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Effective discrete-time dynamics in Monte Carlo simulations
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The effective discrete-time master equation which governs a Monte Carlo simulation is derived.
This equation, which takes exphcitly into account the type of algorithm used to update the configu-
rations, when specialized for a spin system and sequential updating, coincides vrith a similar equa-
tion recently proposed in the literature. From this effective master equation it is possible to give
theoretical support to previous numerical works concerning the validity of different algorithms for
spin updating in the study of kinetic processes. All the analytical results are consistently checked
through numerical simulations of a simple exactly solvable model.

I. INTRODUCTION

The theoretical basis for the application of Monte Carlo
(MC) methods to the study of static and dynamics proper-
ties of spin systems has been discussed in the literature
many times. ' However, in most cases, two important
questions concerning the validity of the method have been
bypassed: first, the discrete nature of time in computer
simulations and, second, the influence in dynamical pro-
cesses of the algorithm used to update the spins.

The first question has been recently discussed by Choi
and Huberman, who found that the digital character of
time can bring in features which are not encountered in
the usual analytical studies using continuous time. To
describe the evolution of the sequence of configurations in
a MC simulation —which can be thought of as a discrete-
time process, rather than a continuous one—these authors
proposed a complex discrete-time master equation
(DTME). From this equation they conclude that the ef-
fective dynamics in numerical experiments is much more
complex than continuous-time ones corresponding to real
systems.

The second question has also been recently touched
upon by Gawlinski et al. , in connection with studies of
the development of order in rapidly quenched systems.
They found that the law for the growth of the average
size of magnetized domains depends on the particular up-
dating procedure used. As these authors pointed out, the
application of the MC method to dynamics is then some-
what controversial due to the fact that the algorithm one
chooses for updating the spins becomes an integral part of
the model.

In this work a general DTME associated to a MC simu-
lation is derived. This equation, which takes explicitly
into account the influence of the chosen updating algo-
rithm, coincides with the equation of Choi and Huber-
man when a sequential updating of the spins is con-
sidered. It also gives theoretical support to the numerical
evidence found by Gawlinski et al. concerning the validi-
ty of different updating procedures. All the analytical re-
sults obtained here are consistently checked in the last sec-
tion through numerical simulations of a simple exactly

solvable model, the Ising spin chain with Glauber s transi-
tion probability.

P(cr, t—) = g W(cr'~o", t)P(cr', t)
dt

—P(o, t) g W(o~o';t),

where P(o, t) is the probability that the system can be
found in the configuration o =(cri,crt, . . . , cr~) at time t
and W(o'~o;t) is the transition rate from o' to outcr' at
this time. If one sets the time scale for the relaxation pro-
cess by taking

1W(o'~cr;t) =—co cr' +er;——
'r T'

then, for bt «r, it is likely to approximate (I) by the
discrete-time equation

P(o', t+b, t) P(o, t)= g —co 'o' —+cr; —P(o', t)
K +0' 7

ht
P(cr, t) g co-

cr +o'

(2)

Now, from its very definition,

W(o'~cr;t) = lim
P(o, t+bt

~

o', t) (cryo'),
h,s~o

where P(cr, t
~

o', t') is the conditional probability for the
system to be found in the configuration o at time t & t'
given that it was in cr' at t' Then, to the sa.me order of
accuracy, Eq. (2) can be rewritten as

II. DISCRETE-TIME MASTER EQUATION

Consider a system whose dynamical evolution can be
described by the continuous-time master equation
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This last equation is, in fact, the one which is simulated
in usual MC studies of the dynamics of a system: as Choi
and Huberman assert, in a computer, time can only be
implemented by discrete processes which correspond to
steps of a program.

Besides this discrete nature of time, a computer simula-
tion also incorporates as an integral part of the model the
algorithm one chooses for updating the configurations of
the system. In the course of the simulation one actually
has

(4)

where Q(a'~a;t jr~c) is the probability that in the MC
step between t and t+5t the updating of the configura-
tion o' was attempted in the (configuration-space) direc-
tion which leads from o' to o. A different time scale,

r~c, is used to adjust the evolution of the system so that
5t &~~c, where 5t is the time wasted for the real system
to evolve according to the algorithm in a MC step, i.e., the
evolution is retarded (or accelerated) in such a way that it
can be adequately followed by the computer (this will be-
come clear in the example below).

From Eqs. (3) and (4), in a MC simulation the dynam-
ics is then governed by the effective DTME:

P(o,t+5t) P(o, t—)

~'~y +MC
co o' ~o",

+MC
0 o' —+o;

~MC
P(o', t) P(a, t) g-
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which is supposed to approximate (2) [and also (1)]. This equation clearly shows the importance of choosing an adequate
updating algorithm in the study of kinetic processes, a point which has been previously stressed by Gawlinski et al. "
However, these authors give only numerical evidence to favor or discard different algorithms for a particular system,
without attempting any general proof.

III. MONTE CARLO DYNAMICS OF SPIN SYSTEMS

For a general Ising spin system which can only flip a single spin during a MC step, one has

Q o' a", =QQ —ak, g5
&MC 7'MC

teak
f t

J J J J

where Q(ak, t/r~c) is the probability of choosing the kth spin for a spin-flip trial at time t.
Calling ai(ak)/r~c the (t independent) flipping transition rate for the spin ok, from Eqs. (5) and (6) the effective

DTME is

P(a, t+5t ) P(a, t)—
N

=X
k=1

Ci)( —0'k )Q —ak,
MC ~MC

P(o1, . . . , —ak, . . . , aN, t) —P(o, t) g t0(at, )Q ok,
N

k-I +MC ~MC

The selection of the active site in a given MC step may be made randomly or by proceeding through the lattice in a
regular fashion. In the first ease, in which

J

0 ok,
+MC

t+(n 1)5t—0 o.k, =5k„, n =1,2, . . . , N
&MC

Eq. (7), with 5t/(Nr&c) = Lit /r, shows that the MC simulation with random updating is a faithful realization of (at least)
the discrete-time dynamics (2) of the real system.

For the sequential updating, one has instead

and Eq. (7) gives

P(a, t+n5t ) P(o, t+(n —1)5t)—

~( —an )P(al, . . . , —an, . . . , aN, t+(n —1)5t)
5t

co(an)P(a, t+(n —1)5t) . (10)
+MC
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Summing these N equations one obtains

P(a, t+N5t) P—(o, t) = g
gg

—} +MC

t
co{a„)P(o,t + (n —1)5t),co( —o„)P(oi, . . . , —a„,. . . , a~, t+(n —1}5t)—g

g =} +MC

which coincides with the DTME discussed (regardless of the updating algorithm) by Choi and Huberman. i As these au-
thors pointed out, although one could set N5t/vMe ht——/r, the Eqs. (2) and (10) would still differ in the time arguments
of their right-hand sides, which leads them to conclude that the dynamics in a MC simulation of a many-body system is
in fact much more complex than that corresponding to a discrete-time evolution, and, of course, also much more com-
plex than the continuous-time dynamics. This remains true for sequential updating, and explains why in Ref. 4, using
this procedure for updating spins, a behavior not in accordance with the Allen-Cahn law for the growth of domains in
rapidly quenched systems was found I.t must be stressed that a random updating gives the correct behavior, in agree-
ment with the conclusion following Eq. (8).

It is also possible to consider a simultaneous (within a MC step) upgrading of all the spins, in such a way that the same
initial configuration is used for computing all the transition probabilities. This procedure has been proposed in Ref. 2 as
likely to be much closer to the true dynamics than other algorithms because it closely resembles Eq. (2). In that case, in-

stead of (4) one has

P(o, t+5t
~

o', t)= g 1 co(—a) g co( —o )
5t
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Multiplying both sides of this equation by ok and summing over all the configurations o one obtains

&ok, t+5t &
—&ok, t &

= —2 &akco(ak), t &,
t

~MC

where &ak, t & =g akP(a, t) is the kth spin magnetization. This is the same result one would have obtained from (2)
wltli kt/'r=5t/7 Me. However, for the spatial correlation &aka„t&,(11)gives

'2

&a,a„t+5t& &oko„,t & = —2&a,a„—[co(ak)+a)(a„)],t &+
2 t

~MC +MC
&aka, a)(ak)to(a, ), t &

where the symbols g{,. )
and g(.+} indicate products over sites i and j for which a; =a,' and aj. = —aj, respectively.

The following DTME is then obtained from (3):

which differs in the last term of the right-hand side from
the corresponding discrete-time result. Thus only the
time-evolution of the magnetization is faithfully repro-
duced for the algorithm in discussion and then it is not
clear which could be the practical interest for its im-
plementation.

Finally, it is interesting to point out that Eq. (7) could
be interpreted, for a general Q(ak, t/~Me), as the DTME
associated to the system evolution in contact with
an external (spatially and temporal) varying heat bath,
with perhaps a small fluctuating local field if
II{ak t/&Me)&&( —ak t/'rMc) From this pomt of view,
the sequential updating equation (9) would correspond to
a sort of heat wave acting on the spin system.

IV. EXAMPLE: ISING SPIN CHAIN

1 1—~(ak) = 1 — ak(ak+i+ak i)
1 21 2

k=1,2, . . . , N (y(1) . (12}

The dynamics of this model can be exactly solved in its
continuum and discrete-time versions, thus providing a
complete check by comparison of these analytical results
with the corresponding ones in MC simulations with dif-
ferent updating algorithms. Only the relaxation of a
single-spin magnetization & ok, t & and the average magnet-
ization &o, t&=gk&ak, t&/N from their initial values

&ak, 0&= &a.,0&=1 will be considered in the following.
Note that although periodic boundary conditions are im-
posed, &ak, t & and &a, t & do not agree for the sequential
updating.

Glauber's solution for the continuous-time ME gives

Consider a linear Ising chain vnth periodic boundary
conditions and Glauber's single spin-fiip transition rate:

&okt&=&a, t&=exp —(1—} )—
'T

(13)
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The time scale r is, in this case, the relaxation time of a
single spin in the presence of the heat bath which induces
random spin fiips. The net effect of the spin interactions
in the linear chain is to produce a larger effective relaxa-
tion time rl(1 —y).

Taking into account Eqs. (8) and (12), for random up-
dating the DTME (7) gives

(ok, t+St)=(o, t+St)= 1 — (o,t),(1—y)5t
&&MC

1.e.,

(hark, m(NSt)) =(o,m(N5t))

(1—y)5t=exp. min 1— (14)

which coincides with (13) when

(1—y )N5t (1 y)5t-=ln 1—
&&MC

+0( 1 lN) . (15)
+MC

This equation gives, regardless of what one takes as a mi-
crostep 5t, the connection between r and rMc as to recover
the true continuous dynamics.

For sequential updating, Eqs. (10) and (12) give

jeff
FIG. 1. Average magnetization per spin as a function of time

in units of the effective time scale ~,fq ——~/(1 —y). Dots (crosses)
indicate MC results with random (sequential) updating of the
spins. The solid line is the exact continuous-time solution of
Glauber; the dashed line is merely to guide the eye. In the nu-
merical simulations, y=0.2 and 5t/~Mc ——0.4; Eq. (15) then
gives 5t =0.113m,g, which implies t /~, qq-0. 338NMc„where
NMc, is the number of Monte Carlo steps per spin.

(irk, t+NSt ) —(ok, t) = [(o'k+~, t+(k —1 )5t }+(trk „t+(k—1)5t ) ]— (ok, t+(k —l)5t ) .
2+MC ~Mc

This equation, together with the conditions

(ok, t+NSt), k &n
crk, t+n5t ) =

(ok, t), k)n
leads to

(o„t+N5t)=(1—a)(o&, t)+br (a„t)+(o„,t) j,
k —2

(o„,i+NSt) =(1 a+b') (ok, t—)+ g b "(ok „,t)
n=1

(16a)

+(1 a)b '(a), t }+—b(ok~), t)+b "(crtv, t) (2&k &N —1), (16b)

(o„,t+N5t) =(1—a)b(l+b" ')(o.„t)+b'(o„i)
+(1—a+b ) g b "(oN „,t)+(1—a+2b +b )(os,t),

n=l

where a =StlrMc and b =yStl(2rMc). These recursion
relations are overly complicated to have (o, m( N5t ) )
solved as a function of (o,0) and m. Nevertheless, from
its structure it is clear that many different time scales are
competing so as to produce a complex behavior that in
any case reproduces the simple exponential decay (13).

To give numerical support to the above results, MC
simulations have been performed with random and
sequential updatings for a "triangle" of interacting spins,

which correspond to N =3 in Eqs. {14)and (16). Taking
5t/&MC ——0.4 and @=0.2, averages over 10 —10 runs,
from the initial ordered configuration, give, for both algo-
rithms, values near three digits in agreement with those
obtained, respectively, from (14) and (16). Figure 1 shows
a plot of these results together with Glauber's
continuous-time solution (solid line). The time scales are
related by taking 5t ix=0.141, as given by (15). Note that
the results for random and sequential updatings do not
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agree over many times the relevant time scale for the ef-
fective relaxation process r,tt=r(1 —y). For the small
system considered even the gross features of its
evolution —such as the average magnetization decay —are
sensitive to the updating procedure. For larger systems
one expects these gross features to be less modified by the
algorithm used but, certainly, fine details of the physics
involved may be affected by it.

As a final remark, note also that from Eq. (12),
ri =St/(2iMc) (=0.2 in this case) is the transition probabil-
ity for a spin ok with its neighboring spina antiparallel
(ok+i ———

hark i). More generally, for an arbitrary spin
system with Glauber s transition probability, ri is the tran-
sition probability for spin with no nearest-neighbor in-
teraction energy. So this value is an indicator for the ac-
ceptation rate of spin fiippings and it is convenient, as a
practical rule, taking it near 0.5. Then, remembering the
relation following Eq. (8), it can be seen that for this value
MC simulations with random updating approach the
continuous-time dynamics up to terms of order
dt/r =2'/N= 1/N, which is the general belief.

Of course, the above discussion does not take into ac-

count the problems encountered near critical points of a
system (y=l for the linear chain), where its dynamical
evolution is very slow (critical slowing down). '

V. CONCLUSIONS

In this vrork I have derived the DTME which governs
the dynamics in a MC simulation. This equation clearly
shows the importance of choosing an adequate updating
algorithm in the study of kinetic processes.

By specializing this DTME for a general Ising spin sys-
tem, it has been shown that a similar equation recently
proposed by Choi and Huberman is only valid for
sequential updating of the spina. It also provides a
theoretical explanation for the different rates of domain
growth in rapidly quenched systems, recently observed by
Gawlinski et al. in MC simulations with distinct updat-
ing algorithms. All the analytical results obtained here
have been consistently checked by the numerical study of
an Ising spin chain with Glauber's transition probability
and random and sequential updating algorithms.
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