) into which 10 pCi of
carrier-free "'In had been diffused. Sources were
prepared by depositing "'In dissolved in dilute HC1 on
the sample surface, evaporating to dryness, and diffusing
in Uacuo for 1 hour at 1150 K. Because of the short (2.7
d) half-life of the "'In activity, its estimated concentra-

tion in the diffused sample was about 1 ppb.
The sample temperature was controlled by a two-stage

thermoelectric module enclosed in a vacuum can, and
temperature regulation was achieved via a thermocouple-
controlled differential voltmeter. Temperature stability
was better than 0.05 K.

PAC spectra were collected with a four-counter spec-
trometer, and reduced via methods described elsewhere.
This leads to a time-dependent perturbation, Gq(t), which
for T & Tc can be analyzed in terms of a unique axially
symmetric electric quadrupole interaction.

Far above Tc nuclear relaxation is practically undetect-
able, and the PAC signal was fitted with the form

Gi(t) =0.2+S icos(coot ) +S2cos(2toot )+Sscos(3coot ), (1)

where too ——(3m/10)e go=23.5(1) Mrad/s is the funda-
mental quadrupole interaction frequency, and Q and q
are the quadrupole moment and principal component of
the electric field gradient, respectively. A comparable
value for too [23.4(7) Mrad/s] had been obtained in the
earlier work of Bostrom et al. 3 Because q lies along the
c axis, oriented single crystals give different weighting to
the amplitudes in Eq. (1). For the c axis of the crystal
perpendicular to the plane of the counters we found
S, =0.70(2), S2 ——0.01(1),and Sq ——0.08(1). For the c axis
of the crystal parallel to the plane of the counters and
oriented at 45' with respect to a pair of neighboring
counters, we found Si

——0.16(2), S2 ——0.63(2), and
S3 —0.01(1)~ Figure 1 illustrates the distinctly different
patterns obtained in the two orientations.

As T~Tc the spectra for Gi(t) show increasingly
strong damping which we interpret as nuclear relaxation
induced by critical slowing of the electronic spin fiuctua-
tions. Examples of damped spectra for the c axis perpen-
dicular to the plane of the counters are shown in Fig. 2.
Equivalent results are obtained for the c axis parallel to
the plane of the counters. [The data on which the further
analysis is based were taken on two equivalent samples
(named A and 8 in Table II and Fig. 6) with the c axis
perpendicular to the plane of the detectors. ]

To determine the value of Tc we used PAC data ob-
tained in the ferromagnetic region. These were analyzed
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FIG. 1. Perturbed angular correlation spectra well above Tc,
for the c axis in the plane and perpendicular to the plane of the
counters [(a) and {b), respectively].

FIG. 3. Linearized plot of the hyperfine field, Hhq~, below
T~ used to determine that T~ ——291.85(5) K. The value of the
exponent P was 0.399, as determined by fitting with corrections
to scaling (see Ref. 6).

Hgg( T)=B(1—T/Tc)~ (2)

to extract Tc, P, and B. In this way we obtained
Tc =291.85(5) K for the single-crystal sample used in the
present work. Figure 3 illustrates the quality of the fer-
romagnetic data via a linearized plot of Hhf(T)' versus
T.

in terms of the hyperfine field, Hhf(T), and as shown in
detail elsewhere, may be fitted to

II. ANALYSIS OF RELAXATION SPECTRA

To fit the spectra above Tc it is necessary to choose a
relaxation model. Key to our analysis is the fact that an-
isotropic and isotropic spin fluctuations produce distinctly
different forms for G2(t). By determining which model,
isotropic or anisotropic, better fits the experimental re-
sults for G2(t) it is therefore possible to decide whether
spin fluctuations are isotropic or anisotropic.

To describe isotropic electronic spin fluctuations we
write

G2(t) =exp( t /Ta )[S—p+Sl cos(rapt ) +S 2c(o2sN pi )

0.5

h

h,

+S3cos(3rapt )],
where the nuclear relaxation time is given by

~a ——2S(S+1)A r, ,

(3)

(4)

295 l5 K

0.5

-0.5
292.I5 K

ihLI. I[(L
(

'glltlg

29I.90K

l20
t{ns)

FIG. 2. Perturbed angular correlation spectra shoveling in-
creasing relaxation as the temperature approaches T~+ [(a) ip
(c)].

and r, and A =raL, (T=O K)/S are the wave-vector-
averaged spin autocorrelation time and hyperfine coupling
constant, respectively. This assumes an isotropic contact
interaction iriAI S between the nuclear spin I and the
neighboring host spin, S. Equations (3) and (4) are com-
parable to the results of Abragam and Pound9 and are
valid in the motional narrowing limit. This requires that
~, is the shortest time in the problem: i.e., r, «2n. iraL,
r, «2m/rap, r, « r~, where rz is the nuclear lifetime of
the gamma emitting nucleus. For the case at hand, all
these inequalities are satisfied by a factor of 10 or more.
A similar analysis, but with coo ——0, has been used in our
past work to extract ~, values near T~ for the cubic fer-
romagnets Fe and Ni. '

To describe anisotropic fluctuations we write

G2(t) =Sp+Si,exp( t/rz )cos(capt—)

+S&bexp( —4t /rz )cos(rapt )

+Sqexp( t /ra )cos(2rapt )—
+S3exp( 4t /rz )cos( 3rapt )—
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with r~ defined as before, but with the interaction given

by RAI,S,. Equation (5) may be obtained via a generaliza-
tion of a stochastic model of Blume" for the case when a
static quadrupole interaction is perturbed by a cIassicaj
uniaxial hyperfine field fluctuating along the principal
axis of the electric field gradient. Physically, the Blume
model means that only spin fluctuations along the c axis
exhibit critical slowing down, whereas spin fluctuations in
other directions remain fast with an average of zero. As
in the isotropic case the result of Eq. (5) is restricted to
the notional narrovnng regime.

The principal differences between the isotropic and an-
isotropic models are the following.

(1) The isotropic model is characterized by a single nu-
clear relaxation time, ra. In contrast, the anisotropic
model involves two relaxation times, sit and I'a /4.

(2) The isotropic model has no time-independent "hard
core," i.e., G2(t)~0 as taboo. In contrast, the anisotro-
pic model has a hard core, i.e., Gi(t) ~0.2 as t~ oo.

In analyzing our data we found that spectra for both
crystal orientations were well fitted by the isotropic model
for T& Tc+ 1 K, i.e., reduced temperatures t &3X10 '.
In contrast, for t & 3X 10 ~ we observed increasing failure
of the isotropic model. As shown in Fig. 4(a), the fitted
values of the dominant amplitudes decline whereas the
other two amplitudes rise to compensate in part. Given
the fixed orientation of the crystal, such amplitude varia-
tion is not expected. Close examination of the fitted spec-
tra in the region t & 3 X 10 shows substantial misfitting
near zero time [Fig. 5(a)]. We conclude that the results
are artifacts of fitting with an inapplicable model.
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FIG. 5. Comparative quality of fitting obtained via the iso-
tropic model (a) and the anisotropic model {b)for a reduced tem-
perature t F10 3.

We offer two conjectures that might explain the
behavior of the PAC spectra in the region t &3X10
(1) We may be seeing rounding of the phase transition, so
that the PAC signal becomes a superposition of paramag-
netic and a ferromagnetic spectra. (2) We may be in a
crossover region between isotropic and anisotropic
behavior.

Whereas Tc rounding is always present at some level in
experiments, the degree of rounding needed to explain our
amplitude anomaly is much larger than our measurements
in the ferromagnetic region would suggest. As already
noted, our Tc value has an error of less than 2X 10 I in
reduced temperature, and the data below Tc, illustrated in
Fig. 3, exhibited no spurious changes in amplitude to
within 0.2 K of Tc.

To explore the possibility of a transition to anisotropic
behavior, we refitted the data to the anisotropic model.
We obtained amplitude variation as shown in Fig. 4(b).
The results for t &3X10 are equivalent to those of the
isotropic model in the sense that a single amplitude for
coscilpt dominates. (The presence or absence of a relaxa-
tion factor multiplying Sp plays a negligible role in our
analysis. ) However, fits to the anisotropic model are con-
siderably better for t & 10,as shown in Fig. 5(b).

We conclude that the failure of the isotropic model
close to Tc can be explained by a transition to a regime of
anisotropic fluctuations, with spin alignment and fluctua-
tions restricted to the c axis.

III. ANALYSIS OF RELAXATION TIMES
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FIG. 4. Amplitude variation for various frequency terms ob-
tained from fitting the PAC data to the isotropic model {a) and
the anisotropic model {b). For definitions of the amplitudes, see
the text.

The spin autocorrelation time is defined as the integral
of the dynamic structure factor, S,(q,co), evaluated at
zero frequency, over the Brillouin zone of volume vI:

S, q, O dq. (6)

By recourse to the dynamic scaling theory, S,(q, tv) may
be expressed in terms of the power law' '

v, =Dt

where t =(T/Tc 1) is the reduced temper—ature. The ex-
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ponent w is given via the scaling law

w =v(z+2 —tg —rl), (8)

which connects it to other critical exponents v, z, and g,
and the lattice dimensionality, all defined in the usual
manner. ' '

Theoretical predictions' ' for three relevant model
Hamiltonians are summarized in Table I, using the most
accurate available values of v, z, and r). In earlier work
we showed that the behavior of Fe and Ni is consistent
with predictions for the Heisenberg model with a noncon-
served order parameter. 'o For Gd we expect either similar
behavior or Ising behavior.

Experimental values of rtt(T), obtained via fitting to
the isotropic model, and r, values deduced via Eq. (4) are
listed in Table II. To extract the exponent w we fixed Tc
either at 291.85 K, the value obtained from fitting P, or at
nearby values, and fitted to

r, ( T)=D( T/Tc 1) +—rp
with D, W, and rp fi'ee. Here rp describes a iloiicritical
background component which we assume to be constant
over the range of temperatures studied. Results for these
fits are summarized in Table III, top three lines. As is
usual in power-law fitting, there is significant covariation
of fitting parameters.

To emphasize the region near Tc, where statistics are
better and the background is less important, we restricted
the reduced temperature to t&2X10 and fixed the
background to 5.3X10 " s. Under these circumstances
we obtained the results summarized in Table III, middle
three lines.

Because of the transition to anisotropic behavior, we
should expect that data in the transition region analyzed
via isotropic assumptions will yield incorrect r, values.
We have therefore eliminated data for t & 2 X 10 and re-
fitted to Eq. (9), with rp and Tc fixed as before. This
leads to the results shown in Table III, bottom three lines.

For comparison to theory we use the latter fits to arrive
at the final result:

TABLE II. Experimental results.

291.97
292.15
292.20
292.45
292.70
292.94
293.18
293.42
294.17
294.67
300.01
349.98

tb

{10 )

0.41
1.03
1.20
2.05
2.91
3.73
4.56
5.4
7.9
9.7

27.9
199.0

(10 s)

Source A

0.26(2)
0.44(2)
0.52(4)
0.57(5}
0.64(5)
0.63(5)
0.90(9)
0.81(8)
0.92(8)
1.06(11)
1.03(17)
2.05(68)

296.0
296.15
298.15
300.15
310.15
320.15
332.65
341.65
354.30
367.03
379.15
395,15
415.0

14.2
14.7
21.6
28.4
62.7
96.9

140.0
171.0
214.0
258.0
299.0
353.0
387.0

Source B
1.10(13)
1.11(16)
0.71(11)
1.71(43)
1.78(42)
1.39(31)
1.55(35)
2.31(91)
2.35(72)
1.39(34}
2.67(122)
3.45(260)
2.82(118)

w =0.53(8),

D=0.80(35)X10 ' s,
where

2g10-'& t g2X10-' .

'Errors in T average 0.05 K.
Reduced temperatures based on Tc ——291.85 K.

{10 ' s)

56.8(50)
33.2(35)
28.1(20)
25.3(19)
22.8(20)
23.2{16)
16.1(18)
17.9(16)
17.7(14)
13.6(14)
14.2(21)
7.0(23)

13.0(14)
13.2(20)
20.5(31}

8.6(20)
8.2(19)

10.5(23)
9.4(21)
6.2(15)
6.2(19)

10.3{21)
5.5(25)
4.1(29)
5.1(19)

TABLE I. Critical exponent predictions for d =3 ferromag-
nets. Values of P, y, v, and g were taken from Ref. 13 and

represent the most accurate predictions of renormahzation-

group theory. Values of a were derived via the scaling law

a+2P+ y =2. Values of z are based on the predictions
z= z (5—g), z=2 —q/2, and z =2+a/v for the three columns

left to right, as given in Ref. 4. Values of m were derived via
the scaling law m =hz+2 —d —g).

A logarithmic plot of background corrected spin auto-
correlation times is shown in Fig. 6. This indicates that
despite large statistical scatter far from Tc, data for
t &2X10 are characterized by a well-defined power
law. The transition to anisotropic behavior does not ap-
pear to be visible at the level of statistical error in our
data.

IV. SUMMARY AND CONCLUSION

Exponent

0.3645(25)
1.386(4)
0.705(3)
0.033{4)

—0.115(5)
2.484(2)
1.023(5)

1.984{2)
0.670(5)

Heisenberg model
Spin Spin

conserved nonconserved Ising madel

0.3250(20)
1.2410(20)
0.6300(15)
0.031(4)

+ 0.109(5)
2.173(5)
0.718(5)

Our findings may be summarized as follows.
(1) For t ~3X10, i.e., to within 1 K of Tc, PAC

data are well fitted by a model for isotropic spin fiuctua-
tions.

(2) For t & 3X10, i.e., within 1 K of Tc, PAC data
undergo a transition which can be explained by a model
for anisotropic spin fiuctuations along the c axis.

(3) Even in the region in which the isotropic model fits
well, the critical exponent m, characterizing the wave-
vector-averaged spin autocorrelation times, does not cor-
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TABLE III. Fitting results for T & Tc. [ ) indicates the pa-

rameter is fixed in fitting.

-II
IQ i & I I $ l&ll

[291.80]
[291.85]
[291.90]

0.54(8)
0.49(7)
0.41(6}

t ~4X10

D
(10-' s}

0.72(40)
0.98(48)
1.54(66)

~0

(10 '3 s}

5.8(14)
5.3{16)
4.3(16)

)
O(2

O

s 04o0 s
a

[291.80]
[291.85]
[291.90]

t ~2y10 2

0.54(8) 0.74(21)
0.50(4) 0.90(21)
0.45(3) 1.19(21)

[5.3)
[5.3]
[5.3]

IO
13

I i

2xlQ+ )O-3 jo

/Tc l

to'
i i i iiil i i i i sail

5 xlQ

[291.80]
[201.85]
[291.90]

2y10-'gt g2g10-'
0.55(7) 0.75{27}
0.53(7) 0.80(29)
0.51(6) 0.88(31}

[5.3]
[5.3]
[5 3)

FIG. 6. Logarithmic plot of the spin autocorrelation time
versus the reduced temperature with and without correction for
noncritical background (solid) and open symbols, respectively).
Data are shown for sources A (circles) and 8 (triangles).

respond to predictions for the order-parameter noneon-
serving Heisenberg model (Table I), but has a lower value.
It also does not agree with predictions for the Ising model.

Our results may be compared to Mossbauer works on
Gd 's'Dy, in which we found ur=0.49(5} in the range
10 & t & 10 '. In that work, being unable to distinguish
isotropic from anisotropic behavior, we assumed isotropic
spin fluctuations in order to analyze the critical com-
ponent of the Mossbauer linewidth. Since the Mossbauer
study and the present work cover roughly the same range
in reduced temperature, it is perhaps not surprising that
the values of to agree for the two studies. As in the
present work, the Mossbauer work shows no significant
deviation in the power law in the neighborhood of
t=3X10 where the PAC data suggest the onset of an-
isotropic spin fluctuations.

How do we explain the anomalous value of to in two in-

dependent experiments? The most likely cause is that we
are measuring in a broad crossover region in which we
cannot reach either asymptotic Heisenberg or Ising
behavior because Ising-like anisotropic spin fluctuations
separate the experimentally accessible region from the
critical point. If this is the ease one can also understand
why past measurements of static critical exponents in Gd,
which are all confined to t & 10 ', do not yield clear-cut
Heisenberg or Ising values, but include a mix of both. 's
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