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%e study the extent to which excluded volume determines the percolation threshold for permeable

elements in the continuum. An expansion due to Coniglio, De Angelis, Forlani, and Lauro exploits

a similarity between the statistical mechanics of hard particles and statistics of percolation of perme-

able objects. This expansion shows that the expectation value of the excluded volume completely
determines the threshold at lowest order in element density. Permeable rods in the continuum may
be analyzed with the help of Onsager's treatment of virial coefficients for hard rods. Systems of
rods provide cases in which higher-order terms will alter the proportionality of threshold to the in-

verse of the expected excluded volume and cases in which this proportionality remains exact.

I. INTRODUCTION

Continuum percolation is appropriate for discussing the
connectedness of systems of elements whose positions are
not constrained a priori to coincide with the sites (or
bonds) of a regular lattice. A natural application is to
complex fluids; for example, the critical behavior at a
point of gelation. ' In the past dceade, Monte Carlo deter-
minations of the critical percolation density pz for various
simply shaped elements have been performed. " This
paper addresses the dependence of this threshold on the
excluded volume of the elements. (The excluded volume
around a permeable element is a figure whose perimeter
consists of all loci of a chosen point on a second element
such that the two elements just make contact. ) A brief re-
port of the results of Secs. IV—VI was made in letter
form. s The present paper contains the detailed proofs of
these results and places them in context as part of a gen-
eral method for finding pz as a configurational average.

We will rely on an analytic expression for p~ developed
by Coniglio et al. ' This is a Mayer-type expansion in
the density of elements which is based on earlier work by
Hill. An alternate analytic expression which determines
cluster statistics and critical concentrations is due to
Klein; it is an extension of the q~1 Potts-model formu-
lation of Kastaleyn and Fortuin. ' (Both of these
methods permit the formal introduction of an interaction
between the elements. ) A dependence of the second virial
coefficient on excluded volume was first discussed by On-
sager. " In Sec. II we show that the series for p~ verifies
an informal argument of Sinai quoted by Shklovski in
Ref. 12.

The case of percolation of parallel" elements with no
orientational disorder, which is the subject of Sec. II, is of
limited interest, though it is relevant to systems capable of
nematic ordering, such as liquid crystals. For simple con-
vex figures oriented parallel to one another, volume and
excluded volume differ only by a dimensionally dependent
factor. However, this is not true of the expectation value

of excluded volume in a system with, for example, orien-
tational disorder among elements. A proportionality be-
tween percolation threshold and the inverse of the expect-
ed excluded volume for elements with orientational disor-
der has been demonstrated in a simulation of a capped
cylinder system by Balberg et al. ' An expansion for the
critical density can be written for this disordered system
(Sec. III). The lowest-order term in this series predicts the
dependence seen by Balberg, but in this case it is not true
that all terms in the density expansion scale with the in-
verse of the expected excluded volume between two ele-
ments; higher-order diagrams involve expectation values
of multiple, coupled volumes. However, s one sees that in
the limiting case of very slender capped cylinders, the per-
colation threshold is inversely proportional to the expecta-
tion value of the excluded volume.

II. PARALLEL, MONODISPERSE,
PERMEABLE ELEMENTS

Suppose that we seek the percolation threshold for a
collection of permeable objects which will be placed ran-
domly in a space of arbitrary dimensionality. We can de-
fine an effective interaction as follows:

+ 0 r within excluded volume about origin,
Q r

00 otherwise,

0() r within excluded volume about origin,9
0 otherwise .

%'ith

f+(r)—e
—PQ (E)

fo(r) e —PQ (l)
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we have

+ 1 r within excluded volume,r
0 otherwise,

P(1 2) e
t" (ri2~ 1+gP m

—1 r within excluded volume,
I'

0 otherwise .

f(r), the Mayer f function, is defined so that

and thus f(r}=0 for all r. The interaction (1) may be
compared with those in Hill; it expresses the fact that
two elements are considered part of the same cluster if the
center of one is located within the excluded volume of the
other. This means simply that the actual volumes of the
two elements overlap. However, (3} sets no energy price
on this overlap. In a sense, the connectedness statement,
(1), defines the excluded volume for a chosen system. A
set of elements and their excluded volumes (actually, areas
in this case) are drawn in Fig. 1. A property of the ele-
ment of Fig. 1(c) is that its excluded volume is not related
to its volume by a simple proportionality. We have

A =2',
while

A,„,=2L +6' .

Thus, excluded volume and volume scale differently with
the two parameters, e and L, which identify the element,
even in the absence of any anisotropic placement of these
elements in the plane.

We now implement a virial expansion for the pair con-
nectedness P(1,2) (i —=r;), defined such that

p P(1,2)dridr2

is the probability that particle 1 is in dri and 2 is in dr2
and the particles are connected (i.e., members of the same
cluster). p is the mean density of elements. Coniglio
et al. find that

7/

~c
Y~ W/PpxA

viirtiu~

(
I

I
I

where ri2 =—ri —r2. The P~ z represent diagrams analo-
gous to those in the virial expansion for pair correlation. '

In that expansion, there appear only "stars"; these are dia-
grams in which each vertex (particle coordinate} is con-
nected by at least two independent paths made up of f
bonds to every other vertex. The diagrams in (6}are made
up of all possible combinations of f+ and f' bonds with
the following prescription: The P 2 assume the topology
of stars with the addition of a bond between 1 and 2. The
P+2 are defined similarly, save for the restriction that
there is at least one path off+ bonds between 1 and 2.

A certain subset of the diagrams of (6) will be of use in
calculating the percolation threshold. These comprise the
"direct pair connectedness. " They are denoted C+(1,2)
and can be defined from the Ornstein-Zernike-like relation

C+(1,2) =P(1,2) p f—C+(1,3}P(3,2)dry .

If we call a diagram "nodal" if all paths from vertex 1 to
2 pass through at least one unique intermediate point,
then C+ will be the subset of nonnodal diagrams connect-
ing points 1 and 2. C+ determines the critical percolation
density, for

S =1+p P ri2 r~2 ——1+pP 0

where S is the mean cluster size and the tilde denotes the
Fourier transform. From (7),

C +(k) =P(k) pC +(k)P(k—),
so that

S= 1

1 —pC+(O, p)
Therefore

pp
——[C +(O,p~ )]

i.e., pz is the density where the m.ean cluster size S be-
comes infinite.

For example, the density expansion for C+ begins

C+(O,p) =C 2+(0)+pC i+(0)+p'C4 (0)+ .
, (1o)

with

fb)

FIG. l. Excluded volume {or area in two dimensions) around
a figure is bounded by a perimeter consisting of all possible loci
of the center of a second figure such that the two figures just
make contact. {a)The excluded area around a circle of diameter
L is a circle of diameter 2L. {b) The triangle has an excluded
area of (3V 3i2}L~, 6 times the triangle area. (c} The excluded
area is 2L +6Le. Since the area is 2Le, the area may vanish
while the excluded volume remains finite.

C p+(0}= .—--.,

C3 (0)= '

C +(())

t
+ +2 ~---'4 Z
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where

denotes f+(r;~),
denotes f*(r;1),

and we integrate over all black vertices and over one of
the two white vertices. ' We have departed slightly from
the notation of Ref. 6 by removing the p dependence from
C „+and writing it explicitly in (10).

Armed with this expansion, one may look order by or-
der in density to extract the excluded-volume dependence
of p~. To zeroth order in density, from (3) and (10),

C p+ —— f+(rii)dr]3 —— drii ——V,„,. (12)
0 exc

To this order, one approximates the probability that
two elements are connected with the probability that they
overlap directly. Equations (9), (10},and (12) imply that
to this lowest order pz

-—1/V,„,. For many regular, con-
vex elements of volume V (those called "centrosymmetri-
cal" by Onsager") in a given dimension, this approxima-
tion predicts critical volume fractions, P~—= Vpz, which
are identical. For ellipsoids, cylinders, and regular po-
lyhedra with inversion symmetry, this value is —,'. For the
d-dimensional analogs of these figures it is 1/2 . Empiri-
cally, this underestimates pz, which is expected since
one overestimates C +(O,p).

To the next order,

C 3'= —f, f'(r»}f'(r»}f'(r33}«iz«i3 ~

It is straightforward to show that (13) can be written

+ 2C 3 = ~exck3

(13)

where k3 is a number invariant under any linear transfor-
mation on shapes of the percolative elements. The proof
is as follows: I.et A be a linear transformation on coordi-

nates, A: r~r', such that r =A,jrj. We operate with A
on each of the permeable volumes 1, 2, and 3, making a
consistent choice for the definition of the "center" of a
volume and performing any rotation demanded by A with

respect to that center. We note as T the operation of
transforming the volumes 1, 2, and 3 with A in this way.

This T is the "linear transformation on shapes" previously
mentioned, and under which k3 is to be invariant. Then,

TC 3'= —I, (f'}'(r»}(f'}'(r»}(f'}'(r33}«»«»

(15)

where (f'}+(r) is unity if r falls within the excluded
volume centered at the origin of a transformed volume
element, the magnitude of which is noted V,'„,and is zero
otherwise.

Since A can be decomposed into a combination of a ro-
tation and a dilation, we consider the serial effects of
these two operations on C 3+..

A rotation of each volume element by a uniform angle
Q about its center will clearly have no effect on this quan-
tity. %"e recall that each element, and hence the excluded
volume about each element, is assumed to remain parallel

By definition, (f')+(r')= f+(r). Substituting this into

(16) and noting that dr'J =(detA)dr j, we find

TC3+=(detA)'C3+ .

Since rotation matrices are unitary, we find (17) holds for

a general linear transformation A involving dilation
and/or rotation. Thus the two first terms of (10) are
found to scale upon transformation as

TC+ = V,'„,+ [(V,'„,)'/V2„,]C 3+:Vexck&+( Vexc ) k3 ~ (lg)

where ki =1, and hence Eq. (14). Any linear transforma-

tion on shapes, T, effects C 3+ by a factor identical to the
square of the rescaling factor for the excluded volume.
We conclude the argument by examining a general term,

t„,which contributes to C + in the expansion (10}:

t„=p + r J
+ rkI r&2 r&3 r&„. (19)

The i,j, . . . are some indices between j. and n; p is some
constant factor. This diagram is created from the
prescriptions (6) and (7), but there are two important
features of (19) for this argument: First, that one in-
tegrates over n ldistinc-t radii; the diagram is completely
connected. Second, the cutoff function for each radius is
some product off+ functions, each of which is a constant
(unity) over the excluded volume centered upon some ele-

ment. In this case, we can perform the transformation T
on the set of n elements as we did to derive (15) and (16)
to obtain

Tt„=(detA)"-'t„. (20)

Equation (20) will hold for all terms t„in C e+ so that we

may write C+ as

C (O„p)=V,„,+pV,„,k3+ . . +p 'V,"„,k„+i+
Then (9) becomes

V,„,1+ g ppV,"„,k„+3
n=1

(21)

The only way that (21) can be true, for example, for all
choices of V,„,for elements of a given shape, is if

pp =C~~exc ~ (22)

where C is defined in terms of integrals over f+ functions
by the recursive relation

to all others. The rotational part of T will merely reorder
the terms in the integral (13} as it rotates our reference
axes (the axes fixed on element 1) by Q.

If A consists of dilations (is diagonal), consider

transforming all vectors in (15) by A. This is just a
change of variable, so

TC 3 ——f (f'}+(r'„}(f' }+(r'i3}(f'}+(r33}dr'„dr~13.
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C = 1+ Q C"k„+2
n=1

(23)

Equation (22) is our desired result. As we have shown,
the constant C is invariant under uniform dilations and
rotations of the percolative elements. One may argue that

the set of transformations {T]is not very general, and are
not the most interesting for a system which is anisotropic
and/or polydisperse. Further, for this class of transfor-
mations, both V and V,„,scale with the determinant of
A; so one can make the parallel claim that C+ scales
with the rescaling factor of the volume itself. This will
always be true for centrosymmetrical objects and such
linear operators. However, in the following sections we
treat cases of operations which are interesting physically
and are not of this simple linear form. When applied to a
polydisperse or orientationally disordered system, the
volume and the excluded volume (actually an expectation
value for the excluded volume} scale quite differently. In
some cases, upon transformation the percolation threshold
scales with the inverse of the latter and an equation of the
form (22) holds. In some cases this is not so. It is the
behavior of the numbers k; under transformations which
scale V and V,„,differently, which is precisely of interest
in identifying the contribution of V,„,to p»; this could
produce, for example, the sort of scaling seen by Balberg
et al. '3' and Robinson. '

Existing data' [C=P»(V,„,/V)], indicates that, for
spheres, C=2.SO. For other convex shapes in three di-
mensions, C is exceptionally close to this value. This is
referred to as a "universality" by Balberg et al. 9 they do
state that it is approximate. Given the proximity of the
various Cs, the source of any discrepancy between C
values for similar shapes becomes of interest. Density
series indicate that such a discrepancy is a real effect. For
example, elements such as square and cube have manifest-
ly different values of k3. Further, one sees uniformly
higher values for cubes versus spheres, and square versus
circles, for coefficients of the density series of mean clus-
ter size calculated up to fifth order by Haan and Zwan-
zig. ' (Their series can be inverted and the terms reor-
dered to identify the coefficients C ~+. ) If we create, say,
a square and a circle which enclose equal volumes, the
average radial distance from the center of the square to its
border can be easily found to be slightly larger than the
circular radius (1.0172r). Percolation is facilitated by
enhanced overlap, so we might conclude that the "pointy"
square would percolate at a slightly lower density; analo-
gously, a parallelpiped percolates at a slightly lower densi-
ty than an ellipsoid of equal volume, as the trend in the
Haan and Zwanzig data would indicate. This intimates
that the "universality" is not exact.

A final comment in this section concerns an easy exten-
sion of the arguments above to the "inclusive figure" (IF)
convention. Rather than defining two elements as con-
nected if they overlap ["overlapping figure" (OLF)], we
may define them to be connected if the center of one lies
within the volume of the other. The terminology is due to
Pike and Seager. Skal and Shkilovski found the IF
problem to be most appropriate in describing the hopping

p»
——C'/V . (22')

Shklovskii' gives an argument due to Sinai which
predicts (22'} with C' invariant under linear transforma-
tions on the surfaces' bounding volumes. (The Coniglio
expansion confirms in a formal way Sinai s intuitive argu-
ment. ) In cases where percolation is of parallel, cen-
trosymmetrical figures, the constants C and C' are identi-
cal and (22) and (22') imply that

IF/ OLF 2d
Pp Pp (24)

One can trivially map an OLF problem onto an IF prob-
lem where the shapes of the included figures are the ex-
cluded volumes of the original problem. For example, the

permeable element of Fig. 1(b) has the shape of an equila-
teral triangle of volume V=V 3L /4. If these elements
are constrained to retain a fixed orientation, an element
has a hexagonal excluded volume of magnitude 6 V. (This
is an example of a simple shape which is not "centrosym-
metric. ") Then (22') and (24) imply that if we compare
OLF percolation of the triangles to percolation of hexa-
gons of equal volume V,

tfl/ hex (25)

Rigorously, the "pointier" triangle must percolate at a
lower density than the hexagon.

III. POLYDISPERSITY OR ORIENTATIONAL
DISORDER

In the preceding we looked at systems in which the per-
colating elements were centered at random, but allowed no
variation in either size or orientation. Suppose that we
seek the percolation threshold for a system of elements
vnth some randomness in either shape or orientation. We
can write a general expression for p» by letting u+&(r;J ) be
defined as in Eq. (1), except now a is an index which con-
tains information on the orientation and/or morphology
of the element at r; and P for the element at rj. This po-
tential is still zero within the excluded volume around the
origin and infinite elsewhere, but it is now the excluded
volume around an element of "type" a for an element of
type P. As in Eq. (1),f'& is f~~. We rewrite Eq. (3) as—

—Q p y —M~p
+f~p=e, f p e —1 . ——

Then (9) becomes

=1 g F(a, , . . . , a~)C+ „(O,p»),
(a,.

(27)

where F is the joint probability of observing the set {a;]

conductivity of a lightly doped semiconductor. If we
strike the words "excluded" from definitions (1) and (3),
we may use the Coniglio method to calculate p» for an IF
system. We mould then arrive at the conclusion

C+(O,p)= V+pV ji+ . +p" 'V"j„+i+
[where the j; are the counterparts of the k; in Eq. (21)], so
that
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of N states of the N elements in the system. For a per-
colation application, we assign states independently from
element to element, so Fbecomes g,. F(a; ).

The zeroth-order contribution to (C +
& is

(28)

In the polydisperse or disordered notation, we effect
changes in the percolating elements simply by changing
the distribution function F(Ia; j ). Thus an operation T
on the system may be thought of as working on F( Ia; j ).
The index a; can include a (d —1)-dimensional vector in-
dicating the angular orientation of an element with
respect to some Axed reference axes, can govern element
size, etc. Equation (28) states that the zeroth-order contri-
bution to pz will scale with any transformation on the
polydisperse or disordered system exactly as the expecta-
tion value of the inverse of the excluded volume will.

The challenge is to understand whether higher-order
terms concur with the previous result, or whether their
dependence of the parameters of F( I a; j ) may differ from

that of V,„,. One Ands that T commutes with the taking
of the expectation value of C+. That is, if (a; j are a set
of shape or orientation parameters which map to Ia,'j
under T, then

= g F'(Ia,'j)C(+,
(a,')

F(Ia; j)C(+,
)

(~;)

IV. RANDOMLY ORIENTED CYLINDERS
IN THREE DIMENSIONS

=0, otherwise . (29)

It is then the case that for cylinders of length L and caps
of radius r"'

V=mr L+4mr /3,
while

( V,„,&=8(V)+4L r(siny&, (30)

where y is the angle between the axes of two cylinders.
With (28) applied to (30}, the zeroth-order dependence of
pz on the parameters is mixed, but if r/L is small, then,
to zeroth order,

p 1/rL (siny& .

(Note that Coniglio s expansion makes no distinction be-
tween the threshold for percolation parallel to versus per-
colation perpendicular to the z axis. )

Now consider higher-order contributions to p&. We
look specifically at C 3+ for the system of cylinders. Such
a cluster integral, even before the expectation value is tak-
en, is notoriously difficult to calculate. 24 However, On-
sager has estimated the order of magnitude for such a
term. His estimate is given for an isotropic system of
rods, one for which 8& n/2 Ho——we.ver. , the geometry it
predicts seems to be appropriate also to the anisotropic
case, so long as 8 remains large with respect to r/L. To
greatest order in I this term behaves as

Consider the percolation threshold for a set of cylinders
capped with hemispheres in three dimensions. %e assume
that the axes are aligned (with respect to an arbitrary z
axis) at random according to a uniform distribution:

F(8)=1/28„, 8 in ( 8„—,8„)

( C3+ & -r3L3log(L/r) . (32)

since by definition F'((a,'j)=F(Iu;j). Thus if T is the
sort of linear transformation introduced in the preceding
section, then pz will again be rescaled only by the deter-

minant of the transformation. If T is not of this form,
whether ( V,„,& dictates the scaling of pz must depend on
the particular system one chooses and the particular
transformation one makes. This is elaborated upon in the
Appendix. Recently, Chiew et aI.2' have applied a
Percus- Yevick approximation to a system of binary
spheres and found that Pz is indeed independent of the
distribution function and equal to —,. However, this value
is quite distinct from Monte Carlo estimates ' of =0.35
for rnonodisperse spheres. Further, Chiew et aI. found
that Pz is dependent on the distribution if the wholly
permeable spheres are replaced by partially permeable
spheres (the permeable-sphere inodel of Ref. 23). In the
following two sections, we use the example of a system of
rods with variable orientations to show that it is only in
special cases that rescaling of the expected excluded
volume produces a resealing of the percolation threshold
by the same factor.

I

(V,„,&+ppgr L log(L/r)
(33}

The factor g includes expectation values over relative
orientations. Even if one ignores the slowly varying
dependence of the log(L/r) term, one Ands that there is
no nonzero value of g which allows pz —1/( V,„,&. To a
consistent order in r/I. , this would be

We continue to look only at the limit of slender cylinders;
Eq. (32) is true to lowest order in r/L. Briefly, the riL3
factor arises because, before the expectation value is taken,
a typical intersection of excluded volumes between ele-
ments I and 3 and between 2 and 3 will be a "thin" paral-
lelepiped of dimensions r L. The last integration, over
the excluded volume between 1 and 2, adds a factor of
rL [Eq. (31)]. The log(L /r) term arises from the process
of taking the expectation value; Ref. 11 contains a
rigorous exposition.

Equation (32) shows that, to this order in the density
expansion, p~ will not scale as 1/( V,„,&, for
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p —1/(Shirr L +4rL (siny ) } .

The succeeding terms in the series (9) make it clear
that, so long as all the terms do not vanish identically,
there will be a formal correction to the law p» —1/( V,„,) .
One can apply Onsager's geometrical insight in a rough
way to the higher-order terms in the expansion for ( C+ ).
At fourth order and beyond, the terms t„arevaried in the
number of elements whose volumes they couple. Since
terms at each succeeding order require successiuely one
further volume integral, and since each term beyond
second order has a minimum of one integral over the in-
tersection of inultiple excluded volumes, an upper bound
exists:

«.+„)(C,+)(.L')". (34)

This is an upper bound in the sense that certain terms
(those which are more tightly connected) will scale with
higher powers of r or lower powers of L. [Equation (34)
omits logarithmic factors, which will certainly be present
as well. ] Substituting (34) into the expansion for p» makes
the point that the threshold cannot depend only on the ex-
cluded volume if the series is to be good for all r and L.

An important observation concerning the case of isotro-
pic rods in three (and higher) dimensions is that in the
limit r/L ~0 all terms in the series for p» vanish in com-
parison to the first, (C2 ). In this limit, it is simply the
case that

p»—- 1/nrrL =1/( V,„,) . (35)

This prediction may be checked against Fig. 1 of Balberg
et al '3 The. region in which p» is fitted with a slope of
r ' extends from r/L approximately 0.1 to 0.01. A hy-
pothetical correction of order r/L is not especially small
in this range; nevertheless, Eq. (35}agrees with the figure
in this region to within 20%. This figure also shows the
crossover to r dependence as L ~0 and the capped rods
become spheres. In principle, the functional behavior of
p» in the crossover regime could be exactly determined
from a knowledge of the cluster integrals. In practice, ex-
act solutions of the integrals are too difficult to obtain, al-
though some information about the scaling behavior of
these integrals may be gleaned from the data in this range.

Recently, Williams et a/. have evaluated virial integrals
up to fifth order for thin rods numerically. While the re-
sults are preliminary, they seem to support the con-
clusion that all higher-order C,+ vanish in units of C z+.

Hence, Eq. (35) holds, barring any abnormal divergence of
the cluster series, Eq. (9). (Unfortunately we are so far
unable to show formally that no such divergence exists at
p». )

In conclusion, an expansion for p» shows that this
threshold has dependences on r /I. for the three-
dimensional stick system which cannot be accounted for
by the law p» —1/(V,„,(r,L,8&)). However, in the limit
r/L ~0, the formal corrections vanish term by term. In
this case the excluded volume hypothesis becomes exact,
and there develops a strict equality between p~

' and«...).

V. RANDOMLY ORIENTED STICKS
IN TV' DIMENSIONS

For a real system, the interesting (or realizable)
transformations may consist of a change in the distribu-
tion of orientations of the elements. Polarizable elements
in variable fields, nematically ordered liquid crystals at
variable temperature, are model systems for this sort of
transformation. We consider thin sticks in two dimen-
sions to test variations in orientational disorder. For a
monodisperse collection of sticks of length L, one has

(C+) =L. '(sin8„) . (36)

8i2 is the angle between sticks 1 and 2. Figure 1 of Ref.
19 contains a sketch of this parallelogram-shaped Y,„,.

Consider the simplest distribution which permits angu-
lar variation: sticks can lie at one of two angles, 8i or 82,
with respect to some y axis. We redefine the y axis to be
symmetric with respect to these two directions:

F(8)=p5 e+(1 —p)5 e, (37)

~( V,„,)sin(2Aa)/sin(2a) . (38)

This simple example has the property that the percolation
threshold is altered by the inverse of this factor, so

p» —1/( V,„,). The reason is as follows: The transforma-
tion on angles can be achieved by two successive opera-
tions performed on the terms of the series, Eq. (9). These

operations are reminiscent of the linear operations T of
Sec. II. However, they are not performed on the element
volumes themselves, but on the f+ functions in the ex-
pansion for p». The operations are as follows:

(i} Dilate the x axis of the relative coordinate r;J in each
f+ in the series for p» [e.g., in every term t„asin Eq.
(Al)]. (This transformation is similar to the "squeezing"
performed by Balberg et al. a difference is that, we do
not rescale the empty space between elements. ) We dilate
by a factor of tan(isa)/tana. Under this operation, the
series (9) predicts that the percolation threshold is reduced
by the factor p» p» tana/tan(4z), while the volume of
each parallelogram-shaped excluded volume is increased
by that factor. Because the sticks are of negligible width,
terms which involve the overlap of two parallel sticks do
not contribute to p&.

(ii) Contract each stick uniformly along both coordinate
axes. The transformation (i) sent sina~sina'=sin(Aa),
L +L'=L cosa/cos(A, a). —If operation (ii) contracts a
stick oriented at +4z by a factor cos(hz) /cosa, then

a'~a" =4z, I.'~L, "=L,
p»' ——p» [cosa/cos(4z) ] =p» [sin2a/sin(2hz) ] .

(39)

Operations (i) and (ii) transform the series (9) to the
series for the new system in which the orientation of the
sticks is rescaled but the lengths are left invariant.

with
~

8& —8i
~

=2a. Imagine changing the distribution
so that [F(8)]'=F(8/A, ); the transformed sticks are con-
strained to lie at aA, or —aA, . (Without loss of generality,
assume these do not exceed m/2. ) For this system

( V,„,) =L 2p (1—p)sin(2a)
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Though these operations will rescale stick width, for
sticks of vanishing width, this cannot affect p» [whose
leading dependence is, from Eq. (36), 1/L ]. Thus, for
widthless sticks, the rescaling of excluded volume should
completely determine the change in threshold. Monte
Carlo data' ' for the special case p = —, support this.

For a more general angular distribution, the case is not
so clear. We may choose a smooth distribution and first
perform a transformation such as (i) above. If, as in Ref.
16, one "squeezes" by a factor noted as P~~/Pi, the
transformed distribution admits a polydispersity of stick
lengths. Emgths are correlated with angles according to

L (Pi /Pt,
i
)

[sin 8'i+cos 8i(Pi/P)() ]'
(40)

F'(tan8' ) =E(tan8'(PJ /P([ ))

The transformed distribution has a threshold which is al-
tered by an anisotropy factor, p»=p»P~~/Pi. However,
there is no second operation on the f+ analogous to
operation (ii) above which will render the system mono-
disperse again [except for the inverse of (i)]. One cannot
alter the angular distribution of the original system for a
general F(8) and still retain monodispersity if one em-
ploys only dilations which act uniformly on each excluded
volume of the sum, Eq. (9). It remains an open question
whether a nonlinear operation which varies angular distri-
butions alone will alter the percolation threshold rigorous-
ly via the excluded-volume rule: p»

——p» sin8/sin8'. This
does not imply that the excluded-volume theory is not
useful for such sticks in two dimensions. Monte Carlo
data, s'b"6' for uniform, normal, and log-normal distri-
butions, indicate that at least an "approximate universali-
ty" holds.

Finally, it is straightforward to note that the threshold
scales with the remaining distribution parameter L, as
does the excluded volume. A uniform dilation such as (ii)
above takes L~A,L, (V,„,)~A,2(V,„,), and, as in Eq.
(39),p»-+p»/A, .

VI. STICKS IN THREE DIMENSIONS
WITH ORIENTATIONAI. CONSTRAINT

Boissonade et al. z6 performed a Monte Carlo study of
fibers which were centered at random, but constrained to
lie parallel to one of three mutually orthogonal axes. The
simulation was performed on a lattice; a chain of n sites
represented a fiber of aspect ratio n One con.sequence of
the lattice algorithm is that it blurs a distinction between
"permeable" and "nonpermeable" elements which is sharp
in the continuum. For example, one can calculate the lat-
tice analog of Ci (call it D2) by inverting a series for
the mean cluster size: $(p) = g, u„p'. Identifying
P-p-pn, we find

S(p)=1/(1 D2+p/n + .)—
with

D z =—', n + ", n ——', (——"hard"cylinders),

=2n i+ 6n —1 ("permeable" cylinders) .

In the "permeable" case, one allows members of the same
cluster to have lattice sites in common, as well as contact
each other in the way of "hard" lattice cylinders. In con-
trast to Eq. (41), the continuum C 2+ will vanish for a per-
fectly hard object, as will all C +. (Hard objects present a
vanishing phase space for overlap. } In conclusion, the lat-
tice algorithm of Ref. 26 corresponds to a continuum
problem with a hard core surrounding a permeable shell
of comparable size.

Boissonade et al. found the law

p, ~1/n . (42)

At lowest order in p, Eq. (41) supports this law and
predicts corrections to it which are lower order in n.
Since the generation of a finite number of terms in the lat-
tice series cannot ensure the applicability of Eq. (42), we
consider the analogous continuum problem. For perme-
able rods, or for rods with a hard core and permeable shell
of comparable width, which are constrained to lie perpen-
dicular to one of three coordinate axes, only a fraction of
the diagrams in Eq. (27) will contribute to the slender-rod
limit. For the first diagram of Eq. (11) [whose configura-
tional average is Eq. (28)], one finds

&
C+ &= ', 4»L'- (43)

to lowest order in r/L. Six diagrams of nine contribute
to this, and the remaining three, for which the two rods
are parallel, are of order r 2L. There is no contributing di-

agram corresponding to (Cq+), for Eq. (11) shows that
this diagram involves the pairwise overlap of three rods.
For this system, pairwise overlap of three rods can only
occur if there is also a three-way overlap. Such a diagram
will be of leading order r L' and, as in the case of Eq.
(32), will not contribute to p» as r/L~O (Diagram. s
with all three rods parallel with scale as r4L2. ) For
(Cq+), the leading contribution in r/L will arise from
the first two four-vertex diagrams which are sketched in
Eq. (11). Further, these contributions will only lead if the
configurations they describe consist of rods which are
pairwise parallel, and with pairwise intersections that
occur at right angles. Any such diagram carriers a com-
binatoric weight of ~, and will scale as r iL 6, or

In conclusion, diagrams contributing in the slender-rod
limit are the subset of diagrams of Eq. (10) for which
clusters of rods are (i) coplanar and (ii) have all intersec-
tions of sticks occurring at right angles. The coplanarity
of this reduced class of diagrams has an obvious property:
The operation L BAL which we applied to a two-
dimensional system at the end of Sec. V can be applied
here with the same result. That is, we imagine dilating by
A, uniformly along both axes in the plane formed by the
intersecting sticks in each particular diagram. Then we
see that to lowest order in r/L every diagram with i + 1

vertices which contributes is rescaled by a factor A, '.
Thus, (C~++i)-BA, (Cs++i); therefore p» —1/L .
Further, ~e can combine this operation mth a dilation
normal to the plane of intersection of the sticks in each
diagram. This gives the scaling of p» with the small di-
mension of the rods: p» —1/r Thus the contin. uum ana-
log of Eq. (42) will be
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pz —1/L r (44)

for tiMs system of rods with discrete angular orientations.
For rods with a m.oderate aspect ratio n, there must be a
correction to Eq. (42) which is lower order in n (not
higher, as might be predicted from Ref. 27). The small-n
region of Fig. 5 of Boissonade et al. is consistent with
this correction.

VII. CONCLUSIONS

We have applied an expansion for pz developed by
Coniglio et al. to test the prediction that 1/( V,„,) com-
pletely determines p~ for a wide class of permeable ele-
ments. Recent results by Balberg et al. and Robinson
suggest this prediction for the case of percolation of an-
isotropic objects (cylinders). These objects allow one to
distinguish between the percolation threshold scaling with
volume and with excluded volume. We find that one may
write p~ =C/V,„,with V a constant under distortions of
the percolating elements which are global linear transfor-
mations of the excluded volume of the elements. Non-
linear transformations may yield a different result. For
the case of randomly oriented cylinders in three dimen-
sions, the rule p&(r,L)-1/( V,„,(r,L) ) is not strictly true.
However, it becomes true in the stick (r/L~O) limit,
where the proportionality becomes equality. For the case
of sticks in two dimensions, p~(L)-1/( V,„,(L) ) is true.
Further, p~(L, 8)-1/(V,„,(L,8)) is true for the special
case of F(8) a discrete distribution where 8 can take on
one of two values (or trivially, only one. ) It remains to be
seen whether this result holds in two dimensions for a dis-
tribution where allowed angles number more than two, in
particular, for a continuous spectrum of allowed orienta-
tions. The density expansion for p~ involves difficult in-
tegrals even at its second order. The hope is that one may
find symmetries which are upheld term by term under
nonlinear transformations of interest. Without requiring
that the integrals be done, this will determine the effect of
such transformations on the percolation threshold.

expectation value of the excluded volume, as does C2+.
Consider a general term which contributes to C +. It has
the form

Get] EJ l cx cx2 rlj ~~ jj

+f „(rkl) dr12d r13 drl (Al)

( V,„,)'= g J F'(a)F'(P)f+~(riz)dr, z
—k( V,„,) .

a, P

We have explicitly written all f+ functions which show a
coupling of i to any other element; there are m such ele-
ments and they are noted as Ij;I. If the integral over ri;
is performed first, one first calculates the excluded
volume of a type-a; element around a type-a~ one for all j
in the set Ij;I. Then one takes the intersection of all such
excluded volumes, each of which is centered at element j;.
If we continue to integrate (Al), this time over any one of
these rj, we calculate what we may think of as an "effec-
tive" excluded volume for this element, ji, say, with
respect to each of the remaining n —2 elements to which
it is coupled. We say "effective" because we must weight
each excluded volume with the result of the original in-
tegration which has a dependence on rj . If we continueJ)'
to integrate, as each coordinate is integrated out an inter-
section of effective excluded volumes is calculated, and
they are "effective" since the integration variable is
weighted by a function of itself and the remaining vari-
ables. This function is a nontrivial result of the previous
integrations. In the case of parallel, monodisperse ele-

ments, we showed that if one operates with T linear, each
integration involves accruing an additional factor of detA
and, hence, Eq. (20). However, suppose we perform some
more general transformation on the distribution F(a) so
that the excluded volume between two elements is res-
caled? Then we have
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APPENDIX

We will argue that pz may receive contributions from
terms which do not scale as an appropriate power of the

If F~F' is quite general, there is no compelling reason
for the term (A 1), upon averaging with the weight
F'(a ) iF'(a„),to scale as k" ' times its former value;
the expectation value for an intersix:tion of "effective" ex-
cluded volumes can depend on the transformation in a
very different way than would the expectation value of a
single, isolated excluded volume. Therefore, when these
terms are summed in the series (9), there is no requirement
that an excluded-volume "universality" will hold.
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