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Prediction of chaos in a Josephson junction by the Melnikov-function technique
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The Melnikov function for prediction of Smale horseshoe chaos is applied to the rf-driven Joseph-

son junction. Linear and quadratic damping resistors are considered. In the latter case the analytic

solution including damping and dc bias is used to obtain an improved threshold curve for the onset

of chaos. The prediction is compared to new computational solutions. The Melnikov technique pro-
vides a good, but slightly low, estimate of the chaos threshold.

I. INTRODUCTION

For some years the topic of chaos in the rf-current-
biased Josephson junctions has attracted much interest.
The first papers in that field were probably the qualitative
work by Belykh et al. ' and the numerical work by Huber-
man et al. Since then a number of authors have made
numerical calculations, electronic simulations, ' and
to a limited extent experiments on real junctions. '

One of the things that characterizes almost all this work
is the lack of analytical methods to predict the onset of
chaos. This situation was recently changed by the analyti-
cal works of Genchev et al. ' and Salam and Sastry, "
who used the method of Melnikov integrals' 1' to
predict regions in the parameter plane where chaos
occurs. Their work is in some sense an extension of the
early work in Ref. 1 on the shunted-junction model, and
in the same spirit equations are derived for various re-
gions of the same quahtative behavior. Together with the
work of Kautz and Monaco it is the first step towards an
analytical prediction of chaos in the rf-driven Josephson
junction.

In this paper we review the results of Salam and Sastry
from the point of view of Josephson-junction applications.
For a detailed mathematical treatment we refer to the
original mathematical literature. ' ' Further, we extend
the method of Melnikov functions to predict chaos in a
Josephson junction with quadratic damping. This latter
model —unlike the model with a linear resistor —has the
advantage that analytical solutions are known in the ab-
sence of an applied rf signal, and the method of Melnikov
functions requires fewer assumptions. For both models
the analytical predictions are compared with numerical
simulations.

The paper is organized in the following way: Section
IIA discusses the application of the Melnikov method to
a Josephson junction with a linear damping resistor. Sec-
tloil II B dlscllsscs tlic case of a Joscphsoil juilct1011 w1tll a
quadratic quasiparticle I- V curve. This model is interest-

ing for two reasons: (i) For high temperatures quadratic
damping provides better agreement with experimentally
measured I-V curves than linear damping. (ii) A full
analytical solution to the equation with quadratic damp-
ing is known. Consequently, the Melnikov technique for
the case with an applied rf signal is more accurate than
the corresponding case with linear damping. Finally, Sec.
III contains our summary and conclusion.

II. THE rf-DRIVEN JOSEPHSON JUNCTION

In the following we shall consider systems of ordinary
differential equations of the form

dX =hp(X) +Eh i(X,t,e),

where X=(g,y), hp=(fp, gp), and h| ——(f|,gi).
The analytical expression for the Melnikov function for

systems of type (1}is2'

M(tp}= J hp(Xt, (t —tp)) hh)(XS(t —tp), t)
f —fo

)(exp — tr D„X~ s s

(2)

where Xk denotes the homoclinic orbit. Here the wedge
product is defined by Xh Y=X1F2 X2F1 and —D„
denotes the partial derivative with respect to X. It is im-
portant to notice that in order to apply formula (2) it is
necessary to know the so-called homoclinic orbits ' for
the unperturbed system (c'=0}.

The Melnikov function is proportional to d(tp), which
is the separation between the unstable orbit X"(tp, tp) and
the stable one X'(tp, tp) (sin: Fig. 1}. If M(tp) has a simple
zero and is independent of e as in (2), then the local stable
and unstable manifolds intersect transversally. The pres-
ence of such intersecting orbits implies that the Poincare
map has the so-called Smale-horseshoe chaos. ' A Smale
horseshoe contains a countable set of unstable periodic or-
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The heteroclinic orbits for the system [Eq. (4)] are given
by

Ps(t —to)=+2tan '[sinh(t t—o)],
y„(t r,—) =+2 s~h(t t,—) .

FIG. 1. Homochnic orbit (dashed curve) and its perturbed
curve (solid curve). Distance between trajectories, d(to), is
showa.

The Melnikov integral, Eq. (2), for the system (3) is

M(t, ) = f+™y„(t t,—)[p+pi sin(Qt) ay—&(t to—)]dt

=p y& t t+ p& yI, t cosQt t

Xsin(Qto) —a f ys(t)dt .

bits, an uncountable set of bounded nonperiodic orbits,
and a dense orbit. It should be noticed that even though
the Smale horseshoe is extremely complicated and con-
tains an uncountable infinity of nonperiodic or chaotic or-
bits, it is not an attractor. However, it can exert a
dramatic influence on the behavior of orbits which pass
close to it. These orbits will display an extremely sensitive
dependence upon initial conditions, and exhibit a chaotic
transient before settling down to stable orbits of all
periods which may constitute a strange attractor. There-
fore the existence of the Smale horseshoe can be seen as
the first step towards a possible chaotic behavior. Thus
Melnikov's theory is expected to provide the lower boun-
dary of the chaos threshold.

In the following we shall consider two different cases.
(i) Linear damping, which is the most commonly as-

sumed case but for which an analytical solution to the un-
perturbed case (i.e., no applied rf signal) does not exist.
Thus the conditions for the use of Melnikov's method are
only approximately satisfied.

(ii) Quadratic damping, which in particular for high
temperatures is a closer approximation to the I- V curves
in certain cases. This model has the important advantage
that a full analytical solution in the absence of an applied
rf signal is known.

A. The Josephson junction mth linear draping

The equation for a current-driven Josephson junction
may be written'

Rearranging Eq. (7}, we find a necessary condition for
the intersection of the stable and unstable orbits to be'7'"

~
+p+4a/ir

~

cosh(n Q/2) &pi . (8)

According to the previous discussion, Eq. (8) is a neces-
sary condition for the existence of a Smale horseshoe.
[The sufficient condition requires the existence of simple
zeros of M(to). ] The formula deviates from results in
Ref. 18 by the factor 2/Q. The condition is given in
terms of the four parameters of the problem: p, a, Q, and

pi. Numerically chaos has been investigated in the Q-
versus-pi plane for fixed a=0.2 and p=0. Comparing in
Fig. 2 the theory [Eq. (8)] and the simulationsi4 fot
a=0.2, we find that Eq. (8) predicts too low a threshold
for chaos. Kautz and Monaco speculate that intersec-
tions between stable and unstable manifolds exist every-
where above the line given by Eq. (8), but that the result-
ing chaotic orbit is unstable with respect to the zero-
voltage state and thus not observed. The discrepancy may
be illustrated by considering the case of small Q. For
Q ~a the impedance of the capacitor is very large and the
circuit may be considered almost as if it were at dc. For
p=0 the system is then well behaved at least up to pl ——1

(shown as the dashed line in Fig. 2}. The trajectory in the

Performing the integrals of Eq. (6) with the heteroclinic
orbits, Eq. (5), the following result is obtained:

M(to) =+2np 8a+—2m pi sech(n Q/2)sin(Qto) . (7)

y'= —sinP+a[p —ay+pi sin(Qt)] .

Here the overdot indicates derivative with respect to
time, a is the constant damping parameter, p is the nor-
rnalized dc bias current, p& is the normalized microwave
current amplitude, and Q is the applied frequency nor-
malized to the Josephson plasma frequency. e is a pertur-
bative parameter that may eventually be set equal to 1,
since in this case Melnikov's integral is e independent.

The unperturbed system (e=O) is
4

3

A=a

I

0-
0.0

i

0.5
I

1.0
i

1.5 ~ 2.0

y'= —sing .

FIG. 2 Linear damping: threshold for chaos in parameter
plane for p =0, a =0.2. Solid curve: Eq. (8}. Triangles: numer-
ical results from Ref. 4.
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phase plane is an ellipse centered at the equihbrium point
(0,0). The voltage am~&litude is approximately proportion-
al to piQ/(I+a Q )'~, which tends to zero as Q~O.
For Q=a, the impedance of the capacitor is the same as
that of the resistor, and the capacitor can no longer be
neglected.

For p~O very few systematic investigations exist, be-
cause the parameter space is four dimensional; however,
Refs. 3, 5, and 6 contain numerical results, which can be
compared with results obtained here. The structure of Eq.
(8) is interesting and may be qualitatively understood
from the following simple arguments. The lowest thresh-
old of the applied rf current depends on the separation of
the dc bias current from the quantity p, =4a/m. From
other investigations it is known that p, is the lowest bias
current where rotating pendulum solutions exist; for this
particular value of the bias current the trajectories for ro-
tating and oscillating solutions of the pendulum equation
get close to each other in the phase plane. Thus, for bias
currents close to p, a very small perturbation may shift
the system from one orbit to the other, i.e., the threshold
for the applied rf current is lowest.

We may summarize the findings for the case of the
linear resistor by saying that numerically p should be
within a band of magnitude dy given by

dy =pi sech(trQ/2)

centered at p, in order to obtain horseshoe chaos. Figure
3 shows this band in the a-versus-p plane. p, =4a/m
separates regions of qualitatively different behavior in the
parameter plane of the unperturbed system. For p&p,
only oscillating solutions exist. For p, &p&1 oscillating
and rotating solutions exist, and for p&1 only rotating
solutions exist. For large a, p, is known to deviate from

p, =4a/rr as shown in the figure. How the chaotic band
develops for large a is outside the scope of the present pa-
per. Here we only notice that the chaotic band follows
the hnear portion of the p, curve for low a.

dp
+2ky =2p —2 sing

with the complete solution (assuming p & 0}

yt=p/k+4/(1+4k )'r cos(p+p)

+Ci exp( —2k(()), (12)

where tanp=2k and Ci is an integration constant to be
adjusted by the initial condition. Looking for the steady-
state solution at finite voltages the transient term vanishes
and Eq. (12) becomes

y'=yob +cocos((()+»] (13)

where po ——2k/(1+4k )'~ and yo ——k 'r . If the voltage
P goes negative, the damping term in Eq. (10), kP,
should be replaced by k ~P(((). However, the solution
to the resulting equation for P &0 is obtained by a simple
symmetry argument. We may note there that the parame-
ter po has the same physical meaning as the parameter p,
defined for the linear resistor. Inserting y =P and rear-
ranging, we may express the solutions to Eq. (13) in terms
of elliptic functions. z For p &po we get

((()+P)/2= am(u), =y'=ye(p+po)' dn(u) . (14)

Here am is the amplitude function and dn is the Jacobi-
an elliptic function of argument u =(yo/2)(p+po)' (t
—to} and modulus m =2/(1+p/po). The trajectory of
the solution, Eq. (14), is shown in Fig. 4 for p=po, and for
p slightly larger than po. To proceed we write Eq. (10) as
the two-dimensional vector field,

B. The Josephson junction with quadratic damping

If in the system (3) it is assumed that the resistance
varies with the voltage such that R =const/ V
=(fiy/2e)/V, one obtains, with the same normalization
as in the system (3),

P+k(P) +sing =p+ pi sin(Qt), (10)

where k =(yC) '. Unlike the case with linear damping
the exact analytical solution to Eq. (10) with pi ——0 has
been obtained. Introducing y =(() one gets

y'= —sing —kg2+p+eri sin(Qt) .
(15}

0.5 2

0.5 15

FIG. 3. Bifurcation diagram. Dashed curve: p, =4alm.
Solid curve: p, from numerical simulation. Crosshatched area:
region of chaos.

FIG. 4. Phase plane trajectories of Eq. {14) with k=0.1.
Upper curve: p =0.2. Lower curve: heteroclinic orbit for
p =po ——0.196.
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In the following we shall use the analytic solution, Eq.
(14), to obtain the transverse intersections of the stable
and unstable manifolds by finding the zeros of the Melni-
kov function. In order to do that it was noted in Sec. II
that it is necessary to have a heteroclinic orbit for the un-

perturbed system (e=O) connecting hyperbolic saddle
points. So we must investigate the fixed points of Eq. (13)
when p=po. The fixed points are situated on the P axis of
the phase plane (P,y). It is known' ' that the vector
field (P,y) should vanish at these points. This is found to
be the case (i.e., P and y are simultaneously zero) in Eq.
(14) for p=po. Further, we shall show that the equilibri-
um points of the vector field (y,y') [Eq. (15) with e=O]
are of the center type at

(c) (o)

0
0.0

I

1.0
I

20 0
FIG. 5. Quadratic damping: Threshold for chaos in parame-

ter plane [Eq. {24)]. (a) p=O, k=0.2; (b) p=O, k=0.1; and (c)
p=0.1, k=0.1. Chaos above curves.

(P,y) =( sin —'(p)+2nm, 0), n =0,+1,+2, . . . ,

dn(u, 1)=sech(u) and am(u, I)=gd(u), (19)

where gd(u) denotes the Gudermannian function. In or-
der to get more information on the behavior of the system
about the point p pp, and in order to use the simple func-
tions in Eq. (19), we rewrite Eq. (15) by adding a perturba-
tion term bp=p pp e(r—rp——) to ob—tain

y'= —sing —k({{t) +pp+e[r, sin(Qr)+(r rp)] . —

For @=1, Eqs. (15) and (20) are identical. For e=O we
obtain the following heteroclinic orbit by using Eq. (19):

[Ps(t),ys(t)]= t4tan '[exp(br/2)]

and of the saddle type at

(P,y}=(—sin '(p}+(2n+1)n, 0},
n =0,+1,+2, . . . . (17)

%'e restrict the discussion to the equilibrium points in
the interval

(18)

This means that we consider values of p such that p & 1.
For p=po we find from Eq. (14) that m =1, and the limit-
ing values of the elliptic functions are given bye

F, = f sech(bt/2) sin(Qt)

XexpI4k tan '[sinh(bt/2)]jdt

pi ) (p —pp)sinh(2irk)/kb(E) +F22)'~ (24)

The prediction for the onset of horseshoe chaos, Eq.
(24), is plotted in Fig. 5 as a function of Q for different
values of parameters p and k. Note that the structure of
Eq. (24) is similar to that of Eq. (8). In Eq. (24), pp has
the same significance as p, =4a/m in Eq. (8), and the
threshold rf current depends on the separation between p
and po

Alternatively, one might derive a condition for inter-
secting perturbed heteroclinic orbits by considering also
the loss and bias terms as perturbations and use the
heteroclinic orbit in Eq. (5) for insertion into the Melni-
kov function. The calculation proceeds in the same
manner as for the linear resistor and the result is a thresh-

I'2 —— sech bt 2 cos Qt

XexpI4k tan '[sinh(bt/2)])dt .

It is easy to see that the integrals, F~ and F2, are finite
and not zero. It is also possible to see that transversal
zeros for the Melnikov function, Eq. (23), exist. A neces-
ssry condition is

p n, b sech(br—/2)—J, (21)

where b =yp(2pp)'~ . The Melnikov integral is then given
by [Eq (2)]

~(ro) = f b sech[b (t —to)/2][p —po+ioi sin(Qt)]
f —fo

Xexp f 2kb sech{at'/2)dt' dr .

(22)

Evaluating Eq. (22), we find
~ 1

0

b)

M(to) =(p —po)sinh(2mk)/k

+pib [Fi cos(Qtp)+Ez sin(Qro)],

~here

(23)

FIG. 6. Quadratic damping: Threshold for chaos in parame-
ter plane for p=O. Solid curves: Eq. {25);dashed curves: Eq.
(24). (a) k=0.3; (b) k=0.1. Numerical results for k=0.1: Tri-
angles, chaotic solutions; circles, periodic solutions.
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Fig. 3. Here, however, the analytic expression for the po
curve is known [Eq. (13)]. For k~ ao it approaches unity
asymptotically. The band carresponding to chaos is given
by

hp=pibk(F, +F2)' Isinh(2n. k),
which is shown crosshatched in Fig. 7.

(26)

0.5-

z~r

0.5

FIG. 7. Bifurcation diagram. Solid curve:

po ——2k{1+4k')' ' as defined in Eq. (13). Crosshatched area:
region of chaos.

old condition given by

pi &
i
+p+2k

i
cosh(m'Ol2), (25)

which is identical with Eq. (8), except that 2k replaces
4alrr For sm. all values of the loss one should expect Eqs.
(24) and (25) to give identical results. In fact, the expan-
sion of Eq. (24) to first order in the damping constant k is
identical with Eq. (25). Equation (24) may be considered
a more precise condition since it is derived from the
heteroclinic orbit to the unperturbed solution when both
loss and bias are taken into account. Figure 6 shows a
comparison between Eqs. (24) and (25) for k=0.3. A
comparison between Eqs. (24) and (25) for k=0. 1 and
some corresponding numerical simulations are also
shown. We note that the Melnikov function gives too low
a boundary for the onset of chaos as in Fig. 2. An equa-
tion similar to Eq. (24) cannot be derived for the case of
linear damping, since the solution to the unperturbed sys-
tem is not known at present.

For the case of a quadratic damping term it is possible
to make a similar discussion as that in connection with

III. SUMMARY AND CONCLUSION

Chaos in the rf-driven Josephson junction was investi-
gated analytically by means of the Melnikov-function
technique. With a linear damping resistor only an ap-
proximate solution for the unperturbed phase plane trajec-
tary could be used in the Melnikov integral. For the case
of a quadratic damping term the analytic solution to the
unperturbed case has been used, and an improved thresh-
old curve for the onset of chaos has been obtained. For
both cases, however, the Melnikav prediction gives a
threshold somewhat lower than that found by direct com-
putation. That is because the Smale horseshoe, whose ex-
istence in the Poincare map is predicted by Melnikov's
theory, is not an attractor; indeed the set of points asymp-
totic to it will have zero measure. Thus the existence of
Smale horseshoe does not imply that typical trajectories
will be asymptotically chaotic. In fact, in some cases we
have transient chaos followed by asymptotically periodic
motions. However, it may happen that some of the orbits
constitute a strange attractor. Therefore the "presence" of
the Smale horseshoe is the starting point over which a sys-
tem can undertake some of the possible routes to chaos.
Apparently the method semis to fail for low applied fre-
quencies. Although the Melnikov technique seems to give
a good estimate of the chaos threshold, further work is
needed ta obtain a detailed analytical criterion.
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