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Hydrodynamic modes of superfluid helium adsorbed on Nuclepore
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A theory is presented to describe sound propagation in superfluid He adsorbed on Nuclepore, a
planar porous substrate. The theory predicts the dependence of the sound velocity on film thickness.
For thin films the sound speed is lower than on an equivalent nonporous substrate while for thick
films the reverse holds. The transition between these regimes occurs when the fluid in the pores
capillary condenses. The predictions of the theory are in qualitative agreement with the experimen-
tal results of Hallock and co-workers.

I. INTRODUCTION

In the study of superfluid helium films it is desirable
that they be formed on materials with large, well-

characterized surfaces. For this reason Nuclepore' filters
have been increasingly used in a variety of experiments on
films, e.g., specific heat, third sound, and NMR. Re-
cently, Valles et al. i have made extensive measurements
of third sound on Nuclepore that have revealed a rich
structure. The purpose of this paper is to provide a
theoretical bash for understanding these measurements.
In accomplishing this task we exhibit a formulation of the
description of the third-sound mode that is both elegant
and computationally powerful. The understanding which
this formulation gives of the behavior of the third-sound
mode in complex systems demonstrates the value of such
measurements as a probe of the underlying physics and
also as a diagnostic tool. As an example of the latter
point, a third-sound measurement at low- He coverage on
a highly disordered substrate may be used to measure the
surface area and as such is equivalent to a BET measure-
ment.

The outline of this paper is as follows. In Sec. II we

discuss the equilibrium distribution of He fiuid on a Nu-

clepore filter. In Sec. III we formulate the theory of the
sound velocity for a compressible ideal fiuid adsorbed on
a disordered substrate and apply this theory to helium on
Nuclepore. Comparison with experiment and a summary
are given in Sec. IV.

por in a sample chamber. The unsaturated vapor pressure
sets the chemical potential of the He in the sample
chamber and the film reservoir supplies the He atoms
necessary to bring the He distribution on the Nuclepore
into equilibrium with this chemical potential. We are in-
terested in the distribution of He fluid in the Nuclepore
as the chemical potential is varied and the He film thick-
ness on the upper and lower surfaces, h, increases from a
few atomic layers to more than 20 layers.

The distribution of He in the pores depends on the bal-
ance between the van der Waals force and surface tension.
For thin films the van der Waals attraction between the
He and the Nuclepore dominates, and we expect the 4He

to coat the walls of the pores with thickness, hz )h, as
shown in Fig. 2(a). In equilibrium, chemical potential bal-
ance between the surfaces and the pores [points 1 and 2 of
Fig. 2(a)] determines h and hz so that
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II. EQUILIBRIUM DISTRIBUTION OF 4He

ON NUCLEPORE
{b) g

Nuclepore filter, shown schematically in Fig. 1, is com-
posed of a polycarbonate plastic of thickness, l, perforated
with randomly distributed pores of areal density, A, , and
nearly uniform radius, R. The angle, 8, between the axis
of the pore and the normal to the surface is randomly dis-
tributed in the range 0~8~8 . To compare with the
experiment of Ref. 3 we take the values of the parameters
to be 1=10 cm, R =10 cm, A, =3)&10 cm and
8 =34'.

Consider a He film adsorbed on a single such filter in
equilibrium with a film reservoir and an unsaturated va-

FICi. 1. Nuclepore. (a) Nuclepore filters are characterized by
the areal density of pores, e.g., approximately 3X10 cm, the
pore radius, E.=10 cm, and thickness, d=10 cm. (b) A
He film covers the upper and lower surface of the filter to

height h and the surface in the pore to height h~. The pores,
with aspect ratio =28/d of about 10, have angular dispersion
of about 30' as suggested in (a).
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FIG. 2. Configuration. There are three configurations of the
4He film. (a) Configuration I, appropriate to thin films and
described by Eq. (2.1), involves chemical potential balance be-

tween point 1 and point 2 with h~ h until k=16. (b) Configu-
ration II, appropriate to capillary condensed pores and described

by Eq. (2.2), evolves as r evolves from R to + ao. (c) Configura-
tion III, a candidate for the behavior of the film as it evolves be-
tween configuration I and configuration II, has approximately
the same chemical potential as configuration II at r =R in-

dependent of I, see point 3 on Fig. 3,

p(R —h~ )

'3 3
Q a—a — =p= —a
h

"
h~

(2.1)

We have taken the van der Waals potential between a He
atom and the substrate to be V(z)=a„a /z . p is the
atomic density, z is the distance from the substrate mea-
sured in cm, h/a is the film thickness in layers (p=a
a =3.6X10 cm, a„=50 K for He on Nuclepore, and
o, the surface tension of bulk He, is 0.31 ergs/cm ). The
second term on the right-hand side (RHS) of Eq. (2.1)
comes from the change in surface energy that results from
taking an atom out of the He fiuid in the pore. The con-
tent of Eq. (2.1) is illustrated in Fig. 3 in which the left-
hand side (RHS) of this equation is plotted as a function
of h /a ( h~ /a). For very thin He films (points 1 and 2 of
Fig. 3) the van der Waals energy is much larger than the
surface energy and h hz.

As p and h increase, the van der %sais energy dimin-
ishes, and equilibrium is achieved by hz becoming increas-
ingly larger than h. The appropriate balance is displayed
as points 1' and 2' in Fig. 3. At points 1" and 2" when
@=pi-0.012 K (the surface height is approximately 16
layers and the pore height approximately 30 layers) con-
figuration I le~mes unstable and the pores fill spontane-
ously. Near points 1" and 2" the fluid in the pore is elast-

FIG. 3. Chemical potential. The chemical potential evolves

as the film thickness evolves. For thin films, when configura-
tion I is involved, h is a useful variable to describe the film; for

capillary condensed films, when configuration II is involved, r is
a useful variable to describe the film. Here, p is plotted
schematically as a function of h for 0 & h~ &R, for configuration
I, and as function of r for h~=R, for configuration II. The
amount of 4He in the sample increases continuously as one goes
from left to right along the horizontal axis.

ically soft and fluctuations away from equilibrium are re-
stored slowly, implying that the sound velocity will be
very small.

The equilibrium state of the "He for relatively thick
films is shown schematically in Fig. 2(b) and referred to
as configuration II. Here, the pores are filled and the film
profile at the ends of the pores has a radius of curvature
near the central axis of the pore given by r.

Again, the equihbrium configuration is determined by
chemical potential balance,

I' 't 3

—a — =p=-a 2a
(2.2)

pr

We shall not calculate here the shape of the surfaces at
the ends of the pores. However, it is clear that a stable
surface can exist only for r & R Thus, configu. ration II is
a possible equilibrium state for h & 16 layers and

p &pn= —2o/pR. For p slightly less than pn, equilibri-
um may also be achieved as shown schematically in Fig.
2(c) and referred to as configuration III. Here, the pores
are partially filled with end surfaces having radii of cur-
vature nearly independent of the filling fraction and ap-
proximately given by R. Thus, these configurations can
exist only over a narrow range in chemical potential be-
tween ply and pal. Note that pr&pIi&prrI so that for
some values of p, more than one configuration satisfies
chemical equilibrium balance.
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In the range of iu for which more than one configura-
tion is possible, the equilibrium state may be determined

by minimizing the grand potential,

Q (p)=E (p) —p&„(LM), (2.3)

where v denotes the configuration (I, II, or III), E is the
total internal energy which is the sum of van der Waals,
surface, and bulk contributions, and N is the total number
of He atoms. We find that for pir&)u&pr Qi&Qii and
when p m &p &pii Qi & Qrrr Thus as p as increased from
large negative values (thin films) the system resides in
configuration I more or less until iui is reached at which
point the pores fill. For p &iMi the system resides in con-
figuration II.

Configurations II and III are metastable in the regimes

pg (p /pe and @gal gp /pg, respectively, and we expect
hysteresis as p is reducixi from small negative values
(thick films). This expectation is borne out experimental-
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The discussion we have given here is somewhat dif-
ferent from the discussion given by Cole and Saam. This
is because Cole and Saam examined alternative configura-
tions for a fixed number of particles, whereas we are
choosing among configurations at the same chemical po-
tential. Thus, they compared energies, whereas we com-
pare grand potentials.

III. HYDRODYNAMIC MODES OP A
SUPERFLUID ADSORBED ON NUCLEPORE

For the purpose of discussing the long-wavelength,
low-frequency modes of a superfluid film adsorbed on
Nuclepore we consider the system to be two dimensional.
The superfluid is described by a complex order parameter,
g(r) which is a function of the position, r, in the plane of
the Nuclepore. The order parameter is taken to be coarse
grained over cells which contain many pores, so that the
number of pores in a cell ean be replaced by the average
number and the Nuclepore described by a homogeneous
two-dimensional medium. The order parameter may be
written in the form

Secondly, we assume that the phase evolves linearly from
one end of a pore to the other so that the superfluid velo-

city in a pore, v~ is given by

v~ =[v, (r~ ) ~ I]I,
where rz is the position of the pore and I is a unit vector
parallel to the axis of the pore. In Eq. (3.4) v„v~, and l
are three-dimensional vectors.

Both the equilibrium configuration of the superfluid
and long-wavelength fluctuations about this equilibrium
are determined by the time-dependent Landau-Ginzburg
equation

.~ Bg(r) 5Q[g;p, ]
Bt 5$ (r)

where Q=E pN is—the grand potential functional for
superfluid, the latter being in contact with a particle reser-
voir at chemical potential iu. For Q, we take

(3.6)

—,pm (h +A,h V/a T )v,=,
1

Vi})
1

207
(3.I)

where 6V is the volume of fiuid in a pore, A, is the number
of pores per unit area, and aT is the tortuosity, given by

where e(n} is the internal energy density. The kinetic en-

ergy term can be split into two terms depending on the
gradients of P and I, respectively. The former corre-
sponds to the classical kinetic energy of the superfluid,
while the latter is a quantum correction which is unim-
portant for long-wavelength phenomena and will be
neglected hereafter. The effective mass, m ', accounts for
the fact that the fraction of fiuid in the pores moves more
slowly than (A'/m)Vi)).

The effective mass ean be calculated by equating the
classical part of the kinetic energy in (3.6) to an expression
determined by (3.3) and (3.4),

1( =ye'& . (3.1)

The superfiuid areal density, n (r), which includes super-
fluid in the pores and on the two surfaces, is given by

n (r) = [X(r}] (3.2)

v, (r) =(fi/m)VQ(r} . (3.3)

%e assume that the coarse-grained order parameter
g(r) is related to a more microscopic order parameter
which correctly describes the three-dimensional velocity
field given by (A/m) times the gradient of the phase of
this microscopic order parameter. In order to relate the
microscopic phase to the coarse-grained phase we make
the following two assumptions: First, the microscopic
phase on the two surfaces is not significantly distorted by
the presence of the pores so that, for long-wavelength dis-
turbances, the superfluid velocity on the surfaces, v, (r) is
given by

A P (3.g)

~ ~ ~ ~ ~p(l ) is the probability of finding a pore with direction I,
and k is the direction of propagation of the disturbance.

From (3.7), we obtain

where n, =ph and n&
——pkh V are the superfluid areal den-

sity on the surfaces and in the pores, respectively.
The volume of fluid, EVi, in a pore in configuration I

is given by

6 Vi n.(2Rhp —h~ )1, —— (3.10)

while to a good approximation the volume of fluid, 6Vii,
in a pore in configuration II is just the volume of the pore
itself,

Pl
=(X2/P)(h+A, b V/aT) i=n(n, +np/aT}-i, (3.9)-
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Be
Bn

(3.12)

a Vn=~R'I

For a uniform distribution of pore directions with an-

gles from the normal less than 8,„=34', we have

aT ——16, independent of k.
The real and imaginary parts of (3.6) lead, respectively,

to the continuity equation and a force law for the super-
fluid velocity. These can be combined in the usual way to
form a wave equation with a propagation velocity, c,
given by

sound velocities divided by the thickness of the Nuclepore
and are thus of order 10 Hz or greater. These modes also
approach zero frequency as the instability is approached
and might be excited in the experiments of Ref. 3 very
near the instability.

Within the context of a hydrodynamic description of a
film in terms of the height Ii, and density p, there is also
an optical mode with out-of-phase fluctuations of h and

p. Such a mode would presumably have a long-
wavelength frequency of order c4/Ii. These modes should
have no bearing on the low-frequency experiments
described in Refs. 3 and 7.

This expression can be written in terms of the third- and
fourth-sound velocities, c3 and c4,

1 mBh
cia h Bp

(3.13)

1 ptl p
c4 p B)M

(3.14)

Combining (3.9) and (3.12) through (3.14), we obtain

1 n, n, nz
2 (n, +——nz/ar) 2+ 2+

c C4 C3 Cp

(3.15}

where cz ——c4 in configuration II, while in configuration I,
c& ss given by

1 m BbV
(3.16),, =~V Bp,

and corresponds to the propagation speed of a surface
mode of a film in the interior of a long tube of radius R.

For thin fllms, surface tension is unimportant, so that

cp —c3 Since n, and nz are comparable while c4 ~&c3

and aT »1, we have to good approximation, for thin
films,

c =c,(1+n, /n, )-'" . (3.17)

As the film thickness increases, the fluid in the pore be-
comes elastically soft and c&~0, so that near and below
the transition (p=p, t) the propagation speed approaches
zero.

In configuration II, c~ =cz, and nz &&n, while n~/aT
and n, are comparable so c may be greater than c3 al-
though less than c4. Physically this corresponds to the
fast propagation of the signal through the pores. The full
behavior of (3.15}is shown in Fig. 4.

Our two-dimensional description of disturbances of the
adsorbed film does not incorporate modes involving fiuid
motion in the direction perpendicular to the plane of the
Nuclepore. There are in fact several such long-
wavelength "optical" modes. One of these modes corre-
sponds to out-of-phase height fluctuations of the fluid on
the two surfaces of the Nuclepore. A second corresponds
to the amount of fiuid in the pores fluctuating out of
phase with the height on the two surfaces. At long wave-
lengths and away from the instability in the pore, the
characteristic frequencies of these modes correspond to

IV. DISCUSSION
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FIG. 4. Index of refraction. The index of refraction, q, is
plotted versus log&o{v, }, with ~, the time of flight on an other-
wise identical but nonporous substrate. v; is in @sec, and the
distance of travel is 0.635 cm as in Ref. 3 from which the data
{solid points) has been taken. The solid line shows the theoreti-
cal prediction. Other parameters are as given in the text, except
that R =0.13 pm has been used to account for a "barreling" ef-
fect in the interior of the pores {Ref. 1). The arrows show the
direction in which the data was taken, and the dashed line
marks the divergence in g at the instability of configuration I.

Experiinental data has been obtained from Nuclepore
filters with two different pore sizes, 8 =10 cm and
R =4&10 cm. For both pore sizes, ' the data shows
clearly three distinct regions, and the theoretical predic-
tions are qualitatively in agreement throughout (see Fig.
4}. For completeness, we include a plot, Fig. 5, of the
predicted sound velocity as a function of h, showing the
strong deviation from the h dependence of third sound
and the sharp transition to a fast mode propagating
through the pores.

For low- He coverages, the sound velocity is much
slower than that which would be found on a nonporous
substrate, c*, and the index of refraction,
rl=c'/c=constant&1. Physically, this is a consequence
of the increased amount of fluid, hV, which must flow in
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to and out of the pores as the wave passes. Since h~=h,
BV/Bh, and therefore i1, is approximately constant. At
high- He coverages, the pores are filled and c~ =c4 ~ c'.
Thus, there is a fast mode with i'd=constant ~ 1 in this re-

gime. For intermediate coverages, the experimental data
shows a complicated hysteresis effect. This has been anti-
cipated by our earlier discussion in that in this regime,
two very different pore configurations may achieve equili-
brium for the same surface He thickness, h. We do not
attempt to explain this phenomenon in detail, but only
point out that the theory predicts a high peak for ri in this
regime, and this is indeed observed.

In an actual Nuclepore filter, there will be a range of
pore sizes, as well as perhaps some complicated interior
structure, such as the intersection of pores. Thus the peak
in the data points in Fig. 4 should not necessarily be inter-
preted as the predicted instability of configuration I but
may instead correspond to a metastable state of the sys-
tern. Nonetheless, the qualitative agreement between
theory and experiment establishes the value of our
theoretical model in giving a simple physical picture and a
computational scheme for understanding a complicated
system.

FIG. 5. Third sound velocity. The log~o of the third-sound

velocity, c, is plotted as a function of log~o of the film thickness
in layers, h. The thin solid line is the prediction for a porous
substrate; the thick solid line is the prediction for a nonporous
substrate. The dashed line marks the divergence in g at the in-

stability in configuration I where c~0.
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