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Criticality and superfluidity in a dilute Bose fluid
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The crossover from ideal-Bose-gas behavior to nonclassical, XY-like criticality in a dilute, in-

teracting Bose fluid is considered in detail with emphasis on the superfluid density, p, (T), below the
transition. A general discussion of crossover scaling in constrained systems shows that p, and other
temperature-dependent thermodynamic functions at controlled overall density can be expressed in

terms of universal scaling functions. The finite-temperature Green s function formalism is used to
calculate the associated linear scaling fields and the crossover exponent exactly for all dimensionali-

ties d p2, scaling predictions, including logarithmic singularities just at d =3, being checked via
second-order computations. A mapping of the Bose problem onto the classical s~ spin model is
achieved which is asymptotically exact in the critical region. In this way, previously known

renormahzation-group results are used to calculate the scaling functions for p„ for the off-diagonal
susceptibility, etc., to first order in @=4—d. Good agreement is found with the experimental mea-

surements by Reppy and co-workers of p, (T) for helium absorbed at low coverages in Vycor glass
0

(of pore size 50—80 A). An effective-mass ratio m /m =1.5, and an effective-scattering-length ra-
tio a /a=1. 3 are indicated for mobile helium in the Vycor (although the irregular character of
Vycor has not, at this point, been fully allowed for in the theory). Other approaches in the literature
to computing the critical behavior of quantum-mechanical systems are reviewed and related to the
present analysis.

I. INTRODUCTION p, (T)lp, (0)=D ~t ~», t=(T —T, )IT, ,

Recent experiments on superfluid helium in a dilute
limit' and on spin-polarized hydrogen have renewed in-
terest in the theory of the interacting, three-dimensional
Bose fluid in the regime of low densities. In particular, it
has become important to understand how, as the density
increases from zero, the critical behavior changes over
from that for an ideal, noninteracting Bose gas to that ob-
served at the lambda point of a bulk, fully interacting
Bose superfluid. Indeed, the effect of critical fluctuations
on the superfluid order parameter, ~II, ( T), as evidenced by
the behavior of the superfluid density, p, (T), has been
studied recently in experiments by Crooker, Hebral,
Smith, Takano, and Reppy. ' Helium four was con-
densed in Vycor, which is a highly connected, semiregular
spongelike glass, at a carefully controlled overall filling
density p. The overall superfluid density was measured by
a delicate torsional oscillator method down to tempera-
tures of around 5 mK. '~ When the Vycor was completely
full the superfluid density was found to vary when
T~T, (p) as—

with critical exponent /=0. 64+0.05, which corresponds
closely to the observed value, (=0.674, in pure bulk heli-
um. Indeed a plot of p, versus T closely resembles the
bulk behavior. As p is reduced, T, falls from T,=1.96
K, as does p, (0); however, down to densities at which
T, (P)=60 mK the shape of the curves and the exponent

g, remain unchanged. One concludes that the Vycor
glass, despite its somewhat random character, is not play-
ing a significant role in the nature of the critical singulari-
ties or the superfluid ordered state. [Nevertheless, a small
"tail" in, (T) is observed, which smears the transition
slightly this might be attributable to semimacroscopic
inhomogeneities in the Vycor. ]

On the other hand, when the density p is increased from
zero one finds, initially, that there is no superfluidity even
at T=o. One must presume that all the helium is strong-
ly adsorbed on the surface of the Vycor in "localized, "
"crystalline" or "solid" form At a cover. age P=po corre-
sponding to about 1.5 atomic monolayers, however, one
discovers the onset of superfluidity. Apart from soine
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slight initial curvature, one then observes an almost linear
increase of p, (0) with density. This can be interpreted
naturally as revealing that the excess helium density,
p=p —po, corresponds to that of a dilute Bose gas moving
in the Vycor pores. There is some residual attraction to
the walls of the pores, which, in the experiments of
Crooker et al., had diameters in the range 40—80 A.
However, the thermal de Broghe wavelength,

Az'=h/(2mrnkg T)' (1.2)

p, (T;T, )/p, (0;T, )=DO ir i Yr(T, /E it i
r), (1.4)

in which PT is the crossover exponent and Yr(z) is the
crossover scaling function while E is a metrical factor.
(The subscripts T indicate that T, is being used as the
control variable: this is appropriate at the phenomenolog-
ical level but, as will be sam, another form of variable is
more natural if the theoretical picture of a dilute Bose

of a helium atom of mass ni =mH, at 10 mK reaches 90
A which exceeds the pore dimensions: thus it is reason-
able to regard the Vycor as merely providing some sort of
uniform background medium. Furthermore, because of
the full three-dimensional interconnectivity of all accessi-
ble pores, superfluid or off-diagonal long-range order
should be rapidly propagated in all three spatial dimen-
sions. (This contrasts with the experiments in a Mylar
"jelly roll" where the helium is confined to a two-
dimensional film resulting in completely different transi-
tion behavior of Kosterlitz-Thouless type. )

This picture of a three-dimensional dilute Bose fluid is
supported by the observed variation of p, at very low ex-
cess densities, p. For an ideal Bose gas in spatial dimen-
sionality d, one has

pg(T)/pg(0)=1 —(T/T, )
~ =Do

~

r (, (1.3)

with Do ———,'d, provided that d&2. Thus the exponent
changes from g~ —,

' to go= 1. In fact, as p increases so
does T, and the plots of p, (T) for T, &15 mK quite
closely resemble the more-or-less linear variation pre-
dicted by (1.3). In this regime the mean interparticle
spacing of the excess helium of density p is 40 A or
greater this greatly exoieds the atomic dimensions and,
thus, the interparticle interactions should indeed be play-
ing a relatively small role here. However, close to the
transition for T, & 15 mK the data reveal a sharper de-
crease approximating the bulk, interacting behavior with
g= —,. As p and T, increase further this "nonclassical" or
nonideal critical region expands in size until the charac-
teristic bulk variation completely takes over.

Even if one does not accept the physical picture
presented, these experiments undoubtedly demonstrate a
crossover in critical behavior from the bulk interacting
form (1.1) to some new form, described near T, by (1.3).
In order not to beg the question of "ideality" in this limit
it may be termed "dilute. " Nova the crossover can be re-
garded as controlled by T,(p) which decreases to zero as
the dilute limit is approached. Rather generally, the
theory of critical phenomena predicts that such a change
in behavior should be described more fully by a crossover
scaling formulation Specificall„. one should anticipate

Pr ——2(4—d)l(d —2) (1.5)

for 2&d &4, which range of dimensionality, d, will be
adopted as standard. Then, (c) we must calculate the scal-
ing function for the superfiuid density, Yz(z) or its
equivalent. (The scaling function, of course, depends on
the property considered: various other scaling functions
will be encountered and presented. ) Finally, (d) we must
check the predictions against the data of Crooker et al. '

and examine the reasonableness of the metrical fitting pa-
rameters (for the effective mass and interaction strength).
We will also discuss a little further the reasonableness of
the physical picture, which certainly seems to be well vin-
dicated by our calculations. Nevertheless, our analysis
takes no direct account of the residual random character
of Vycor: a more-detailed discussion of the effects of ran-
domness on these calculations will be reserved for presen-
tation elsewhere.

This paper is arranged as follows. In Sec. IIA the
theoretical model is presented; aspects of its validity are
discussed in Sec. IIB. The scaling ansatz (1.4) and its
generalizations are discussed in Sec. III. An aim is to
show how the crossover exponent and scaling fields can be
calculated and how the validity of scaling can be checked
by doing perturbation theory about the ideal-Bose-gas lim-
it. The appropriate quantum-mechanical perturbation
calculations are explained in Sec. IV. In order to obtain
scaling functions, more elaborate calculations are neces-
sary. Other authors, particularly Nicoll and Chang and
Rudnick and Jasnow„' have undertaken appropriate
renormalization-group analyses within the e expansion,
but they consider only the nonquantal, n-vector classical-
spin models of ferromagnetism. "' To take advantage of
this body of work, we show, in Sec. V, how the quantal-

fluid is accepted. ) The dilute limit is now reproduced,
provided that Y(z)~ Y(0)&0 as z~O. Conversely, to re-
cover (1.1) for nonzero T, as t~O, one must have

Yr(z)= Yz"z when z~ao. The scale of the criti-
(1—g3/QT

cal region is then set by z & 1 which shows that it corre-

sponds to r & [T,(p)/E] . Evidently pr determines the
1/

rate at which the critical region shrinks when T,~0, and
this reflects a dominant qualitative feature of the data. '2

The scaling prediction (1.4) can be tested experimentally

by plotting p, (T)/p, (0)
~

t
~

versus T, /~ t
~

r using trial
values of Pr. all the points should lie on a common locus
which then represents Yz (z) A.tentative analysis with
early data suggested Pz-1.5 to 2. The theory to be
presented in detail here predicts Pr ——2 (for d =3) and
prefers somewhat different forms for the scaling variable.
It is found to yield very satisfactory scaling fits to the
data, ' and the theoretical scaling function calculated to
leading order in @=4—d also gives a reasonable descrip-
tion of the observations.

Our task here then, is as follows. First, (a) accepting
the picture of a dilute Bose fluid, we must check that a
crossover scaling form is correct and determine the ap-
propriate forms in which the physical parameters enter
the scaling variables. Second, (b) we must determine the
crossover exponent, Pz, which should control all features
of the changeover in criticality: in fact, we will find
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Bose-fluid model may be mapped onto the ( n =2)-vector
or classical XY model in a way that is asymptotically ex-
act in the critical region. In Sec. VI this mapping is used
to derive scaling functions to first order in e=4 —d. The
final scaling-function expressions for the superfluid densi-

ty are displayed in Eqs. (6.58)—(6.67) and, in Sec. VIF,
the fitting to the experimental data is undertaken. Final-

ly, in Sec. VII some previous approaches to the problem
of criticality in an interacting Bose fluid are reviewed
briefly but critically and related to our analysis. (Previous
authors have considered neither the equation of state in
the crossover regime below T, nor the superfluid density. )

An appendix shows how logarithmic singularities which

appear at second order in the quantal perturbation
theories when d =3 are fully consistent with nonlinear
renormalization-group recursion relations although ap-
parently violating the simplest scaling formulation.

Z =TrI exp( —pA B ) ), (2.7)

(m)P=
~n Vo

(2.8)

fixed. The order parameter (sometimes called the "con-
densate wave function") is given by

p, v

(2.9)

Even above any Bose-condensation critical point there is a
corresponding reduced off diagonal susceptibility defined
by

the trace being taken over a full set of symmetric states
for all X. To make comparisons with experiment, the
chemical potential needs to be adjusted to keep the overall
density,

II. A MODEL FOR HELIUM IN VYCOR

A. Hamiltonian for I Bose system

81PO
X„/0 =——

v y~
(2.1Q}

We will consider spinless bosons confined to a region 0
of volume Vn in the presence of an external single-
particle potential w(r) which may represent the Vycor.
In terms of Bose field operators p (r) and itf(r), the
second-quantized Hamiltonian will then be taken as

~B ~0+~lf2 ~+~1+~2 ~

with kinetic energy

Po —— "r ~r
2m

(2.2)

number-operator

r r r (2.3a)

external-potential term

ot )= rN r r r (2.3b)

and, if u(r) is the translationally invariant pair-potential,
interaction energy

"r 'r' tr' ~rU r' —r r r' .

(2.4)

A, f2 ————,
' f d r [v'g(r)+vga(r)], (2.5)

where v, which may be complex, is the off-diagonal or
Bose field. As usual p, denotes the chemical potential.

Thermodynamic properties follow from the free-energy
density

f(P,p, ,v) =F/Vn —— (kB T/Vn)lnZ, — (2.6)

where p=1/kB T and, as always, the partition function is
given by

Finally, for theoretical purposes in understanding the or-
dering we include the physically "anomalous, " off-
diagonal term

A 0—~=+ (el, —P)al,al, ,
k

1/2A, f2
——, Vn (v ap+vall),

—1~2= 2 Vn X X X uqai+e 1'—e 1' 1 '
k k' q

where, as usual, the single-particle energies are

el, ——lri k /2m '+0 ( k },

(2.13)

(2.14)

(2.15}

(2.16)

the higher-order term allowing for the effects of the
medium.

It is common practice in the literature' to take
u (r) =u05(r) where, generalizing from d =3, one then has

u =4m lri a /I ( —'d —1)m' (2.17)

in which a is the s-wave scattering length or effective
hard-core diameter, while I (z) is the standard gamma
function. However, such an assignment causes diver-
gences in perturbation theory in second and higher order
which we wish to investigate in order to check the con-
sistency of scaling theory. Accordingly, we will retain a

which diverges at the transition and is, thus, theoretically
significant.

Most of the analysis below will be performed under the
assumption that, for the critical behavior of interest, the
external potential w(r) can be replaced by a spatially uni-
form effective medium which gives rise to an effe:tive
mass, m ', for the bosons (in place of a bare mass m } and
which likewise modifies the interaction potential u(r).
This assumption will be discussed further in Sec. II B. It
has the technical merit of restoring translational invari-
ance so that a momentum space formulation is advanta-
geous. Accordingly, we put

Uq —— ~r e'q'U r (2.11)o

al, ——Vn
' d "r e '"'|((r),0 (2.12)

and then have
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smooth, bounded form for U(r) and, correspondingly, for
Ui, . Not surprisingly, we will see that only Uq o plays a
major role at low T and, hence, when necessary we may
suppose that uq equals Uo for

~ q ~
up to some cutoff

momentum q~ beyond which it vanishes.
For reference below we recall here the thermodynamic

properties of an ideal Bose gas' corresponding to Uq=—0.
By performing shifts on ao and ao the Hamiltonian
is readily diagonalized and yields a free energy

f(P,p, v)= ivy /4p+P ' f in[1 —e " "]. (2.18)

where we adopt the convenient notation

2m
'

in which k ranges over all values or up to a cutoff at

~

k
~
=qx if one is to be understood. The density is thus

p=
I
v

l

'/4p'+ f„"("p)- (2.20)

in which the standard Bose occupation number factor is

(2.19)

na(e) =1/(e~' —1) .

By (2.9) one has 4o———v/2p whence the "condensate
density" is

bio(T)=
I
qlo(T)

~
=p —f„aa(ei, p) . — (2.22)

n {T)/p= 1 [T/T, (p)]"~— (2.24)

B. Validity of the model

The critical behavior of an interacting but dilute Bose
gas and, especially, the behavior of the superfluid density
as the crossover to ideal behavior occurs, is a problem of
interest in its own right. Any reader concerned only with
the theory of this crossover may wish to skip this subsec-
tion in which we discuss briefly the degree to which such
a model may be valid as a description of the Crooker
et al. ' experiments on helium. absorbed in Vycor.

The manufacture of Vycor involves the leaching out of
one component of a finely divided two-component glass
mixture. The process begins at the surface, and hence en-
sures the presence of an infinite cluster of open and acces-
sible pores. Porosity measurements' yield values of about
40%, which is well above the percolation threshold and is
consistent with a highly-connected three-dimensional
structure. Furthermore, the pore sizes have a definite
physical scale (in the range 50 to 80 A in the Crooker
et al. experiments) and an apparently well-behaved distri-
bution. It therefore seems unlikely that Vycor should be
viewed in any way as a fractal structure. Nevertheless, we

For T above the transition point, no(T) vanishes identi-
cally in zero off-diagonal field because p&0 and thus the
first term in (2.20) vanishes when

~
v

~

~0. However, for
d & 2 the integral on na is bounded above as p~O. Thus
below T, (p), which is determined by

p(h /2@m'kaT, )" =g( ,'d), — (2.23)

the ratio v/p cannot vanish as v~O even when p~0:
then (2.22) yields the standard result '

may note that the effect of a fractal structure on the tran-
sition in an ideal Bose gas should be to give a superfluid
density and, in this case, a condensate fraction varying
like [1—( T/T, )

~ ]. Here d, which should exceed 2 for a
transition, is the "fracton" or "acoustic' dimension, '

which describes the density of states at low energies ac-
cording to X(e)-s' ' '. ' (The states are presumed to
be extended. ) Near T, such behavior clearly cannot be
distinguished from ideal Bose behavior. The effect of
such a fractal structure on the interacting Bose fluid criti-
cal behavior is difficult to assess definitively, but one
might hope that it corresponds reasonably closely to the
corresponding uniform system of intermediate dimen-

sionality d as suggested by studies on various hierarchical
fractal structures.

However, we believe that the excess helium atoms re-
sponsible for the observed superfluidity may be regarded,
in the range of most interest where the thermal wave-

length, Ar, and mean interparticle spacing are larger or
comparable to the typical pore dimensions, as moving in a
normal three-dimensional random potential, w(r). In this
respect the problem of helium-atom motion in Vycor is
analogous to an electron in a disordered lattice where the
Fermi momentum sets the scale of the potential variation.
In that context it is certainly customary to take account of
the background potential via an effective-mass approxi-
mation.

The modification of the bare helium-helium van der
Waals attractions and the repulsive core interactions by
the Vycor seems very difficul to assess a priori. It is cer-
tain that the attractive tail of the interaction potential is
much reduced since nothing like a bulk liquid-vapor con-
densation is seen in Vycor at any level of filling. Indeed,
from the experimental viewpoint the great merit of Vycor
in these experiments is that the interatomic attractions are
effectively suppressed so that helium can be examined as a
low-density but still three-dimensional superfluid phase,
something that is impossible with pure bulk helium. On
the other hand, the strong, hard-core part of the interac-
tion, having a scale of 3 A which is much less than the
pore diameters, would seem unlikely to be greatly altered.
Furthermore, for excess interparticle spacings much larger
than 3 A only the low-momentum part of the interaction
should matter so that an effective Uq should be ade-
quate. "

As the critical temperature increases the corresponding
thermal de Broglie wavelength, AT, drops and becomes
smaller than the pore size. Likewise the correlation
length amplitude, $0, which can be estimated from the
observed superfluid density via

go-(m/ii) kaT
~

t
~
~/p, {T) for d =3,

also falls as T, increases and eventually becomes compar-
able with the pore size (although one finds go & 200 A for
T, ~100 mK). One might then recall that the helium
atoms will predominantly stay relatively close to the walls
of the pores and might hence ask if one should not see
some characteristics of critical behavior in a reduced
dimensionality d'=2. Indeed, some sound attenuation ex-
periments in Vycor (but with appreciably larger pores)
have been interpreted as revealing two-dimensional ef-
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fects. ' Furthermore, studies of helium films condensed
on particles of an A120s powder show behavior reflecting
two-dimensional criticality:~o the particle sizes, of order
500 A, were much larger than the pore dimensions in the
Crooker et al. experiments. These observations suggest
that the interconnections between films on different parti-
cles and between different pores are relatively much weak-
er in systems with large particles and pore sizes. On the
other hand, it seems likely that as the pore size is reduced
the structure becomes more strongly connected with
neighboring pores increasingly well coupled so that the or-
der extends essentially in the full three dimensions. (Note
that this must happen close enough to the transition, even

in the powders and systems with large pores, i.e., dimen-
sional crossover from d =2 to d =3 must eventually
occur as T~T; in any system that is actually three-
dimensionally connected even if only weakly. )

%'e conclude that an interesting and reasonable model
for helium in Vycor is that of a low-density, mobile,
three-dimensionally connected gas above a substrate of lo-
calized helium atoms. Various studies of heat capacity, '

general thermodynamics, 2' NMR on 'He fllms i' as well
as the Crooker et al. observations of superfluid density
seem quite consistent with this picture.

Undoubtedly, however, the residual external potential,
represented by w(r) in the Hamiltonian (2.1), has a spa-
tially nonuniform or random component which should be
allowed for theoretically. Now at the bulk superfluid
transition, which is expected to be in the XF or n =2
universality class, as our analysis confirms, the specific-
heat exponent is slightly negative: a= —0.02+0.02. The
Harris criterion, 23 which should be applicable, then indi-
cates that the randomness represented by w(r) should be
irre!euant Hence . the nature of the interacting critical
behavior should not be changed by the randomness (al-
though one might be worried, in view of the smallness of
a, about rather slowly varying corrections to scaling}.
This fact supports the view that the transition in Vycor
for T, exceeding say 50 mK should, ideally, be sharp
despite the microscopic randomness of Vycor. Macro-
scopic inhomogeneities or superflow paths between the
outside of the Vycor block and the container will, howev-
er, cause some smearing. Thus it is reasonable to suppose
this is the cause of the small "tails" on the experimental

p, ( T) plots above the expected transition point.
On the other hand, the crossover behavior of interest is

from the ideal Bose gas. Here the interactions described
by U (r) represent a relevant renormalization-group pertur-
bation as we will see in detail. However, it is not difficult
to see by the perturbation methods we explain or by renor-
malization calculations, that a random external potential
represents another, independent relevant perturbation
about the Gaussian fixed point which, as we show, con-
trols the ideal Bose gas criticality. As such the strength
of the randomness should enter separately in a full cross-
over scaling calculation. Such calculations are not report-
ed here: indeed they seem to present considerable difficul-
ties. However, the effects of the randomness can be stud-
ied further and, in the light of special properties'of Vycor
and of the mapping to spin systems, plausible if not com-
pelling arguments can be developed which suggest why

In this section we set out the expectations of scaling
theory for a crossover in critical behavior of the sort
which is anticipated to occur in a dilute Bose fluid. The
main aim is to show how straightforward perturbation
theory suffices, if scaling is accepted, to determine many
features exactly, including the crossover exponent. Furth-
ermore, perturbation theory carried to higher order can be
used to check the consistency of the scaling hypothesis
and, finally, it provides a route to a precise, unambiguous
means of mapping the dilute Bose fiuid in its critical re-
gion onto an n-vector spin model. An important feature,
especially in the mappings, relates to the fact that a full
scaling formulation must pay attention to the existence
and nature of the h'near and nonlinear scaling fields
which, in general, serve to mix and recombine the various
physical parameters which naturally enter the original
problem. Another relevant issue addressed is the infiu-
ence of a constraint (such as observation at constant densi-

ty) on the crossover scaling formulation.

A. General considerations

Let us for concreteness and also, as it transpires, for
computational simplicity, consider the reduced off-
diagonal susceptibility X(P,p, v), defined in (2.10). How-
ever, we will not here use many specific properties of a
Bose fluid. When v=0, to which we restrict attention, the
susceptibility diverges when p approaches a critical value
which in the ideal, noninteracting case we call po(p). If
we set

ij=p vo(P»— (3.1)

one anticipates X=C/
~
p,

~

', where yo is the ideal critical
exponent and C is the corresponding ideal amplitude. But
deviations from ideal behavior are caused by the presence
of the interaction potential U (r). One expects the univer-
sal critical features to be controlled, for weak interactions,
only by

Up= Jd r( U)—=rUq o .

Then the simplest scaling ansatz is

C»o
X(P, ;UU) = „X

(3.2)

(3.3)

in which p is the crossouer exponent (for the variable p)
while 8 is a nonuniversal metrical factor which can be
chosen so that the scaling function has an expansion

X(x)=1+x+Xix +X3x + . (3.4)

with derivative Xi =—(dX/dx)0 normalized to unity. Note

the residual randomness of the helium-coated Vycor glass
does not seem to play a strong role. For the present pur-
poses we will accept this conclusion and proceed by ignor-
ing any randomness in w(r). It is then reasonable to ex-
pect that the effective-mass approximation and a modified
pair-interaction potential will suffice to account for the
regular part of w(r).

III. SCALING FORMULATION
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that X(0)=1 is needed so that (3.3) reproduces the ideal
result when vp~0. By the same token, the existence of a
Perturbation exPansion for X in Powers of vp indicates
that X(x) should have a power-series expansion (but see
also the Appendix).

The nonideal ( vp ~ 0}critical behavior of X will be con-
trolled by a singularity of the scaling function X(x).
Specifically, if

X(x)~X,/(x, —xP as x~x, —, (3.5)

ije(v p'P) =@p(P)+ I &vp/&~
I

)/(' (3.6)

when vp~0. An exPression for the amPlitude C(vp) as
vp-+0 also follows. It may happen that x, =go,' then
(3.6) is still valid but (3.5) is no longer adequate: for this
case, see (3.22) below.

Note that the relation (3.6) for the nonideal critical
locus must, physically, be independent of the particular
property, susceptibility, specific heat, etc., studied. This is
ensured by the universality of the crossover exponent ()),

which is the same for all properties both above and below
the ideal transition: conversely, if (t) is known for one

property it is known for all. Similarly, after a single nor-
malization fixing 8, as in (3.4), the critical value x, of the
scaling combination x =Bvp/

I P I

& is universal.
Now the utility of the scaling hypothesis for our

present purposes is seen by combining (3.3) and (3.4) to
yield the expansion

X= „+ &
Vp+ „z&Vp+O(vp) . (3.7)

C ac

This predicts the divergences to be found in the perturba-
tion expansion of X(p, ;vp) in powers of vp. Conversely,
the first-order perturbation term should yield (i)
universal crossover exponent (!) and (ii) the metrical factor
8; the second-order term should (iii) check scaling by re-
vealing a divergence with exponent yp+Q, and (iv) yield
the universal susceptibility scaling function expansion
coefficient X2 in (3.4), and so on!

We shall, in fact, implement this matching strategy for
the Bose fluid. However, before doing so one must recog-
nize that the scaling postulate (3.3) is somewhat too naive:
specifically, it makes no allowance for hnear or, more
generally, nonlinear scaling fields nor for irrelevant vari
ables. ' At special values of the dimensionality, d, one
must also be prepared to find logarithmic singularities in
the perturbation expansion and critical behavior. %e
shall sidestep this technical complication by working al-
ways with general d. However, d =3 is a special value
for which logarithms d0 appear. To see how scaling
nonetheless works when properly formulated via the re-
normalization group, the extra features arising in this
case are explained in the Appendix.

In light of general renormalization-group theory, there-
fore, ' we introduce the more complete scaling form

then for vp+0 the susceptibility diverges as C(vp)/
I)u —p, (vp,'p} I" where the nonideal critical locus must

depelid oil v() as

X= XC

Igp I

'
&zg2

+Xp(P; vp), (3.&)
Igp I fg„ I

in which go represents an analytic "background" contri-
bution. The g; {i=2,3, . . . ) represent nonlinear scaling
fields for the further variables which have scaling ex-
ponents (I}; and metrical factors 8; [which can again be
chosen so that (()X/()x;)p ——1]. We expect these extra
scaling fields to depend on further details of the interac-
tion potential v {r), etc., and to be irrelevant so that their
scaling exponents are negative, i.e., —((t;=8;~0. Then
they give rise merely to asymptotic corrections to scaling

~t. 25 26varying as
I g„ I

'. 2 ' If, however, one of these fields
turns out to have (t, ; &0 it also is relevant and must then
enter the discussion of the crossover: this, in fact, is what
happens if random perturbations, controlled by tv(r) in
(2.3), are included.

Let us, initially, neglect the irrelevant variables: then
the nonlinear scaling fields for the chemical potential, p,
and for the interaction should have expansions in integral
powers as

g~ =app+a) vp+a2p +a3l4vp+a4v()+ ' ', (3.9)

g. =vp(bp+&)lJ+b»p+ . ), (3.10)

&( )=pc/
I gp I

'+&p(P 0» (3.12}

&())=Dp/ I g„' I

"' +Di/ I g„' I" +&o(u o»
(3.13)

in which the prime denotes differentiation with respect to
Uo, and

Eo E) E2
0 yo+~ 0 go+I 0 go+i+

+ „~~+
~

+X()'()M,O) (3.14)

The main feature to notice, by coinparison with (3.7), is
the appearance of new singularities associated, in fact,
with the mixing coefficient g„'(0)=a) in (3.9). If $~1,
as will transpire in our case, some of these new singulari-
ties actually dominate the perturbation coefficients. Thus
in any matching program they must clearly be allowed

where the terms neglected are of cubic order in p, and vp.
In this expansion the leading coefficients ap and. . bp may
be normalized to unity by absorbing factors into the am-
plitudes 8 and C. However, it proves more convenient to
retain them so that g& and g„may be assumed dimension-
less. The form for g„has been restricted here by
knowledge of the physics, namely, that ideal behavior
must be recaptured to all orders when uo~o so that
g„(Vp =0)=-0.

The perturbation expansion (3.7) now becomes

X(P~vp)=&(p)(p)+~())()u)vp+T~X(t)(p)v()+, (3.11)

where, putting g&(vp
——0)—=g„=apjc+aip +, we

have
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for. A nonzero value of ai means that uo enters linearly
in g„and so there is a nontrivial linear scaling field. As
follows by equating g„/

~ g„~ " to x, /B, this corresponds
to a shift in the critical locus p, analytic in uo in addition
to the nonanalytic term displayed in (3.6). Conversely, the
appearance of a first-order perturbation term diverging
like 1/) g„(" —1/(P, (" implies the presence of
such linear mixing.

The various amplitudes in (3.13) and (3.14) are easily
found to be

issues arising are general, although some special features
enter for a dilute Bose fluid, they will be explored at this
point; but, as indicated, readers may prefer to return here
for reference when the results are alluded to in Secs. IV
and VI.

B. Crossover scaling in a constrained system

Consider a thermodynamic property, p(p, p;vo), which
obeys the crossover scaling form

Do ———Cyog„', Di ——BCg„'

where, neglecting O(p, z) terms,

gII u1+sz3P gII b0+bi j, ,

(3.15)

(3.16)

Z =
I g„ I

'~(Bg. /
I gl I

~)+So(P V uo»

where mu is the ideal exponent, the amplitude prefactor
has been absorbed in P(x), and po is a smooth back-
ground. We will assume, following (3.10), that
g„(p,p;vu) ~uo. Our concern is to study the transition
under the constraint

r (p,p;uu) =r, , (3.20)

E2 = 2B«—r v+0)g~.',
E3=2X2B Cg„', and E4 BCg—„",

(3.17)

where r, is fixed while r is related analytically to some
thermodynamic property and so satisfies a corresponding
scaling expression

r =2
~ gp ~

R (Bg„/
~ gp ~

~)+ro(P P, ;us), (3 21)

where gis.=2aq+O(P, ) and g,"=2hz+ 0(P, ).
Including the irrelevant variables complicates the spec-

trum of singularities in the perturbation expansion still
further. Each field g; has an expansion analogous to (3.9)
and (3.10) except that the g; themselves enter, as they
should also in (3.9) and (3.10). In first-order perturbation
theory the extra terms,

D;/~gq ~

' ' (i =2,3,4, . . .), (3.18)

appear with D& —B&Cgi'. In s—econd and higher orders,
cross terms involving s}) and the p, also enter. However, if
all the extra fields are, indeed, irrelevant the Pi ———

~
8;

~

are negative, and so the secondary singularities appearing
beyond the primary ones displayed in (3.12) and (3.13) are
relatively weaker.

We are thus in a position to compare (3.11)—(3.18) with
the actual perturbation expansions about the ideal Bose
gas. This is carried out in the next section to which
readers may wish to jurnp at this stage. For our problem,
however, there is a further complication which it is con-
venient to treat here. The most appropriate theoretical
variables for scaling and calculations are the chemical po-
tential, p, and potential strength, uo, since these enter
Hnearly as "coupling constants" in the Hamiltonian. The
inverse temperature p is best regarded as a parameter
combined into the more basic variables PP and Puu. How-
ever, the experiments (as well as the normal view of an
ideal Bose fluid} entail the constraint of constant densi
ty, with temperature T acting as primary variable while
uo is held fixed. Such constraints can be dealt with purely
by thermodynamics but they may lead to significant
changes in critical behavior, in particular, to a renormali-
zation of critical exponents. Constraints also complicate
the question of the full crossover scaling form. Since the

&o=P PcI Vo=p p—EI and vo . —0 (3.23)

Our aim is to use the constraint to eliminate p or,
equivalently, g„ in favor of t0 or some corresponding
scaling field, say, gp(p, uo}, and to study the consequent
variation of p. We wish to discover, if possible, a con-
strained scaling form for p parallel to (3.19). Under ap-
propriate conditions, in particular when gu&1, we will

in which we will assume that both the amplitude A and
the background ru have Taylor exPansions in P, P, and
uo. The nonideal (uo&0) critical locus is given by
Bg„/~ g„~ ~=x, where x, might be oo [as, in fact, hap-
pens to O(e) in the Gaussian to n-vector crossover we
study in Sec. VI]. To allow for x, = oo we may write the
scaling function for x-+x, —as29

R(x)=R,x +R~ o [1—(x/x )]&+

(3.22)

where f is the nonideal exponent for r: if g & 1 terms reg-
ular in [1—(x/x, )] must also enter. Note that we neces-
sarily have fu, P&0 if the constrained system actually
achieves criticality. Most frequently r will couple directly
to the energy (as the most relevant "even" or "thermal"26
operator) and one then has |tIO

——1 —ao and /=1 —a, with
ac and a the ideal (uo ——0) and nonideal specific-heat ex-
ponents, respectively. This is, indeed, the situation for the
dilute Bose gas at constant density, r =p, for which
ao ———,

' e for a=4 d& 0 while a—=—0.02 for d =3.
Now in the ideal limit the critical locus is given by

g&(p, p, ;uo ——0)=0. The constraint r (p,p;0) =0 then
specifies a particular ideal critical point, say (P, ,p, ), on
this locus. (For simplicity we ignore the possibility of
multiple or coincident roots. ) The scaling fields g& and
g„may be expanded about this ideal constrained critical
point in powers of
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show that one does, in fact, obtain the constrained scaling
behavior

p(PI 'uo) I.=,,= I gp I
'P(Bg. /I gp I

)

+P0+P'1~0+P2UO+ (3.24)

where

gp=cito+czuo and fu=uo(bo+bito+bzvo) ~

while the "renormalized" critical exponents s are

tro=~o/iIO and 0=0/fo

(3.25)

(3.26)

~c ~0 ~1~0+2UO 38)4 =~ ~3gp (3.30)

with, in an obvious notation, c i
———(Bko/Bp)„

ci ———(Bko/8uo), , and ci ——ki(0, 0). Similarly we can
write

It will be found, in contrast to (2.9) and (2.10}, that the
higher-order corrections omitted in (3.25) cannot, in gen-
eral, be expressed as a power series in to and uo. the same
goes for the omitted background terms in (3.24). It will
be shown, however, that the missing terms vanish faster

(1-+)/$0
than those shown by factors gp . When go&1 a
similar result holds except that the exponents in (3.24} are
not renormalized: in other words (3.19) still holds in form
but with more singular corrections.

To establish these results note that the constraint may
be written

r, ro=Algq I
—R(x) with x =Bg„/Ig& I~.

On dividing by A
I Bg„ I

', and rauranging we get

y =—Bg„/ I r, ro I
&=x/ —

I
R (x)

I
&, (3.28)

with 8=BIA
I
~. This equation can be in~erted to yield

x ==(y) {see further below) which may be substituted
into (3.19). Then, if one could express (r, —ro) and g& in
terms of to and uo, the job would be done.

Accordingly we must analyze the constraint (3.27) fur-
ther. To this end, note that since ro and g„are both ex-
pandable in powers of to, po, and vo, we can write

ro(p, p;vo) =ko(p

uo)+gorki(p,

uo)+0 (g„) . (3.29)

To linear order this yields

where, as t0, U0~0, the error term is bounded as

I
g &«o Uo}

I
&

I A. I lci I

in which Rm» ——maxo&„&~ I I
R (x)

I I which we suppose
is bounded The expression (3.35) for g„can now be sub-
stituted directly into the original scaling form (3.19) for p.
One obtains (3.24) and (3.25) but (3.26) is replaced by
%o——mo and P=P. In addition, via (3.30)—(3.32), one
finds

8=Bc],
bi

bi�+�—

—(bici/ci),

bi bi+——(bicilci),

pi =pi+(pici/ci)

p2 p2+(p3c2/c3) ~

and, finally, sees that singular corrections of the form

{to uo)-
I
t

I

'-
lgp I"'

enter, in higher order, into gp, g„, and the constrained
background in (3.24}.

In the second case, go&:1, the first term on the left-
hand side of (3.24) is subdominant and one then finds

I g„ I

=
I
t/A, R(x)

I
'[1+5'&(to,uo)] .

where, as to, uo ~0, the error term is bounded by

I
@'&{touo) I

&
I ci/POIIAeRmin I

(3.37)

(3.38)

Here Rm;„=mino~, ~, I I
R (x)

I ) is assumed to be strict

ly positiue; in the event that R;„vanishes, further
analysis is required: see below. Note that 8'& diverges
when A, ~0 since the system then experiences a crossover
back to unrenormalized behavior as described by (3.35).

One can now use (3.37), first in (3.30) for r, —ro and
then with (3.31) and (3.33) in (3.28) to obtain the scaling
variable y. On substituting with x ==(y) from (3.28) in
(3.19), one finds the scaling argument in (3.24) with
8=8=8

I
A I, bi bi, and b——i bi. Finally, using—

(3.37) for g& in (3.32) and in the prefactor in (3.19) com-
pletes the derivation of (3.24) and yields p, =pi, pz ——pi,
and the scaling function

gu Uo(bo+blto+b2vo+b3gp+ ) ~ (3.31) 'ly/=-(y)
I

' P{=-(y)} (3.39)

Po=Po+P1&o+P2Uo+P3g~+ ' '

A =A, +A1t0+A2U0+A3g„+

(3.32}

(3.33)

To leading order the constraint then becomes

cog„+A, Ig& I
'R {x)=t . (3.34)

This is an equation for g„ in terms of t and vo.
There are two principal cases to consider: (i) go & 1 and

(ii) Po & 1. In the first case, c g„id iomt nathese left-hand
side of (3.34) and solving by iteration yields

gt =ci t [1+g~ )(to~vo) j ~

R(x)=x rRo(1+r, x+r,x'+ ) . (3.40)

Normally one would have I =—0 but we will allow for

Note that this expression diverges when A, ~O, another
indication of crossover back to unrenormalized behavior.
In addition, we see that the g„ terms in (3.30)—(3.33)
introduce singular corrections proportional to
t 8'&(to, vo)-

I
t

I
in the fields gp, g„and in the back-

ground in (3.24), as well as in the amplitude in (3.39).
It is of some interest to know the nature of the function

:"(y) which solves (3.28). For small x we may suppose the
scaling function for r varies as
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I' &0 since in the dilute Bose gas beneath T, one finds a
density scaling function with I'=1: see Sec. VI. Solving
(3.28} for small y then yields

(y) -~a+ ~25+. . . (3.41)

:-(y)/x, =l —:-a))' &+O(y" &' '), (3.43)

with:-0 (R, /PR ——~) '/"x, '~~. It follows now that p
displays a renormalized singularity for g„,uo &0 with ex-
ponent ir =ir/g, independent of the value of $0.

As mentioned, the case x, = oo is actually of interest in
connection with the O(e) calculations of Sec. VI. Prouid
ed R,+0, the first term in the scaling function R (x) in
(3.22) dominates as x~ oo and we find

:"(y)=(
~ PR& ~

/R, y)~~~ asy'~0+ . (3.44)

On the other hand, if R, vanishes one obtains, first,

y, =~ and, then,

:"(y}=~R~ ~~'~y ' asy (3.45)

In fact, for the dilute Bose crossover in order e we find, in
Sec. VI, that R, =0 so this case is relevant. It also tran-
spires, however, that A, =(ir(0—1i)/p is negative in O(e) so
that the scaling function decays to zero as

R(x)=Rex ~ ~ when x x, = ao . (3.46)

As a result, the assumption R;„&0, used in deriving
(3.37) and (3.38), is violated! To coinplete the analysis as
far as our present purposes go, therefore, we will reexam-
ine the constraint equation (3.34) for this special situation.

As a first step let us accept the solution (3.37) and drop
the error term 8'&. On using (3.46) for large x and solv-
ing for g& in this limit, we find

I! g, I

=
I (

I Bg. I
'"'/~. Ry}t I

"~ (3.47)

where we have used
~

A,
~
/+/0=A so that go effectively

drops out and is replaced by g. We will suppose g & 1, as
is appropriate in O(e) for n &4, which will fulfill our
needs: see Sec. VI. Then g„still vanishes faster than t

further, has a factor vanishing as g, . Thus
(r, —ro) in (3.30) is still given, up to higher-order correc-
tions, by gti in (3.25}. The correction term in (3.37) is, in

gp I /lot and so as to, uo +0 it is—

with an exponent 5=1/(I+I P), which takes the value
1 —,'e —for the dilute Bose gas„ in addition one has
:-i——Rg, "2 Ph——riRo, etc..Sh, Qh,

As regards the behavior for larger y, we find from
(3.22) the critical value y, =

~
R,

~

~ which is independent
of x, but becomes infinite if R, =0. For bounded x, and
14'j & 1 we then obtain

:-(y)/x, =l —:"iy+=j~, with y'=1 —(y/y, ), (342)

where =i and:"~ depend also on the coefficient, say Ri,
of the term linear in 1 —(x/x, ) not shown in (3.22). The
leading linear variation of:-(y) near y, means that the
singularity of p on the nonideal but constrainted critical
line is described by an unrenormalized exponent, say m.

Conversely, for it & 1 and bounded x, we find instead

bounded for, say, x &1 by (3.38) with R;„replaced by

~
R~

~

or, for x & 1, where we suppose (3.46) applies, by

I@' «o, uo}l & les/@ol I(IBg. I
"'/~.Ry}l""

~ t (1/f) —I (3.48}

Thus, provided /&1, our conclusions remain essentially
unchanged.

If g & 1 [and all lower order terms in (3.22) still vanish]
the bound (3.38) applies on any scaling trajectory at fixed

y provided R;„is replaced by
~

R(:-(y))
~

. However, the
amplitude of the corrections diverges as y~ao. This
means that there is a small region close to the nonideal

(g—f )/p(g —1)
critical line, given by t &uo, in which devia-
tions from the constrained scaling form (3.24} arise. In
the present case, the exponent of uo here is 1/

~
a

~
+2/e

this is very large (&20) for d =3 so that (even if x,
remains infmite and R„etc., still vanishes at d =3) the
region of breakdown becomes extremely small when

Uo~o,
A few further remarks are in order. It was noted that

the amplitude A in (3.21) might depend on P. If this

dependence is strong, as transpires for a dilute Bose gas, it
is preferable numerically to absorb the factor

~
A

~

& into
the scaling field g„ in (3.24) to leave the amplitude B in

place of B It mus. t also be recognized that there may be
deviations from the scaling form (3.21) for r which go
beyond changes in the form of A and ro This. can be
seen, for example, by postulating a perfect scaling form
for the free energy f(P,p, uo } in terms of nonlinear scaling
fields g& and g„and supposing r =p= —(Bf/Bp). The
expression for p then contains a term proportional to

g„& ~g„~ ~Fi(x) where g„„=(i3g„/Bp) while Fi(x)
derives from the scaling function for f and
x =g„/

~ g„~ ~. Unless g„„—:0 this term cannot be
represented in the expected scaling form

~ g„~
' R (x).

However, by (3.10) we have g„„=biuo=big&=bix
~ g& ~

~

and so it can be written bi
~ g„~

' xF, (x)
~ g„~ . In this

version it can be recognized as correcting the scaling func-
tion R(x} to [R(x)+bi ~g& ~xF(x)]. Then it can clearly
be neglected when g&~0. Indeed, it gives rise only to
corrections of higher order than those normally appearing
in (3.37). Finally, irreleuant uariables have been neglected
in the scaling of p and r. It is clear, however, that they
may be included with little effort, at least in leading order,
and do not affect the validity of the constrained scaling
result (3.24).

IV. QUANTAL PERTURBATION THEORY

In this section we consider quantum-mechanical pertur-
bation theory about the ideal-Bose-gas limit and use the
results, in conjunction with the scaling analysis of Sec. III,
to obtain, for the unconstrained ideal Bose fIuid, the
crossover exponent P and the corresponding linear scaling
fields. Thence we will derive the crossover exponent Pr
entering the phenomenological scaling form (1.4) for the
superfluid density.

A. Zeroth order

As mentioned in Sec. III, the most convenient and basic
property to examine is the off-diagonal susceptibility,
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X(p,p;uo), aboue the superfluid transition. The finite-
temperature Green's function formalism allows one to
calculate thermodynamic functions perturbatively in the
interaction u(r): see (2.1)—(2.5). In terms of the Matsu-
bara Grmn's function, 9(p', ip„), one has

X(P,p;uo) = —(2P) '&(0,0) . (4.1)

As usual p is the momentum or wave number and the
p„=2mn/P, with n =0, +1,+2, . . . , are the Matsubara
frequencies. For the ideal Bose gas [indicated by a super-
script (0)] one has

&'"(p ie. ) =1/[ip. —s,+p]
whence

X' '(P,p ) = -,
'

( —Pp )

dependence on p.
Thus let us separate the p-independent part by intro-

ducing

2I), ni)(e —p, ) =ns(e) —ni)(e —p, )

( —Pp)[1+o(Pp Ps)]
Pe(pe Pp—)

where the definition (2.21) has been used for small pp and
pe. Then we can write

Do oUo 1X'"= ' + f P(uo+u), )l))ns(ci, p—),
( —Pp, )' 2( Pp, )'—

(4.6)

where

which, of course, also follows directly from the exact
solution (2.18). Comparison with the scaling result (3.12)
yields the identifications

Dao= —, 1+fg n

in which

(4.7)

(4.8)
1 Og„=g, (u—o =o)= Pp —7'0=1 (4.3)

and Xo(p, O)=0. Here, and below, g„=—pp must be
kept positioe to remain above the transition.

X (p~p;u) =
2 f p(up+Ui, , )ni)(eg —p) .

2( —Pp)2
(4.4)

Note that we now use a superscript (n) to denote the total
nth-order contribution to X; previously in (3.11)—(3.14)
we used a subscript and wrote the term as X~„)uoln). In
Sec. IVC we will discuss the evaluation of the integral
here in a systematic way which reveals the nature of the
dependence on the shape of the potential, u(r), as ex-
pressed via ui, . I.et us first, however, demonstrate how
the main results needed follow very simply if we suppose,
as is, in fact, fully justifiable, that only the behavior of the
integrand at low momenta matters as regards the singular

(b)

B. First order: Principle results

Corrections to (4.2) may be expressed, as usual, in terms
of Feyninan diagrams. In first order, only the two
single-loop diagrams shown in Fig. 1 are needed for the
susceptibility. On using the definition (2.11) and the con-
vention (2.19), the resulting term is

measures the "shape" of the potential. The dispersion re-
lation (2.16) yields

Ps),=Amok /4n as k~O,
where the thermal de Broglie wauelength is

Ar ——h/(2nm'k&T)'/ =(42rPA /2m')'/

(4.9)

(4.10)

Focusing now only on small k, the behavior of the second
term in (4.6) is thus given by

Uo 16m~{i) 0 &T
(4.11)

gp
" ATk (ATk +4ngq)

This integral is well known: an upper cutoff
~

k
~
(q~,

should be understood. Putting w =ATk/(4ng„)' and

Ed ——Cd/(2m)"=2/(4ir) I ( —,'d),
where Cd is the surface area of a unit sphere in d dimen-
sions, leads to

in which

0 d Npu (4m) E
Ad (

0 )I+a/2 fp 1+ 2
T p

(4.13)

(4.14)

The upper cutoff in (4.13), namely q/, ATI(4ngz)'
diverges as g&~0 but for d &4, which will be assumed
henceforth, the integral remains bounded. This is the
route by which the upper borderline dimensionality,
d& ——4, enters our analysis. Finally, on performing the
integral on m, we obtain the first-order correction to 7 in
leading orders

FIG. 1. First-order diagrams in the graphical expansion for
the off-diagonal susceptibility g. Dashed lines carry a factor u]„
solid lines a factor 9' t'k, ik„); momentum k, and frequency k„,
are conserved at each vertex. The two external lines carry zero
momentum and frequency.

()) Do ouo 1(1—
z d) Puo

(gp )2 (
0 )1+a/2 Ad

(4.15)

%e may now compare with the scaling expectation
(3.13). Since yo= 1, by (4.3), the first term is just as anti-
cipated. The amplitude Dpo is given by (4.7) and, via
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(3.15), this yields the leading analytic shift in critical tem-

perature due to the interactions. Specifically, the scaling
field is

(t = —,'e= —,(4—d) (d ~4), (4.17)

Thus we have found the crossover exponent quite general-
ly. As regards the scaling formulation in the Introduc-
tion, however, we must recall first that that implicitly en-
tailed the constraint of constant overall density whereas
here we may consider varying T at constant chemica/ po-
tential p. As explained in Sec. III B, especially near (3.26),
this leads to a renormalization of the crossover exponent

P according to

2$ 4—d
1 —(zo d —2 d —2

' (4.18)

where (zo is the specific-heat exponent of the ideal Bose
gas at constant p. The value of uo used here follows from
(2.18) as' (zo ———,

' e. The renormalized scaling field gtt
which replaces g = —Pp becomes proportional to
t(o~ ——(T T, )/T, wh—ere T, (p) is the critical temperature0 0 P 0

of the ideal Bose gas at constant density. However, as re-
gards crossover scaling, it follows from general arguments
(see Sec. III and Ref. 29) that we may, asymptotically,
equally well use the standard reduced variable
t =(T—T, )/T„ in which T, is the actual critical tem-
perature.

To compare with the Introduction, however, we also
need to remember that T, was there used as the control
parameter in place of uo (which is essentially fixed in the
experiments). How can T, be brought into playo The
answer lies in examining the amplitude of the second term
in X"' and comparing with (3.11) and (3.15) to obtain the
identifications

gp(Pp;uo)= —Pp —2Doouo+0(P p, ,Ppu ovo) . (4.16)

Notice that Do o carries a factor P and, essentially, 1/AT
which arises from the Bose factor which decays as

exp( —k AT/4m) for large k. A more explicit expression
for Do o will be obtained below.

The second term in (4.15) corresponds with scaling ex-
pectations if we make the identification

puo/AT —=kd(a/AT )

where a is the scattering length and

k =21T' ' /I ( —,'d —1)

(4.21)

is a purely numerical constant. The significance of the
lower critical dimensionality, d &

——2, at which the ideal
transition ceases to exist, emerges here.

%e see now that the basic scaled combination entering
in the dilute-Bose-gas crossover at constant density must
be

g, (a/Ar)
(4—d)/(d —2)(gp)'

k T (d —2)/2
a 3 c

A2/t
[

'
(4.22)

where one finds

Pr 2P/(d———2) =2(4—d)/(d —2) (4.23)

It is evident from (4.22) that ()I r is the crossover exponent
when T, is regarded as a variable while m* and a are
fixed (or slowly varying). Our result for PT thus confirms
(1.5) and completes the derivation of the first step beyond
the phenomenological scaling theory developed in the In-
troduction.

The next central task is the calculation of the scaling
functions for the susceptibility, superfiuid density, etc.
This is taken up in Sec. V to which the reader may wish
to proceed directly. However, it is worthwhile to investi-

gate more closely the role of the detailed form of the po-
tential u(r) in first-order perturbation theory and also to
check that consistency with the scaling ansatz (3.8) ex-
tends to second order. These issues are addressed in the
balance of this section.

C. InAuence of the potential shape

In order to detect the effects of the changing details of
the interaction potential and to verify that the dominant
singularities of the first-order perturbation term, X"',
have been properly obtained, a more systematic inethod of
calculation is needed. Let us, more concretely, suppose
the Fourier transformed potential may be written

Divo BCg„'vo = —I'(1———, d)(l3uo/AT ) . — u(, ——uo(p(aok ) .2 2 (4.24)

There is now some freedom but, clearly, the most sensible
assignment is to take the amplitude 8 in the basic scaling
ansatz (3.8) as the pure number

Then (p specifies the shape of the potential while ao mea-
sures its range. %ith reasonable generality we may sup-
pose that y has the representation

8= —2I (1——,d) . (4.19) (p(x)= g x '(Iu;(x) with (To ——0, (4.25)

Then the full interaction scaling field is identified as

g. (l3V;uo)=(Puo/AT)(1+o(l'tp vo) j. (4.20)

where the o; for i & 0 are not positive integers while the
form factors q&;(x) are analytic at x =0 so that

The dimensionless combination of interaction strength,
temperature, and de Broglie wavelength appearing here is
most natural and, indeed, might we11 have been guessed a
priori as the appropriate dimensionless "coupling con-
stant. " Note that by (2.17) it can be written in the appeal-
ing form

(p;(x) = g (Iu; (x', (p; o&0 .
1=0

(4.26)

In the simplest, short-range case only the term i =0 is re-
quired and (po(0)=1. Long-range pieces of u(r) decaying

8+0 ~

as 1/
~

r
~

' yield contributions with tr; ~0
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Now to calculate X"' we evidently need integrals of the

Gx (P,p, }=[(4n) I ( ,'d+c—r)/I (-,'d)]

&« ftani+~, i+i« (4.29)

where the extended generalized zeta function ' is defined

by

f, „(z)= g z "/(n +u )' .
n=0

(4.30)

Then the required integrals are

I„+ (P,p)=AT J (Ark) '"+ 'ng(e), —p) . (4.27)

These are most readily calculated as nth derivatives with
respect to A, of the generating function

Gq (P,p)=A&. f (ATk) exp( A—ATk /4n)n~. (ez p—) .

(4.28}

To evaluate this we may expand nq(s) in powers of e
and, for simplicitly, suppose that the dispersion relation
(4.9) holds without corrections T.he resulting Gaussian in-
tegrals are readily performed and yield

I,+ (Pp)=[(4m)" + I ( ,'d—+n+tr)/I'( —,'d)]

f(dl2)+n+n, 1 (e } ~
Pp (4.31)

Our primary interest is in the singular behavior which
arises when —Pp~0+ or z~ 1 —.This follows from '

[lnt+f(m+1) —1((u)j( r) —/m!, (4.33)

where g(z)=I"(z)/1{z) is the digamma function. 3'32

Thus logarithmic singularities appear whenever
s= ,'d+—n+o is an integer; in particular, for the short-
range case cr =0, they arise for d =2 and 4. However, we
will not normally explicitly indicate the presence of loga-
rithmic factors.

If we use these results to evaluate the first-order in-
tegral in (4.4) the singular parts of ( —Pp) bX'" are found
to be

f, „(e ')=e"'[I (1—s)t' '+ g g(s n—,u)( r)"/—n!j,
n=0

(4.32)

valid for s&1, 2, 3, . . . , u+0, —1,—2, . . . . Here g(s, u )

is the generalized zeta function. ' When s is a positive in-
teger, say s=rn+1, the mth term in the sum combines
with the previously singular term I (1 s)t'—' to generate
the new singularity

—,'1 {1 ,'d) —
~
—(—Pp)'" '" 1+gy~' gq; Iy;iy~

i =0 1=0
{4.34)

in which the coefficients

y;, I =I {—,d+og+l)1 (1——,'d —o; —I)/I"( —,d)1 (1——,
' d)

reduce to

One can clearly resum the series in (4.34) to obtain the
surprisingly explicit result

( P+)2~'t, ~ ' I (1 & d) { P )(d —2)j2

T

y;, I =( —1)'y; =—( —1)'I {—,
' d+cr;)

X I (1——,
' d —cr; ) /I {—,

' d )I {1 ——,
' d ) .

(4.3S)

The new variable, y~, appearing in (4.34) can be written

y (P,p, ;a )=4m(a /A ) ( —Pp)=[ac/g (P,P)]', (4.36)

where, g, the correlation length of the ideal Bose gas, is
given by'

1+q'o( —yg)+ g y~y~'g;( —y~)
iso

(4.38)
Now suppose that the potential u(r) is sufficiently short
range that the integral f u(r)ddr=uo is bounded or,
equivalently, that cr; & 0 for i & 0. Then one has
po(0)=y(0)=1 and, since y&-+0 as g„=—pp~0, one
sees that the leading singularity in (4.38) agrees precisely
with the previous result in (4.15}. Conversely, if the
fore& are of such long range that a =min, a, is negatlue,
the leading singularity changes and one obtains, instead of
(4.17), the new crossover exponent

g (P,p)=(Ar/~4~)/( Pp)'~'. — (4.37) = —,(4—d) —o

This expression, embodying the exponent vo ———,, is easily
derived' and can also be read off from the denominator
in (4.11). Evidently y~ represents the properly sealed
range of the potential u(r) which could have been antici-
pated as one of the correction-to-scahng contributions in
(3.8).

The fact that long-range forces can change the nature of
the crossover behavior is not surprising; note, however,
that since u(r) enters the Hamiltonian in the

~ P ~

term
the situation here differs from that usually considered in
critical phenomena, where the long-range interactions
change the

~
Vf

~

term. We will not discuss such long-
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range forces further.
Returning to the case of sufficiently short-range in-

teractions with (r; & 0 for i & 0, we see that M(" contains
an infinite series of higher-order singularities determined

by the powers of —Ppa()/AT. Since a prefactor (Puo/AT )

is always present these terms correspond to singularities

of the form (g„) ' ' in the perturbation expansions
(3.11)—(3.14) of the scaling ansatz. For each i, therefore,
one finds a distinct scaling exponent

I p

((to ———1 —= —2v(), (4.40)

D() =D() ()+D() i( Pju)+0(P—(u ) . (4.41)

For simplicity we consider only the fully short-range case
with g:—(po. Then we can write

Do Juo ———(Puo/Ar )g( —,
' d )[1+(p,(4nao/AT )],. (4.42)

for j =0, 1, where the modified form factors are defined

by

associated with the leading potential moments (po i and

q); o (i & 0), respectively. As expected, these crossover ex-

ponents are all negative and so the detailed shape of the
potential is irreleuant If th. e higher moments, po (+) and

(p() (i & 0) are also regarded as independent variables they
would enter scaling with the still more negative exponents

(I)o I+i ———(I+1) and (I);)———cr; —1. However, since the

(()o(+) are integers in the present case it must be recog-
nized that the corresponding terms in X'" will appear as if
analytic and will therefore be mixed with contributions
arising from nonlinear terms in the full scaling fields

g„(P, (u;u) and g„(P, )M, ;u). By formally takiiig oo&0 and
then letting oo~0 one can, however, distinguish the vari-
ous sources of such terms.

Finally, we can use the analytic pieces of the f, „(z) in
(4.32) to study the leading divergence of X") associated
with the amplitude

/ k

C l

(I+kh+ P

(e)

FIG. 2. Irreducible second-order diagrams contributing to
the off-diagonaI susceptibility P.

tude Eo should be given by quantities already found in
first order.

D. Second-order calculations

with coefficients

yj t=g( 2id+1 —j)l ( zd+I)/I ( —,'d)g( —,d —1') .

(4.43}

(4.44) g"'(P,p, ;u) = —( I/2P))M X' "(P,)M, u ), (4.46)

The Feynman diagrams relevant to the calculation of
7' ', the second-order correction to the susceptibility, are
shown in Fig. 2. If we write the first-order correction
term as

Note, therefore, that the (pj terms in (4.42) vanish linearly
when T,~0. The scaling field for (u can then be given to
higher order as

the total second-order term may be written

g(2) ( 1/2P)[
—3(y(1) )2+ —2( y(2) )] (4.47}

g„(P,t;u )= PV 2Do, ouo 2D—o, i( —13')uo— —

+O(P (M uo, uo ) . (4.45)

Notice that since yo ——1 is an integer it is impossible at
this stage to decide whether the further powers of p((2 aris-
ing from the analytic parts of X(" contribute to g„or to
the background term Xo((ti,0) in (3.13). In order to obtain
further terms in the scaling fields and in the backgrounds,
Xo, it is necessary to carry perturbation theory to higher
order. More importantly, this also serves as a check on
scaling; e.g., by (3.14) and (3.17) the second-order ampli-

Suppose, first, that X( )(p,l2, u} diverges less rapidly
thaIl p when p~O: in fact, this turns out to be so. It
follows from (4.6) and its extension, (4.41), that the lead-
ing singularity is

X(2)= —,
'
Eouo/( —Pp) with Eo =4Do . (4.48)

Since yo
——1 and P &1 for d &2 this is just the type of

divergence expected by scaling: see (3.14). Furthermore,
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the Qrnpll r'udes Ep aild Dp are related just as scaling
predicts: see (3.15) and (3.17) and use C= —,

' from (4.3).
This is our first check on the validity of the scaling prop-
erties of the perturbation expansion.

To proceed further we need the two contributions to
X' ', namely,

*', '= I„f (Un+~a)~i)(Ev —p, )(Uo+Ua q)~a(~q —p, ),
(4.49)

which arises from the diagrams (a)—(d) in Fig. 2, which
have the topology of a figure eight, and

[ns(&i, +~—p) —ns(ei, —p)][ns(s~ —p, }—na(si, +q
—ei,)]

+g = U(i(Ui(+ Uq )
k q Fg+q —Eq —Gg+P

which comes from diagrams (e) and (f) in Fig. 2, which have the topology of a theta. Note that nii(e) =dna Ide

(4.50)

l. Figure-eight contribution

The evaluation of X,' ' requires little more beyond the techniques used in Sec. IV C. For simplicity we restrict attention
to the case where (p(x)—=qp(x) in (4.24) and (4.25), i.e., short-range interactions. Then the necessary integrals can be
written

A2(d+E+m )

~i(y) , =I+ J f Ik —ql 'Ik( &i)(s~—p)ns(Eq —p)

(4.51)

The auxiliary integrals, Ji ~ follow from a generating function analogous to (4.28) as
'm

Ji, ()u v)= g e'++'l[(r+a)(s+l()+sr]a~2,
1'9$ =1

(4.52)

Thence the Ji' (p) can be found in terms of the Bose
functions

f, (z) =zfg i(z) = g z "In',
N =1

(4.53)

Xf(an)+)+m J(e-Pp (4.54)

where the coefficients for the first few cases are

whose singularities as z=e()'~1 follow from (4.32). The
general integral is of the form

E+m
(p}=—g ei, ;J(d)f(an) —(+J(e

This may be compared with (4.34).
Now the strongest singularities in X(2) arise from the

most singular Bose functions entering via (4.54): by (4.32)
we see that f, (e+') remains bounded when p(p, ~O —un-

less s & 1. For d ~2 the only divergent terms thus arise
from the terms with j = rn =0. The corresponding coeffi-
cients e( p.p can be found from (4.51) and (4.52) and so, as
Pp~0 —,one fmds

Ji p(pp) =( —1)'[&(—,'d+1)il ( —,'d)]

&&f(an) —i (e )f(an)+((e "),
=(—1)'[1 ( —,'d+l)/&( —,'d)]

1

0, 0;0 ~ 0, 1;1 1, 0;0 ~1,0;1 2 d

1

ei, i;i =ei, i 2= q d(d+1)
2 2 1

eo, 2;z =e2,o;o =Tez, o;) =Te2, o;2 =
q d(d+2) .

(4.55)

X&(—,
'

e)g( —,'d+l)( —p)(() 'n, (4.58)

with, as before, e=4—d. Correspondingly, the leading
singularity of X,' ' is given by

P&, = a 4g( —,'d)&( —,'«}
Finally one finds

'2
poo

Ay
d

pg(2) g (Pp. H'o, m
E, m =0

E+m—4' 0
2 (p),

AT

(4.56)

(4.57)

where for compactness we have taken

0'O, E PO, E+~O, E

+

X[1+Vo(4~&o'IA2r)]( —pp)-'n, (4.59)

while the remaining pieces remain bounded as Pp~O —.
[The function (po(x) was defined in (4.43}.]

Now, since P= —,
' e the singularity of X( ' contributes a

term to J( ' diverging as ( —p)M ) ~. This evidently cor-
responds to the expected scaling term E2/

~ g„~ m0 1+yo+
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(3.14). However, the term )(4 (X"') also contributes to
this singularity in X( '. On the other hand, we will show
below that X,' ' does not diverge more rapidly than
( —Pp, ) and so cannot contribute. From (4.59), (4.56),
(4.15), and (4.42) we thus find the correspondence

'2

1(1——,'d)(6 —d)g( —,'d)

via (3.17), to determine the scaling fields to second order
in uo. We shall not, however, attempt to compute these
amplitudes.

The dominant singularity of X,' ' as ((4~0 arises from
the triple coth product in (4.61). If we neglect the
momentum dependence of the other factors, which is jus-
tifiable if appropriate upper cutoffs on k and q are under-
stood, the integral becomes simply a convolution and can
thus be written

X [1+$0(4n(2()/AT)] . (4.60) hX,' '(P,p)= ——,'Puo J der[6(P, p, ;r)] (4.63)

If one recognizes that —,'(6—d}=1+—,'e=yo+(() and re-

calls (4.3}, (4.19},(4.20}, and (4.45) one sees that, to lead-
ing order in )(4, this result for E2 agrees precisely with the
scaling prediction (3.17). The agreetnent is fairly spectac-
ular in that it holds for general ui, l

2. Theta contribution

We turn now to X,' ': in justification of (4.60) we show

that it cannot diverge as strongly as ( —Pl(4} '~; in addi-

tion, we will identify a divergence corresponding to the

scaling term E3/~g„~ ' and thence learn something
new, namely, the universal amplitude X2 of the scaling
function X(x) in (3.4). The integrand in (4.50) looks po-
tentially rather singular but, in fact, remains regular ex-
cept when @~0. To show this, note

ni)(e) = —,
' coth( —,

' s) ——,
'

G(r) 2(d+2)/2A —t(( P )(d( —2)/2

Xx K(g 2)/2(x),-(d —2)/2

where large values of

x =( —4nP(M)'/ r/AT

(4.65)

(4.66)

are relevant, while K„(x}is the standard modified Bessel
function. When P((i~O —one finds G(r)= G(oP) /r

Three cases now arise: (a) For d ~3 the integral in
(d.dy) evidently diverges for large r as f rs dr, and

by changing to x as a variable one finds the required re-
sult

in which a lower cutoff on r may be needed, while

G(p, p, ;r)=I e '"'coth[ —,
'
p(si, —)(2)] . (4.64)

The singular behavior is determined by the variation of
the inte~rand as 84r/(A~z k —4n.p(2} for small k. This
leads to

and use the addition formula for cothx to obtain

g',"=-,' f f W-ttang(-s'da)vs(vs+vs)
4

PX,"'(13,p)=&g(Puo/AT) ( pp) ', («— 3),
where

(4.67)

X (Cq+ C)g
—Cit~q —C)gCqCk~q ) s

(4.61)

(4.62)

in which for brevity we have written

P =F(g+q —s)g —eq+((4r ciy=cotll[ 2 P(ei) —P)] ~

2(d+4)/2[1 (
( d )]

—i

X f x [K(g 2)/2(x)] dx, (4.68)

and we have recognized that the other contributions to
X,' ' are bounded. Next, (b) for d =3 one has

The factor tanh( —,
' PP'}/P' remains bounded for all real

A; singularities can arise only from the coth terms when
p~O.

It is at this point that one encounters the difficulty
mentioned in Sec. IIA if one supposes u(r)=uo5(r) so
that U~

—=Uo. Indeed, whenever d ~ 2 the integral over the
unbounded region

) k+q
~

&5 with, say„5=
~
5

~

chosen
so that —,'Pss= O(1), then diverges. However, if uq decays
sufficiently rapidly as

~ q ~

~00 the integral remains
bounded: we shall assume this is the case.

Now the single coth terms in (4.61) behave like
(Arp +4ng„) ' as g„=—Pp~O where p=k, q, or

~
k+q

~

. They can thus be analyzed (after making a rota-
tion to coordinates pd. ——k+q in the third case) along the
lines used above to handle (4.4). Each generates contribu-
tions to X'2' of the form Fop 2+F(p ' '/ which corre-
spond to the expected scaling terms E(/~g„~ ' and0 ro+ I

E4/)(g„( . Together with contributions of the same0 10+0

forin which arise from X,' ' and (X"") they would serve,

Ki/2(x) =(n/2x)'/2e

and thence finds explicitly

PXg (13 p) = 2n(13uo/AT) [ln—( Pp, ) '+O(1)] .—

(4.69)

PX,' '(P,p) =PX,'"(P,O)

+ &g(Puo/AT )'(Pp ) '+. . . , (4.70)

for 3 ~ d ~ 4, where the constant is given by the conver-
gent integral

Finally, (c) for d & 3 the integral on r in (4.63) converges
even for Pp =0. In that case one must subtract the limit-
ing behavior in order to find the singular term: this leads
to
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, 2(d —2)/21 (
) d)

2)x (s —2)/2 (4.71)

Note that X()(P,O) is proportional to (Puo/Az) even
though it also contains contributions from the single coth
terms in (4.61). These also yield correction terms varying
as (Pp)(" )~ which correspond, as explained, to the

E4/ ) go
(

' scaling pieces.
Now we may compare with the scaling expectations.

Since

2—(d —3)=1+(4—d)=yo+24

we have found the last predicted term in (3.14): for d+3
its amplitude is

E3 ——(p/Az) 4g, (4.72)

which, via (3.17), gives the universal result

X2 ——Vg/4[1"(1 ——,d )] (4.73)

X(x)=1+x+X2x lnx+X2'x + (4.74)

for d =3 with X2———ir/[I {1——,
' d)]2. Why this should,

in fact, be the case is explained in the Appendix on the
basis of renormalization-group arguments. ' The ap-
pearance of the logarithms in X(x) and in the second-
order perturbation expansions hinges on the fact that
(t = —,

' (4—d) is a rational fraction when d =3. More gen-

erally, logarithms will appear in nth order if P=m/n
where m is an integer relatively prime to n.

3. Summary ofsecond-order calculations

To conclude this section, note that we have now identi-
fied all the five scaling singularities predicted in (3.14)
and, furthermore, have shown that no other singularities
occur other than higher-order singularities associated with
irrelevant variables: in particular, the scaled combination

y~ defined in Sec. IVC must also enter in second order.
In addition, we have, in (4 48}, (4.60},and (4.72) explicitly
evaluated the amplitudes Eo, E2, and E3, respectively.
The first two provide exact checks for general interactions
on the scaling predictions (3.17); the last one has the
predicted form and leads to a value of the scaling function
coefficient, X2. Further labor would be needed to evalu-
ate E1 and E4 in reasonably compact form although, by
subtracting the leading singularities found here, they
could be expressed explicitly. Their values, however,
would yield only the nonuniversal terms of order Uo in the
scaling fields g„and g„. To make further progress on
calculating the scaling function, particularly in the region
of its nonclassical singularity at x„we show, in the next
section, how the near-critical dilute Bose fluid can be
mapped quantitatively onto a spin system in its critical re-

for the second Taylor coefficient in the expansion, (3.4}of
the susceptibility scaling function, X(x), about the origin.

But what about the case of most interest, d =3'/ The
result (4.69) suggests that the scaling function no longer
has a Taylor expansion but, rather, varies as

gion: then known e-expansion results for X(x), etc. can
be called upon.

U. MAPPING TO SPIN MODELS

The only systematic method currently available to cal-
culate scaling functions for critical crossover in systems
between their upper and lower critical dimensions is the
method of renormalization-group dimensionality expan-
sions. However, the detailed results in the literature are,
for the most part, confined to classical, i.e., nonquantal
systems, the Harmltonians being expressed in the language
of spin systems. (Some renormalization-group studies of
quantal systems lier se are reviewed below in Sec. VII.)
To take advantage of the available definitive calcula-
tions, 9 " therefore, we establish, in this section, a map-
ping of the Bose gas Hamiltonian (2.1) onto an appropri-
ate classical-spin Hamiltonian, which is exact in the criti-
cal region of the two models.

Z= Tr'Iexp{ —PA ) I

fl

=—ff g I ds (r)expt —P~s(r)]} .
r A, =1

(5.1)

The lattice structure does not affect the universal features
of the critical behavior. Accordingly in writing the Ham-
iltonian„etc. , we shall treat s(r) as a continuous spin
field; however, the corresponding spin variables in
momentum space, namely,

s),——Vti
' der e '"'~s(r), (5.2)0

must be subject to a cutoff of magnitude kz-m. /a.
The spherical model Hamiltonian may now be written

As ——A 6 ——,'zg
( s), (',

3r.

(5.3)

where the Gaussian (or "free field" ) Hamiltonian' ' is

~G= —
z QJ) I s) I

Vn H so
k

(5.4)

Here J'), represents the Fourier transform of the spin-spin
or exchange coupling, J{r—r'). For sufficiently short-
range interactions it has the expansion

A. The spherical model

As a first step we consider the spherical model,
whose critical behavior is known to be closely similar to
that of the ideal Bose gas. ' In its generalized form the
spherical model Hamiltonian, A s, entails n-component
classical-spin vectors s(r) located at the sites of a d-
dimensional lattice of spacing, say, a and volume Vn.
The basic trace operation is then an integral over the spin
components, —oo &s (r}& ao, the partition function be-
ing defined by



%EECHMAN, lVBOLT, FISHER, AND STEPHEN 33

Jg ——Jo(1 —Rok +jiRok + . ), (5.5)

in which Ro measures the range of interaction .The vec-

tor H =(H, H, . . . ,H) represents the external magnetic
field (coupled, for convenience, equally to each spin com-
ponent).

The pure Gaussian model described by P 6 alone is
easily solved exactly. ' ' For 2&d &4 it has critical ex-
ponents aG ———,', yG

——1, vG ———,', and qG ——0; these are the
same as for an ideal Bose gas at fixed chemical potential.

The Gaussian model ceases to be defined below T, and,
furthermore, the mean-square value of a single-spin com-
ponent, namely,

I,=( [s (r)j') =((/nvn)(z ( 7is ('), (5.6)

is a strong function of T and H. The spherical model
per se is defined by removing this rather unphysical free-
dom of variation with the aid of the last term in (5.3). In
this the spherical field, z, is adjusted to satisfy the spheri
cal constraint

m, (P,z,H)=((s")') =M, , (5.7)

B. The interacting n-vector model

To obtain a physically more reasonable model than the
Gaussian or spherical model it is natural to add a fourth-
order term in the spins to the Hamiltonian. It is cus-
tomary in the first instance merely to add a local term

in which M2 is fixed. Normally's s6 one sets Mz ——1 but
we keep it as a free parameter since, by comparison with
Sec. IIA, it is clear that the spherical constraint is quite
analogous to the constant density condition in an ideal
Bose gas so that Mz corresponds to the density p. Simi-
larly z is analogous to the chemical potential p.

The total free-energy density (per spin component) for
the spherical model is found to be'~ s6

f(P,Z, H) = H /(z+ Jo)—
+ 2 p f ln[ p(z+Jg)/2n—'], (5.8)

where the cutoff kA-n/a must be remembered. The re-
duced spin susceptibility in zero field is thus

T

(5.9)
p dH H 0 p(z+ Jo

from which we see that (z+Jo) can never be negative.
The spherical constraint is easil~ handled and one finds

the exPonents as ————,e/(1 ——,e), Ps ———,, ys ——2vs
1

=1/(1 ——,'e), ri=0 for 2&d &4. These are simply the
constraint-renormalized Gaussian exponents (see Ref. 28
and Sec. III B); they coincide with those for the ideal Bose
gas at constant density. Indeed, if one uses (5.5) in (5.8)
and likewise expands the ideal-Bose-gas integrand in
(2.18) for low momentum, one sees that the parallel be-
tween the two models in the critical region is very strong.
Before quantifying it, however, we will introduce the ana-
log of the particle-particle interactions into the spin
model.

G„(r,r') = (s"(r)s~(r') ), (5.12)

with x, A, =1,2, . . . , n. For an isotropic, translationally
invariant system in zero field one may deal with the
Fourier transforms

G„z(k)=G(k)5,g, G(k)= —g sos~ „l .
n

The reduced spin susceptibility is then

(5.13)

X= ror =GO

For zero interactions one has simply

6 (P,z;k) = —1/P(z+ Jg),

(5.14)

(5.15)

which, on putting k=O, immediately yields the spherical
model result (5.9).

The diagrams entering the perturbation theory are now
precisely the same as for the Bose gas. Thus Figs. 1 and 2
give the first-order and second-order contributions to I
with, now, a solid line representing the propagator G (k)
while the dotted lines represent the spin vertex coupling
uq. The weight to be attached to a given diagram, howev-
er, differs in the two cases. Before discussing this in de-
tail let us examine the first-order corrections to the spin
susceptibility. This will actually enable us to achieve the
desired mapping between the models in their critical re-
gions.

C. First-order perturbations and matching

As before let us ~rite the spin susceptibility as

X(p,z; u ) =7 ' '(pz)+7 ' "(p,z;u )+ (5.16)

where X'"' is of nth order in ui, . By (5.9) and (5.15) we
have

g'0'=1/( —pz) with z=z+Jo . (5.17)

proportional to r s r, but in the present case we

would like to mimic more closely the Bose interaction
term A 2[/] in (2.4). Accordingly we add to 4 s the term

W =fd"r f d r'
~

s(r)
~

u(r —r')
~

s(r')
~

=Vti' ggguq(si+q s z)(si, q s q), (5.10)
k k' q

in which the four-spin coupling has Fourier transform

u = re'q'u r (5.11)

The purely local ~s
~

coupling then corresponds to
u(r) =u05(r) or uq =uo. As in the Bose case, and as sup-
ported by extensive calculations for the spin models, one
anticipates that details of the potential beyond uo will
contribute only corrections to scaling in the critical re-
gion.

Again as in the interacting Bose gas, one must resort to
perturbation theory to study the effects of + in a sys-
tematic way. The susceptibility and other properties can
be obtained as a power series in uq by developing a di-
agrammatic expansion for the Green's function or correla-
tion function
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The first-order term is found to be

Do&o

( —p~)'

X'"= —,
' nu, +2u„oo z, k . 5.18

( —pz)'

This should be compared with the Bose expression (4.4).
Notice, in particular, the factor n: this arises from a free
summation over the spin index A.=1, . . . , n, in the loop
in Fig. 1(a) which carries the product si,s" i, for all A, ;
since the external line carries a fixed spin index, say a., no
such factor n can arise in Fig. 1(b). We see immediately
that the contributions of up and ui, will enter here in the
same proportions as do up and ui, in the Bose case prouid
ed one takes n =2. This identification is hardly surpris-

ing since it has been known far a long time that a super-
fluid, having a twa-component order parameter
4=(+',4"), with O'=Re(%) and ql"=Im(%), should be
in the same universality class of critical behavior as the
XF or (n =2)-component spin model. It is valuable,
however, to see how perturbation theory essentially forces
the correspondance: see further below.

Now the singularities of the integral in (5.18) can be
evaluated in precisely the same fashion as undertaken in
Sec. IVB, the only difference being the presence of the
lattice cutoff kz here. In parallel to (4.15) one finds

41'(1——,
' d) Pup(n +2)

x (5.19)
( —Pz)'+' (4trP/ R )" i

It is worthwhile to explore further the relation between

Dp and Do, since the former depends on the lattice cutoff
kA while the latter was evaluated more explicitly in (4.42)
and, as T,~O, depends only on Pup and AT. A compar-
ison between (4.7} and (5.20) shows that the differences
arise only from the difference between the Bose factor
ns(eq) which, as seen, pravides an effective momentum
cutoff of order AT', and the factor 1/(Jq —Jp) with cut-
off at k„. For matching we therefore anticipate a relation

kA = I e/AT, (5.25)

which, if I e is a fixed number, means k&~0 as T,~O.
To determine I ~ we evaluate Dp for n =2, as in Sec.
IVC, and find

1
ti =2, P= -P) z—:z+Jo - -p, ug = - Tug,

(5.23)
JoRo-- =A /2m*:—AT/4mP, Do-- --16Dp .

There is some arbitrariness in the numerical coefficients
but, in particular, the choice of the factor —,

' leads to the
correspondance for JoRp which, by comparing (5.4) and
(5.5) with (2.13) and (2.16), yields the further natural
correspondances

sk=--=-( —(ai, +a i, ), —,i(ai, —at i, )}, M, == p,
(5.24)

s(r) =- =-( —,
' [p(r)+1(T(r)], 2 i[/(r) —pt(r}]}.

with, in comparison with (4.7), an amplitude

Do ———4 J (n++i, )/(Jp —Ji,),
k

(5.20)

iil which qif=uq/uo. Comparing this and (5.17) with the
general scaling expectations (3.11) to (3.14} yields the
identifications

32k' [1+O(j2R ok A, y2a p~x~ )]
(4ir)" 'I ( —,'d)(d —2)JpRp

where j2 enters in (5.2} and we have supposed that

yi, =—ug/uo ——1 q&2a ok'+—

(5.26)

C= 1, g, = —Pz, yo
—1, (5.21)

where, as above, a tilde distinguishes spin-model ampli-
tudes, and more fully,

g, (B,z;uo) = P~ Douo- —

g„(Pz;up}=2(n +2)Puo/(4nPJoRo)

8= —21'( 1 ——,
' d ),

(5.22)

where we have chosen 8 to equal 8 in (4.19).
Now if two distinct systems belong to the same univer-

sality class, as we claim for the (n =2)-vector inodel and
the dilute Bose fluid, their critical properties can differ
only through nonuniversal parameters. But these enter
only through the scaling fields and related amplitudes, the
normalized scaling functions being universal. Thus two
models can be mapped onto one another if their scaling
fields can be brought into one-to-one correspondance.
Furthermore, ta leading order near criticality it suffices to
map only the linear scaling fields onto one another.

Thus if we compare the results (5.22) with (4.16), (4.19),
and (4.20) we can read off the mapping from spin model
to Bose gas as

so that ap represents the range of the coupling u(r); by
(5.23) we may take ap ——ap. Comparing with (4.42) yields

l e ——2v m[ —,(d —2)I ( —,'d)g( —,'d)]'r'e " (5.27)

In addition we see that by choosing the coefficients jz and

gran judiciously in the spin model one can also match the
higher-order corrections ill Dp aild Dp which vanish as
powersof kt, -AF -T, .

D. Higher-order perturbation theory

The first-order calculations just presented have enabled
us to match the (n =2)-vector and Bose systems as re-
gards linear scaling fields and amplitudes. By going to
second order we could, clearly, match the quadratic parts
of the nonlinear scaling fields and so on. Physically this
is hardly worthwhile; however, it is important to be as-
sured that the ful/ perturbation expansions will continue
to match to leading orders in the critical region. If so,
one can conclude that the expansions for the susceptibili-
ty, and other scaling functions, are identical so that the
models truly lie in the same universality class.

It was already observed that the diagrams entering the
perturbation expansions of the n-vector and Bose models
are identical although the weights differ in general. More
explicitly, at nth order in the Hose case each diagram car-
ries a weight 2" due to the interchangeability of the argu-
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ments r and r' of the perturbation in (2.4). However, this
factor is conveniently canceled by the conventional pre-
factor —,

' carried by A 2. Each loop in a Bose diagram

effectively contributes twice since both
(Wf(r, ~)gt(r', v') )( ' and (Wf(r', r'}ff(r,r) )(p) enter
(where W is the time ordering operator }. On the other
hand, in the spin case each loop contributes a factor n,
from the free spin sum on spin components, as seen.
However, ( s(r) s(r'))( ' is identical to ( s(r'). s(r))( ' so
the relative factor is only , n w—hich is unity when n =2.
By a similar token each diagram in the spin system gains
a factor 8" in nth order arising, first, from the inter-
changeability of r and r' in the perturbation k in (5.10}
and, second, from the identity of each of the two spina in

the factors
~

s (r)
~

and
~

s (r') ~; on the contrary, in
(2.4) Pt(r) and P(r) are not equivalent. The factor —,

'
in

the correspondence (5.23), together with n =2, thus en-

sures a matching of the two expansions in all orders.
Of course, the expansions also differ in that each solid

line in a spin diagram carries a simple momenturn-

dependent factor G' '(k) ~(z+Ji, ) ', whereas in the
Bose case the Matsubara propagator 9'( '(k, ik„) enters,
which also carries a frequency k„=2m nks T. Momentum
and frequency are conserved at each vertex and, finally,
one must integrate on the internal momenta and, in the
Bose case, sum on the internal frequencies. As we have
observed, the critical singularities in the perturbation
terms arise as (u~0 solely from momenta close to k=0.
Further, since there is a gap of Zn.k)i T between the Matsu-
bara frequencies, only the n =0 mode of 9"P) is actually
singular at k =0 and (M =0; in fact, one then has
9" '(k, 0) cc 6 ' '(k) for kAT and k/k/, small. This indi-
cates that the Matsubara frequencies are, in a
renormalization-group sense, irreleuant and cannot change
critical behavior for r, &0. They do not, thus, enter
directly into the mapping. However„one cannot simply
neglect all the nonzero Matsubara frequencies since, as
seen in first order, the corresponding modes add up to
give Bose-hke factors which provide effective cutoffs of
order AT' on all internal momentum integrals. On the
other hand, the nonzero frequencies can, thereby, be trad-
ed in for a cutoff kA-AT, as we have seen explicitly in
first order. These considerations complete our discussion
of the mapping between spin and Bose systems.

4 =A —/ks T= —, I (r +q ) o q o
q

1+ ~" ~ - ~-q" ~q'+q~-q"'~q" —q

for spins o (x) with transforms o q, while u is non-
negative and a momentum cutoff qz=—1 is understood.
We bring our spin Hamiltonian, (5.3), (5.4), plus (5.10),
into this form by rescaling spin and space variables ac-
cording to

(6.1)

q=klkA, x=k/, r, (T =(PJ R~P~+ )'/2si, ,

and, for the two relevant thermodynamic fields,

r= (z+J())—/JpR()kA, u=4upksTk„ IJpR() .

(6.2)

(6.3)

[Note that u as defined in (6.1}is 4 times the parameter u

in Ref. 6.] The correspondences for the Bose system fol-
low from (5.23)—(5.25) which yield the simple relations

r = —(4m/I'd )P)M, u =(8m II g)(PUp/AT), (6.4)

in which I d is defined in (5.27). Thus r is the chemical
potential or temperaturelike variable. For the density we
also find, from (5.24), the correspondence

p=M, =(4~/nI', ) f (
~ a, ~') . (6.5)

Now let the reduced "Helmholtz" free-energy density
as a function of the magnetization density
m = (

~
o p ~

)/(k A Vn )'/ be defined by

A(r, m) =(kA Vn) '1n[Trq+p[exp( —8 ) I ], (6.6)

where the factors k/, refiect the spatial rescaling in (6.2).
Then, to leading order in e, Nicoll and Chang show the
singular part of the free energy can be written

2

(g(4—n)/(n+8) 1)
4u n —4

Kac—van der Waals limit). In addition, they embody
correctly all critical exponents to O(e) .In applicable re-
gimes, in particular for n =1 (Ising-like}, they agree with
expressions obtained by other authors. ' ' Furthermore,
in zero-field, which is all we require here, they have been
checked by one of us."

Nicoll and Chang work with the reduced Hamiltonian

VI. ANALYSIS OF THE e EXPANSION

We proceed now to calculate the superfiuid density for
the dilute Bose gas and its sealing function via the
renormalization-group e =4—d expansion tech-
nique. ' ' We will also, incidentally, present results for
the free energy and susceptibility. Finally, we will review
the comparison with experiment.

g)2/(& +8)
P

l

where the linear sealing field for r is '
1 n+2

to =p+g~6'Q with g~ =—
2 n+8

(6.7)

(6.8}

A. Thermodynamics

The free energy of the n-vector spin model has been
calculated to first order in e for general n both above and
below T, by Nicoll and Chang. Their results correctly
reproduce all known exact hmits: n ~ 0() (spherical
model); u —+0 (Gaussian model); and infinite range (the

In fact tp turns out, to O(e), also to measure the deviation
from the critical line. Thus tp & 0 specifies the disordered
phase above T„' the ordered phase below T, is described
by to & 0 in the limit that the magnetic field,
h =(()A /Bm )„vanishes. The auxiliary functions
P(tp, m) and g(tp, m) are given implicitly through the
equations
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' e/29u, /2 u (n —1) m

n+8 n+8 h

Q = 1+u (S'/ —1),
S=Q/(t Q

'"+ '+3um )

m/h =P/(tpQ /'"+ '+um )

(6.9)

(6.10)

(6.11)

(6.12)

8. The susceptibility and scaling

For reference below, and because this is the function
whose perturbation expansion we have examined in such
detail, we obtain next the scaling form for the susceptibili-

ty, X, above T, in zero field. In this case we have h ~0,
m ~0, and m /h ~X.

Putting m =0 in (6.11) and (6.12) and eliminating S
yields the equation

in which Q+(tp)=1 u—+uQ+ /tp (6.21)

u =u /u ' with u ' =8n e/( n +8) . (6.13)

l —u+uS'"
t()(1 u+u—S'")'""+"+3um' ' (6.14)

From this one can show that S remains bounded for
tp ~0 when e~2. Thus when h~0 in (6.9} the first two
terms on the right can be neglected which yields

Note that u'—:u '(d) is the value of the coupling constant
u at the nontrivial n-vector fixed point; like the critical
exponents, it has an expansion in powers of e although, in
higher orders, u

' has some residual dependence on the de-
tails of the renormalization group used. We will return
later to the question of its value for e= 1 or d =3. The
susceptibility is X=(Bm/Bh)=1/({) A/Bm ): above T, it
follows directly from (6.12) when h ~0.

To obtain a more explicit expression for the free energy
in the ordered phase (tp~0, h~O) we eliminate Q be-
tween (6.10) and (6.11) to obtain

These two equations suffice to determine X as a function
of tp and u. However, they can be cast into a more trans-
parent form if we introduce the nonlinear scaling fields

t+=t()/(1 —u) " and u=u/(1 u) .— (6.23)

We may then write the susceptibility in standard scaled

form just as

X=t +'X(x+) with x+ u/t +—— (6.24)

Note that this exhibits the anticipated exponent yp= 1

and, likewise, the crossover exponent P= —,'e both ex-

ponents are, in fact, correct to all orders in e as we have
seen. Then, if we put

for Q+(tp)=Q(tp&0, h =0). From (6.12) with m =0
and (6.9}with S eliminated in favor of Q one gets

t —1Q —6/(n+s) n
( 1 u +ups/2)+ Q

n —1 9
n+8 n+8

(6.22)

P=u[(n —1)/(n+8)](m/h)'/ as h0.
Substitution into (6.12) then gives

u[(n 1)/(n+8)](h/m)1 {e/2) —tpQ6/(n+8)+uni2

(6.15)

(6.16)

Q+ (t(), u ) =Q(x+ )(1—u )

we find from (6.24) the basic equation

Q(x) =1+x[Q(x)l " (6.25)

2g
(tp ) = ( —1/2tp )Q —" (6.18)

with g„as in (6.8), and hence to an equation for Q (tp),
namely,

Taking the limit h ~0 yields the spontaneous magnetiza-
tion, mp(tp), which is proportional to [np(T)]'/2
=

~

)Ilp( T)
~

in the Bose system: one finds

m =( t /u)Q '"+ '— (6.17)

the subscript minus denoting the ordered phase. This in
turn leads to

so that Q is, indeed, a function only of the scaled variable
x. Finally, the scaling function X(x) is, via (6.24), deter-
mined by the equation

( I +xX @/2 ) /Q 6/( n + () ) +n+8 n+8 (6.26)

X(x)=1+ x�—,
+n�
n+8 ' n+2

2
n+2 + ~ ~ 0

n+8

It is not difficult to check that the solution of this equa-

tion is simply X(x)=[Q(x)]
One cannot, for general e, solve the equation for Q(x)

exp]icitly, but one can expand for small x and large x
which yields

Eg
Q =1—u+uQ "/( —2tp)' (6.19)

as x~0,
In terms of the solution of this equation the free energy in
the ordered state is simply

W, (t, )=[t,'/(n —4)u](Q"-"'""+"——,'n) .

It is worth remarking that the limit of this expression
when n ~4 is perfectly finite and yields the correct n =4
result.

=x "(1+co„x " + ) as x~oo, (6.27)

in which the exponent for large x is

p)„=2g„/( I —g„e)=(y —yp)//[1+0(e)], (6.28)

where the n-vector susceptibility exponent has the expan-
sion '
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y= 1+ e+O(e') .
2(n +8}

(6.29)
2t g(4 n—)i(n+8)

(n —4)u

The form of X(x) for x~ 0() is thus just what is required
to yield the correct crossover behavior to X-to" for
u &0. Notice, further, that we are in a situation where

x, = ao: compare with (3.22).

C. Imposition of the constraint

1 ——,
' e[1—(1—u )Q ']

x
1 —g e[1—(1—u)Q '] 4

D. The helicity modulus

(6.35)

By (6.4) and (6.5) the required constant density con-
straint can be written

(6.31)

2k/) (BA/(3r) =npI"~/4n . (6.30)

Note the important factor kz arising from the spatial re-
scaling in (6.ti). If we use kz ——I q/&z with I d given by
(5.27) and recall from (2.23) that the critical point, T, , of
the ideal Bose gas is determined by

pAd, ,=pA', (T/To)'"= P ,
' d ), —

The last result we need is an expression for the helicity
modulus~ which, for n =2, is proportional to the super-
fiuid density. (One must, of course, recall that in an in-
teracting Bose system the superfluid density, p„ is not
equal to the condensate density no, indeed, unless q=0,
the two quantities have different critical exponents.
We may appeal to the work of Rudnick and Jasnow' who
have calculated the helicity modulus Y(to, u) to order e
With n p 1 they obtain

we can rewrite this simply as
PY=e (~ 2" [m'(1*)+—'K ] (6.36)

2(d —2)Eg '(BA / "dr ) =n ( T, /T )~/ (6.32)

T, (p) =T, (p)+O(e', u 8) .

Putting T= T, in (6.32) thus indicates that we have

where K~ is defined in (4.12}. Furthermore, since tz
differs from r only by a shift we may replace (BA /Br ) by
(BA/Bto). Notice that we have eliminated the density in

favor of the (ideal) critical temperature.
Now (6.32) involves the total free energy, A, whereas

(6.7) or (6.20) give the singular part A„which vanishes on
the critical line to ——0. As in Sec. III B the regular part of
the free energy, say Ao, thus determines the constraint at
criticality. This should have a contribution proportional
to eu; but the work of Rudnick and Nelson'i shows that
its coefficient actually vanishes. Thus although there is
an O(eu ) shift in the unconstrained T, we can expect

where K4 ——1/8m, as before, while (noting that the pa-
rameter u in Ref. 10 is —,

' times that used here and in Ref.
9) we have

m (I') = t()(1')/4u—(l'),
u(1') =ue" /4Q(l'),

(6.37)

Q(l') =1+u(e" —1),
(6.38)

to(l')=toe" [Q(l')]
Furthermore, the ordered phase, in which Y is defined, is
determined by the condition'

to(l )= —
2 i (6.39)

which serves to fix I (to, u). Using this and eliminating
l' in (6.38) yields an equation for Q(1')=—Q which is
identical to (6.19). In terms of this function one finds that
e '" " m (1') is equal to mo as given in (6.17) while
the helicity modulus can be written

2(d —2)Ed '(BAO/Bto}=n, (6.33) ( t / )g6/(n+8)

X [1+ ,
' e(n+8) '[—1—(1—u )Q ] I . (6.40)

correct to O(e). Subtracting this from (6.32) gives an ex-
pression for ((}A,/Bto). Now, as can be verified from
(6.20), A, (to) vanishes faster than to (the critical exponent
a being less than unity); thus the derivative should also
vanish at criticality. We can achieve this requirement by
incorporating the shifted T, into the constraint by writing
it in the final form

2(d —2)Kd (BA/Bto)=n[(T, /T) l]=nt . —(6.34)

Although in higher orders, this specific form for t may be
modified, t must always vanish linearly with T T, and-
the form specified here will give enhanced accuracy as the
ideal Bose limit (UO~O, T,~0) is approached.

Finally we record here the result following from (6.20)
for the free-energy derivative below T„namely,

This equation together with (6.19), (6.34), and (6.35) pro-
vide all the ingredients necessary to calculate p, and the
corresponding scaling function under the constraint of
constant density. Readers interested only in the final ex-
pression should omit the balance of this subsection: the
results for the dilute Bose gas (for which we need only
n =2) are given in (6.58)—(6.67) below.

To proceed, we again look directly for scaling forms.
We may still use (6.23) to define the nonlinear scaling
field i but it proves more appropriate below the transition
to use a modified scaling field for to. Accordingly, we
put

= —2t()/(1 —u )
" and x =u/t ' (6.41)

Then if Q(x) is defmed, as before, to be the solution of
(6.25) we find from (6.19) that
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Q (tp, u )=(1—u )Q(x ),
i.e., the basic functional equation applies both above and
below T, . The helicity modulus may now be cast in
scaled form as

with scaling function

II (x)=(1/2u')Q /'"+"[1+ ,'e—(n+8) '(1—Q ')] .

(6.43)

PY=(t ju) W(x ), (6.42) For small x and large x we thus find

2u 'W(x) = 1+ 12+6 x+O(x )
2(n +8)

6[1+0(e)]
2("+8) (n+8)x'"' '""

as x~0,

as x~00, (6.44)

with p)n =6j(n +8)(1—g„e). It follows that when

tp~0 for—u p 0 (i.e., when x ~ 0() } one obtains

PY'-
~

tp
~

" with v =(1——,
' e)/(1 —g„e), (6.45)

where v is the critical exponent for the n-vector helicity
modulus correct to O(e). Since ri=O(e ) we have
v=2P+O(e ) so that, to first order in e, both Y and rnp

or, equivalently, p, (T) and np(T) have equal exponents.
Nevertheless, the crossover scaling functions are different
as follows by comparing (6.40) with (6.17).

t=t(1 —u) " and y =u/t'/' (6.46)

where t is the constrained critical-temperature variable in-
troduced in (6.34). Combining (6.34) and (6.35) yields, in
the first place,

When u-+0 the helicity modulus evidently diverges
thereby refiecting the instability of the Gaussian model
below the transition. This divergence is, of course, re-
moved if the constraint is imposed. Again we would like
to find a scaling form: to this end let us put

nKdu t ~

(4 ) 8)
1

Q
(.—.)/(. +8)

(4—n )u 1 —g„e(1—Q ')
n

(1 -)(n —4)/(n+8) (6.47)

where the argument of Q here is x =u/t '/2. This equation relates t to t and u [and is analogous to (3.34) in Sec.
III8].

If one now divides through by u '2/" ' and substitutes for t and t in terms of the scaled variables y and x, the con-

straint would be entirely in scaling form were it not for the term proportional to n. In the crossover region, however,

u ~0 and so u is smail; thus, at the cost of neglecting one of the corrections to scaling, we can set u =0 in the trouble-

some term. This leads to the fully scaled form

i —(2/n) (4—n)/(n +8)

2(d —2) 4—n
Q g e(Q 1) 4

(6.48)

The constraint now represents an equation for x in terms of y with a solution, say, x ="(y). Solving the equation
for y small and y large yields

=-(y)==-~'-"")Il+[d=-./(n+8)]y'-'""+ I asy 0,
[ i —(n/2) 1/( i —a„)," [1+O(y as g~ 00 (6.49)

where the amplitudes are a„= ,' (4 n)ej(—n+—8)(1—g„e) (6.52)

r„=(1——,e)/[1 3ej(n+8)] . — (6.51)

:-p——[(d —2)/2nKd u ']'
(6.50)=n (4 n)Keu '(1—g„e—)/2(d —2}(1——,e),

while

is equal to the n-vector specific-heat exponent up to a
correction factor [1+0(e)]. Thus we see that when

y~00 a standard exponent renormalization takes place
as anticipated in Sec. III B.

Finally, using (6.42), the constrained helicity modulus
can be written in scaled form as

Furthermore, the parameter PY'= [nK& j(d —2)]t I'(y), (6.53)
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where the scaling function is given by

Y(y) =(d —2) ~[:-(y)]y"~" '/nKd [:"(y)]'~' .

From (6.44) and (6.48) we obtain the expansions

(6.54)

=Y.y ""[1+0(y "}l

6:o
Y(y)=1+ [1+0(e)]y' "~2'+0(y2 ') asy~O,n+8

tional to uo of the sort dropped in going from r to t. In
connection with the experiments in Vycor, ' it should
also be recalled from Sec. I, that the density, p, of the ex-
cess, nonlocalized helium, is not accessible to direct obser-
vation whereas p, (0) and T, can be measured.

The interaction variable, u, can be expressed as

u =9 lo ', o' =e/10K4
with

(6.55) Kg ——2/(4rr ) I"(—,
' d), (6.61)

where, recalling (6.49), we have

Y„=[(d—2)/2nKuu i[1+@/2(n +8}l-" (6.56)

E. SuperAuid density scaling function

For ease of reference, here we collect and restate (for
the case of n =2) all the results needed for expressing the
superfluid density in scaled form. From (6.25), (6.31),
(6.34), (6.43), (6.48), (6.53), and (6.54) we can write the su-
perfluid density for a=4 dy 0 as-

p, (T)=m p(T/T, )~~ t Y(y)

=p, (0)[1 (T/T, )
i ]Y(u—jt~), (6.58)

where the renormalized crossover exponent (see Secs. III B
and IVB) is

and remark, for use below, that by (6.50) we have
Y„~(u'}" . The prefactors appearing in (6.53) thus
serve to normalize Y(0) to unity. Notice, however, that
Y(y) does not have a regular expansion in powers of y;
equivalently, then, the constrained superfluid density does
not have a regular perturbation expansion in powers of Uo.

This reflects the fact that even in the ideal limit the con-
straint induces exponent renormalization via the factor
1/(1 —aG) where the pure Gaussian exponent is aG ———,'e.
(See also Sec. III B.)

This completes our general derivation of the constraint-
ed e-expansion expressions. To study the superfluid den-
sity we may set n=2 and use the correspondences with
the Bose system, including

p, (T)=(m /R) kp Y(T) . (6.57)

Note that the factor of k~ again results from the spa-
tial rescalings (6.2) and (6.6): Y has dimensions I/L'
since it is an energy density divided by the gradient of the
phase squared.

so that K4 1/8m——, and

8m PUO
u =

Id A

(d +2}/2

I d I ( —,
' d —1} Ar

d —2

(6.62)

in which we have used (2.17) while

I d
——(d —2)g( , d) /4—nKd . (6.63)

and then define "(y) to be the solution of

, 5
1 —4@[1—Z(:") ']

1 Kdez(~)1/5 4 +
—,
' e[1 Z(=}—i] 2 5K4(d —2)

(6.65)
with Kp as in (6.61). The behavior of:-(y) for y large and
small is given by putting n =2 in (6.49). I.astly take

W(x)= Z(x)3i 1+ xz(x)"i '

20
(6.66)

Then the scaling function is finally given by

Y(y)= &[:"(y)]y ~~ j:-(y)'~'.d —2

2Ed
(6.67)

Now Y is normalized so that Y(0}=1. Thus putting
u ~ vo ——0 in (6.58} correctly reproduces the ideal-Bose-gas
result. The behavior of Y(y) for small and large y follows
from (6.55) with n=2. In fact, one finds that Y diverges

[Cp- 0~/'0
like y as yahoo, where the ideal superfluid ex-
ponent is go ——1 while the constrained interacting exponent
is then given by

Recall that AT ——h /(2@m 'kz T)'~ is the thermal de Bro-
glie wavelength while a is the scattering length.

To express the scaling function Y(y), first let Z(x) be
the solution of

(6.64)

P = —,e/(1 —, e) =(4 d)/(d ——2), — (6.59)
g=(1 ——,

' e')/(1 —3e/10) . (6.68)

while the temperature deviation has been taken as

T=(T, /T) " 1. — (6.60)

In writing the second line of (6.58) we have used (6.46) for
r and replaced factors 1 —u by unity as appropriate in the
crossover region where Uo-uo-u~O. In the first line
the density p reentered through the ideal-Bose-gas
critical-point relation (6.31). In this limit we may certain-
ly identify m'p as equal to p, (0) as in the second line.
More generally, however„ there will- be corrections propor-

Correct to order e this is equal to U/(1 —a) [see (6.45) and
(6.52}] and hence g exhibits the expected exponent renor-
ma11zatlon.

From (6.62) we see that for fixed, or slowly-varying in-
teractions we have u —T,' ' in the critical region.
This shows how, for d ~ 2, the system becomes increasing-
ly ideal as the transition temperature drops (with decrease
of density). It also becomes clear that we have justified
the original scaling ansatz (1.4} with crossover exponent
PT as given in (1.5). The corresponding scaling function
1s
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I' (y )= &(y' " '), (6.69)
m'/m =1.5+0.2 . (6.72)

with amplitude

E =[( ,'d—)&I&I'( —,'d —I)/1&rr ] ~'" '(2' Irn'kea ) .

In this identification we have dropped higher-order differ-
ences as between t and t, etc. %e may hope, however,
that the specific forms appearing in (6.58) will result in
improved accuracy over a somewhat wider temperature
range.

In general it is necessary to solve for F(y) numerically.
This is most easily accomplished by treating x as the in-
dependent variable, thus solving for F parametrically by
finding y =" '(x) from (6.65) and Y(:- '(x)) from
(6.67). Only the calculation of Z(x) is then nontrivial but
the defining equation (6.64) is readily solved by iteration.
This procedure has been carried out for d=3 (i.e., e= 1}
and the resulting curve has been Qtted to the data for heli-
um in Vycor with appreciable success: see Fig. 1 of Ref.
6. It is instructive to discuss some of the quantitative as-
pects of this flt.

3/( T;T, ) =p, (T;T, )/p, (0;T, )[1 (TIT—, )' '], (6.73)

appropriate for d= 3. Our theory, explicitly (6.58), (6.53),
and (6.55) for d =3 with / =1, etc., predicts

9',„,(T;T,)=&,h, (a,u'}T,'~'It 2~,
with

(6.74)

This value seems fully acceptable from a theoretical
viewpoint and is certainly not inconsistent with the pic-
ture of helium in Vycor we have adopted. However, the
fitted value of the scattering length, ar,„would then be
about 160 A which is still much larger than seems reason-
able.

It must be realized, however, that the value of the pa-
rameter u'=e/10E4 plays a very large role in determin-
ing ar„since it enters as a factor (i) in the argument
y =u/t of the scaling function and (ii} in the amplitude
of the divergence of F(y) on which the fitting was based.
To explore this, consider the scaled quantity

F. Pit to experilnenta1 data
W,h~, (a, u

'
)=Mo (a /u '

)
z~ (6.75)

Now it follows from (6.58)—(6.62) that only a single fi-
ttin parameter is entailed in comparing our scaling result
to experimental data. Specifically, if m is the true mass
of a He atom this parameter can conveniently be taken as

a=a(m'/m)'/ (6.70)

p, (0)=p=g( —,
' )(2n.rn*kalh ) T, (6.71)

so that above the onset density po a plot of T, versus

p, (0) should show linear behavior for small enough T, . In
fact such a plot displays noticeable downwards curvature
but becomes reasonably linear for T, &25 mK and sug-
gests a definite, nonzero limiting slope. If this measured
slope is attributed to m ' one concludes

It must also be recognized at the outset that the exponent

g when evaluated from (6.68) with e=1, which yields
(=5/7=0 7143, .must differ somewhat from the true ex-
perimental value, for which one has'z (=0.674 as mea-
sured in the bulk fluid, or as observed in Vycor,
0.64+0.05. Thus one certainly cannot hope for a perfect
fit to the data even though they do scale very well with
/=1, which is exact even for d=3. By the same token
the true scaling function must diverge for large y as
y' ~= ' while, by (6.SS), our O(e) result diverges as
y

~— . Nevertheless, a remarkably good fit can be
achieveds by adjusting a to match the amplitude of the
divergence for y not too large. This yields ar„=200 A.

Now for pure gaseous helium one has m'=m and
as»~2.2 A. The 85- to 95-fold discrepancy between the
fitted value of a and as» is, at first sight, rather disturb-
ing even though it seems very difficult to estimate theoret-
ically what ratios m'/m and / a»asshould apply in
Vycor However, .one can actually estimate the effectiue
mass ratio, m'/m, from the data themselves. Specifical-
ly, one may examine plots of T,(p) versus the overall fi-
ttin density p or versus p, .(0). For a true ideal Bose gas
one would have, from (6.31),

where &0 depends only on absolute constants and m'.
Now, even though the exponents here are not quite
correct, the experimental data ' show that (6.74) provides
a good description (for t not too small) with an observed
amplitude, say, W,„~,. Fitting W,h, to this gives

ar„=(u') (M,„~,/Wo) ~ (6.76)

Evidently, then, ar„ is, all other things being equal, pro-
portional to (u') .

Now as mentioned originally, u', as the fixed point
value of u, is strongly dependent on d; furthermore, in
contrast to the critical exponents, its e expansion is not so
reliable in low orders. To first order in e we found (for
n=2) u'=e/10E4 with E& I/8'; by e—x—amining the
origin of u' in the renormalization-group theory one
seesz6 that a rough and ready estimate of this value for
larger e is obtained by replacing E4 by Eq. see (6.61).
Since we have Ei ——1/2n this yields a fourfold reduction
in u' relative to the original a=1 estimate. Accepting
that and (6.72) for m '/m, the value of at„ is reduced by a
factor of 16 to ar„-10 A: that is certainly more reason-
able although, perhaps, still somewhat large.

It should be recalled, however, that u'(d) is, beyond
O(e), not a universal quantity, unlike the exponents.
Conceptually, and in leading orders, however, u

' is close-
ly linked to the renormalized coupling constant, g, which is
universal. Furthermore, the field-theoretic-based numeri-
cal estimates of critical properties in d =3 dimensions due
to Baker, Nickel, and co-workers ' i give values for g. In
a normalization which gives g =(n+8)u'/8m for small
e, the numerical work yields g=1.406 for d=3, n=2.
By contrast the truncated e expansion yields g=m, which
is larger by a factor of about 2.23=@S. A fivefold reduc-
tion of ar„gives 32 A, which is still rather large; buti by
both routes, a significant reduction from ar„=160 A is
clearly called for.

The arguments just presented, while suggestive, are
rather ad Roc. A more systematic estimation method is
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open if one recalls that we know the leading behavior of
the susceptibility scaling function, X(x), and the
nonuniversal metrical factors for x both in the e expan-

sion and, by perturbation theory, for general d &4. In the
latter case the results (3.8), (4.8), (4.16}, (4.19), (4,20), and
(4.42) show the scaling variable is

Puox=8
AT

(6.77)
AT

with g = —21 ( 1 ——,
' d) and D =g( —,

' d). In the former

case, (6.24), (6.27), and (3.4) show that x should be com-

pared with 2x+ /5. By (6.4), (6.8), etc. , this yields

8 =(4n)"i /5u'

and

It is easily checked that both expressions for 8 and D
agree precisely to order e! This represents yet a further
check on the scaling interpretation of perturbation theory
and on the model matching procedures. Furthermore, op-
timal values for u'(d) for general d can be found by
equating the two expressions for 8, which yields

it "(d =3)=2~/5 =u'(e= 1)/6. 28

or for D, leading to

A. Quantum-mechanical recursion relations

Several authors have considered the application of
renormalization-group methods directly to the interacting
quantum-mechanical Bose gas. Thus Singh has used
%ilson's momentum shell integration method ' to
derive recursion relations to order e. In order to avoid
changing the Hose operator commutation relations under
renormalization, Singh chose to absorb the normal spin
rescaling factor into a renorinalized particle mass; this
then is found to flow to infinity under the group action.
While the fact that, near the fixed point the particles are
very massive, gives one an intuitive feel for the essentially
classical nature of the critical point, it unfortunately
leaves one with a somewhat ill-defined fixed-point Hamil-
tonian. Alternatively, following Lee, 6 one may allow the
Bose operators to be rescaled and one then discovers that
their commutators flow towards zero; another indication
of classical behavior. However, the quantum-mechanical
nature of the fixed-point Hamiltonian remains somewhat
obscure. Nevertheless at the level of diagrammatics the
two interpretations are entirely equivalent and lead to the
same set of recursion relations.

Let us now examine these recursion relations explicitly.
It will be seen that the mapping of Sec. V can in fact be
derived from them, although not in the way originally en-
visioned by Singh. It is convenient to change notation
and introduce the deflnitions

u'(d =3)=n /10=u'(@= 1)/8 . s(i) =Pfi qA/2m (i), (7.1)

To within +13% the two routes indicate the same correc-
tion factor of about 7.1. (The differences, of course, re-
flect the fact that the scaling function to 0 (e) cannot be
completely correct or consistent even if the "correct"
value of u' is inserted. )

Finally, this argument for tt "(d=3) yields a value for
ar„of about (160 A)/50=3. 2 A. This is almost too close
to the gas value for comfort! But, by any measure, it is
clear that the quantitative aspects of fitting our theory to
the data of Reppy, Crooker, and co-workers, '~ are quite
consistent with a picture of the excess, mobile helium in
Vycor acting as a weakly interacting Bose fluid with an
effective mass m 1.5m, and effective pair-interactions
characterized by a repulsive part similar to that between
free helium atoms but with a much reduced attractive tail
(since no gas-liquid phase separation is found in Vycor).
In closing this discussion, however, it should be remem-
bered that we have, as yet, given no account of the effects
of the random, amorphous nature of Vycor on the cross-
over from ideal behavior: further consideration of that is-
sue is deferred. In the next and last section other ap-
proaches to generating the e expansion for a Bose fluid
are briefly reviewed.

VII. OTHER APPROACHES

As far as we know, calculations of the helicity modulus
in the critical region have been restricted to classical spin
systems. The mapping of Sec. V was therefore a neces-
sary step, permitting us to make use of these existing cal-
culations. It is interesting, then, to explore alternate
methods for achieving this mapping.

which embodies the intrinsically quantum-mechanical
character, and

r(l) = —2m (l)JM(1)/A' qz,
v(l) =8m (l)uo(l)/Pi)i qw

(7.2)

(7.3}

where q~ is a cutoff. The recursion relations derived by

Singh are then, in differential form,

ds/dl = —2s,
d1'/di =2K +svh i(s,r),
duidl =ev —(5/2)su hz(s, r),

(7.4)

(7.5)

(7.6)

where the functions hi(s, r) and hi(s, r) are given below.
The cutoff entering here should be fixed, once and for

all at the beginning of the calculation and should be tern

perature independent: it is reasonable, in fact, to take
q„~ 1/a where a is the scattering length or effective
atomic diameter. However, Singh with no discussion,
assigned this cutoff a value qz —1/Ar, a step which
seems quite unjustifiable. Indeed, as we will show, Singh s
assumption actually proves to lead to incorrect answers in
the weakly interacting, low-temperature limit. On the
other hand, the effectiue 1/Ar cutoff discovered in Sec. V
will arise naturally from an analysis of the recursion rela-
tions: it does not have to be put in by hand. Indeed it is
instructive to see how Singh s approach, if properly imple-
mented, will reproduce our results.

To this end we need the functions entering into the re-
cursion relations, namely,
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h2(s, r) = ,
'

K—d

h ) (s„r)=Kd l(e" '+" 1—),
—,
' coth[ —,'s (1+r)]

1+r

(7.7} 2(dA /ds)+(d —2)A /s = Kd/(e' 1—) . (7.15)

g ($) ) s —(d —2)/2K ds $ (d —2)/2/( s 1)
0

As $~0 the required solution of this equation must
remain bounded so that one finds

sinh [—,s (1+r) ]
(7.8)

It should be noted that there is a discrepancy between the
first part of the expression for hq(s, r) here and Singh's
Eq. (23) as printed in Ref. 44(a); however, the difference is
of no consequence in Singh's further calculations nor in
our analysis here. The important features follow by not-
ing from (7.4) that s (1) vanishes as 1~ ()() and that

lim [sh ) (s,r)]=Kd l(1+r),
s~0

lim [shz(s, r)] =Kd /(1+ r)

(7.9)

(7.10)

dr Id 1 =2r +Kdsu I(e' 1), —

dv/dl =ev

(7.11)

We require a combination t =r +A (s)u which renormal-
izes in a purely multiplicative way as

dt/dl =A, &t, (7.13)

and can therefore be regarded as a linear scaling field.
Substituting with (7.11) and (7.12}yields

Then, if one puts u =16u the recursion relations for r and
u in the limit s~0 are exactly those normally derived to
order e for the s model with n =2. ' This establishes
the classical nature of the critical behavior of the interact-
ing Bose gas at finite temperature.

Note, however, that since, with our specification of the
cutoff, we have s(0) ~A /Ta, the low-density, T,~O
limit corresponds to large s rather than to s~O! It ap-
pears then that there should be three significant fixed
points in the problem: the two familiar ones Gp=(r=O,
v=O, s=O) standard Gaussian, and C= (r =r', u =u'—,
s=0) (n=2)-criticality, as well as a zero-temperature
Gaussian-like fixed point G„:(r=O—, u=O, s = 00 ). The
reduced set of equations (7.5) and (7.6) with s =0 describe
completely the flow near the first two fixed points but,
evidently, the limiting dilute Bose gas corresponds to the
third one which was not considered by Singh. Indeed,
with his assignment of the cutoff one finds the initial
value s (0)= I/4m which is independent of all physical pa-
rameters so that there is no way of describing or investi-
gating the low-temperature limit. What must concern us,
however, is the scaling behavior about this new, s = ao

fixed point, G„.
Accordingly we will calculate s-dependent scaling fields

in the limit of large s and small r, u. To first order in r, u

we obtain from (7.5) and (7.6)

(7.16)

For large s the integral may be extended to 00 so that, re-
calling the value of Kd, we find

A(s)=g( —,'d)/(4m) s' ' +O(e ') .

The recursion relations finally yield

t:r+A—(s)u=s '[—pp, +2/( —,
'
d)(pup/AT)], (7.18)

for s»1. For Singh's original assignment, qAccAT,
there would be no grounds for lettiilg $ —+ 00 in (7.16) and
this result for t could not be derived; however, this is just
what is required for consistency with our previous results.

To make full contact with the results of Sec. Ip, we
may suppose that the thermodynamic quantity of interest,
say the susceptibility X(t,v), flows under renormalization
as

dX/dl =~(t (l),u (1),s (1)} . (7.19)

Following the usual procedures (see the Appendix) we
may integrate this using (7.4), (7.12), and (7.13) from
small initial values t(p) =t (0), v(p) = u (0), but large
$(p) =s(0), out to some noncritical matching locus deter-
mined by, say, an equation C(t, u, s)=0. This yields a
scaling form

X(0)—=X(t(0),V(p), $(0) )

= t(0I'X~ (u(p) /tI0) «$(p) t(p) ), (7.20)

C(t t, xt t'/', zltt) =0 .

The matching locus, C=O, must, of course, lie within a
region about G„where the linear relations (7.12) and
(7.13) remain valid. The relevant scaling combination in
(7.20) is, on using (7.6) and (7.18), found to be

u(()) 2(4m )
/ (Pup/A"T)

X =
t jp) [—Pp+2(,'( ,

' d)(Pup/AT)]'—
(7.21)

Apart from a constant factor, this is exact1y the linear
scaling field combination derived in Sec. IV. Note, in par-
ticular, that all dependence on the cutoff qA has cancelled
out. The effective cutoff, Ar ', arises from the exponential
character of the integral in (7.16). The second, irreleuant
scaling combination in (7.20) is

where y= —Q/«)(, )
————,

'
Q and (t) =e/1) ——(—,' e while the

G„scaling function is given by

X„(x„z)=X(tt xtt'/', zltt)

in which t (x,z) satisfies

dtldl =2[r+ —,u [sKd /(e' —1)
z =s(())t(())———P)((, +2/( —,d)(Pu()/Ar) . (7.22)—2$(dA (s)/ds )+eA (s)]j,

which implies XI ——2, and

(7.14)
This gives rise to corrections to scaling and is small in the
critical region. [Note that s(0)t(0) is not of order s(0) as
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—21~
i+ = r(p)8 aiid X(l~ ) =X(p)e (7.23)

Now by (7.1) and (7.3) we have u(p) ——u(p)/$(p) where

u(p) 2rnv p/——R qz may be regarded as fixed. The condi-
tions are thus satisfied if

might, at first, have been expected, because of the factor
$ ' entering (7.18).]

It is not, at this point, clear, however, why the scaling
function X (x,z) for crossover from 6„ to C should be
the same as for crossover from Gp to C which we have
analyzed. To see this one must examine the fiows in fur-
ther detail. If one crossover scaling function is to be
mapped onto another it is necessary that the fiows from
the first fixed point, 6„ in this case, pass through the
neighborhood of the second unstable fixed point, here Gp,
before crossing over to the third, stable fixed point, C.
Thus if

(r„u„$,)
—=[t(l, ),u(l, ),$(l, )]

lies near Gp, and is a known function of the initial point
( i{p) v(p), $(p) ), one need only substitute the functional rela-
tionship into the scaling fo~ appropnate nmr Gp
Hence, we need to elucidate the conditions under which
$(l} becomes small, say equal to 5$, before u(l) becomes
too large, say exceeding 5v. For u g5v the linear recur-
sion relations (7.12} and (7.13) remain valid and fixing i,—21~ l~
via $, =$(p)e =5$ yields the condition u, =u(p)e
&5v and gives

X(p) =X(i(()),u(()) &$(()) )

e/2
$(o) t(0)$(o) U(0)$(0]x ,5$
5$ 5$ (5 )'~z

(7.26)

the arguments on the right-hand side being just t„u„
and $, . On using (7.25) this yields

X(p) t(pt Xp(v(p) /i(p) ~ $(p) t(p) )~ (7.27)

which should be compared with (7.20). We may conclude,
takiiig $(p) sufficiently large (or T, small) and making the
identifications (7.21} and (7.22) for the scaled combina-
tions, that the scaling function X„(x,z) is identical to
X()(x,z).

As a final point suppose the condition (7.24) is not
satisfied, so that the crossover occurs "directly" to the
critical fixed point C with the fiows not passing close to
Gp. Then the full nonlinear equations (7.5) and (7.6) must
be used. Under renormalization $(l} will approach zero
but u(l) may be large enough to lie outside the crossover
region from Gp to C. Nevertheless, the system will even-
tually map onto the nonlinear scaling fields u and t of
Sec. VI although these will now be more complicated
functions of the starting parameters t(p), u(p), and $(p).
Indeed, owing to the complexity of the functions hi and
hz the precise relations are probably intractable; however,
they can matter only when vp is not small. We have thus
demonstrated how the explicit mapping from a Bose fiuid
to a spin model achieved in Sec. IV can be established on
a more formal renormalization-group basis.

$(p) =fPqp/2k&Tm(p) ) (u(p)/5u 5$'~ ) ~( (7.24) 8. Path-integral approaches

X( ry qug, $g ) i ~, Xp(vg /rg, $g, rg ) . (7.25)

If we suppose (7.24) is satisfied and use (7.23), etc., we ob-
tain

Consequently, if T=T, (or m(p)) are sufficiently small
the flows have the required property.

Now the analog of (7.20) for fiows starting near Gp is
just

The use of Feynman path integrals in statistical
mechanics has become increasingly popular. Various
representations for the interacting Bose fiuid partition
function exist, but the most useful seems to be one due
originally to Bell.49 The advantage of a path-integral rep-
resentation is that everything is written in terms of classi-
cal commuting variables so that comparisons with
classical-spin models should be more straightforward.
More explicitly, one may consider the Hamiltonian in the
orm

e(r, r) = V„'"g pa„-„e
k

The Hamiltonian may then be written

pA = f d r f d~%'(r, ~)[((3/Br) (R /2m)V —p, + (r(v)]%(—r, ~)
P+ —,

' f d r f d r' f dr
~

ql(r, v)
~

u(r —r')
~

(p(r', ~)
~

(7.28)

where %(r,r) is a classical complex field. Of course, the similarity to the original quantal Hamiltonian (2.1)—(2.5) is not
accidental: the new imaginary time variable, r, is reminiscent of the corresponding interaction representation variable.
The similarity is further elucidated if one makes the plane-wave decomposition

with k„=2nn/P . (7.29)

~=—g g [(k. (e), i )]~—)'.~—).+ Vti
'"

, g g ~q&),.&)'..5),) +q
k n k, k', q n

+T ~ g ~ ~ Uqa k, 1+k', 1'+ q, n~q', n'~k+q, k'+q'~1+n, l'+n'
k, k', q, q' l, l', n, n'

(7.30)
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Note the appearance of I/9 (k, ik„), the inverse Matsu-
bara Green's function, in the first term. Thermodynamic
properties follow from the partition function as given by

dReIai, JdlmIai,z= 8
k m ~&]c,m

with vi, „——(gi, —ik„) in which gi, is defined via

2sinh( —,
'

Pgi, ) =exp[ —,
'
P(ei, —}u,)] .

(7.31)

(7.32)

This normalization factor has been chosen so that Z
reduces to the usual ideal noninteracting result, when
w =U—:0;4s however, it is of no real consequence since it
effectively cancels out in auerages which are ratios of two
path integrals. From a perturbational point of view the
equivalence of (7.28) to the original forms (2.1)—(2.5) is
now clear: one readily sees that the classical diagrammat-
ic expansion resulting from the last two terms in (7.30) is
precisely the same as that for the quantal gas. Momen-
tum and frequency conservation are manifest in the 5
functions, and the extra Matsubara index on the Green's
function is evident in the first term. The discussion in
Sec. VD regarding the symmetry factors associated with
each diagram remains valid. The choice n=2 is mandat-
ed by the complex nature of the ai, i. Furthermore, if one
ignores the (3/Br) term in (7.28), and takes the real and
imaginary parts of ~p as the two components of a spin
variable, s =(s',ss), =(ReI 4 J,ImI VI ), then (7.28) is pre-
cisely analogous to the classical-spin Hamiltonian [Eqs.
(5.4) and (5.10)]. Such a truncation can, in fact, be justi-
fied via renormalization-group theory. An application of
Wilson's momentum shell integration approach to (7.30)
shows that the nonzero Matsubara frequencies flow to in-
finity under renormahzation. Thus, in the same way that
one recovers the classical action from the limit A'~0 in
the Feynman path-integral formulation of quantum
mechanics, so one sees that only those fields %(r,r) with
no r dependence contribute to the behavior near a fixed
point.

This illustrates the advantage of the path-integral ap-
proach: the quantal and classical models may be treated
simultaneously within the same framework, and the cross-
over between them examined in detail. Wiegel, and
Creswick and %iegel ' have discussed these points, but
their calculations require further comments. In neither
paper has the rescaling of the field ip under renormaliza-
tion been carried out properly: thus the critical point de-
cay exponent g has not been correctly accounted for.
(See, e.g., Ref. 52 for a clear discussion of this point in the
analogous classical calculation. } Furthermore, the neces-
sary renormalization of the various n-body interaction po-
tentials has not been allowed for. 2 These shortcomings
do not affect the validity of their fmal approximate closed
form, which, although somewhat ad hoc, does reproduce
the correct recursion relations close to the fixed point to
order @=4—d. If carried through more systematically,
the approach of Wiegel and Creswick should reproduce
the recursion relations of Singh, and therefore the map-
ping of Sec. V.

The study of the effects of quantum mechanics on criti-
cal behavior often goes under the name "zero-temperature

crossover" since it is only as T, ~O that quantal correc-
tions become important and can eventually overwhelm the
leading, nonquantal behavior. The standard conclusion is
that a phase transition in a quantal system at zero tem-
perature which is driven, say, by some auxiliary parame-
ter, g (e.g., the chemical potential in a Bose gas, or the
transverse field in an Ising spin system), will have ex-
ponents characteristic of the corresponding classical sys-
tem in one higher spatial dimension. The reasoning
behind this s is that as T, ~O, the gap 2nkiiT between
successive Matsubara frequencies vanishes, and the
discrete sum over frequencies becomes an integral over a
continuous parameter. This parameter may, in certain
cases, be interpreted as an extra momentum component;
hence an increase in effective dimensionality follows.
Indeed Suzuki has used the Trotter product formula to
derive an explicit mapping of the T~O d-dimensional Is-
ing model in a transverse field g=I, onto the (d+ 1}-
dimensional classical Ising model with I replacing the
temperature. For finite T the mapping produces a
(d+ 1)-dimensional model, but one which is anisotropic
and of finite extent in the extra dimension, the "thickness'
being proportional to 1/T.

In spin language, a hard-core Bose gas on a lattice cor-
responds to a spin- —,

'
quantal XY model in a transverse

field. 5 However, from our present analysis it is clear that
the naive add-a-dimension conclusion is not correct:
Rather in the limit T,~O the behavior must, in fact, be-
come Gaussian as we have shown, since the relevant
transformed interaction strength, varying as T' '

uo,
vanishes as T~O for dp2. (Observe, however, that for
d &2, the interactions dominate at low temperatures and
nontrivial behavior must result. )

Walasek has used field-theoretic methods to study the
Hamiltonian (7.30) (with w=0). Indeed he has derived a
T, ~0 crossover scaling function for the equation of state
to first order in e; the results (as far as they go) are con-
sistent with ours. The crossover scaling variable is found
to be

y ~ T/h' for e=4 —d &0, (7.33)

where h cc p, —p (not, in fact, (p, —p)/p, as is stated in
Ref. 55: see Ref. 56). Multiplying numerator and denom-
inator by P'~ yields

y T(d 2)I2/(Pp 1'—)e/2 (7.34)

which agrees with the results of Sec. IV. %alasek's cross-
over scaling function for the equation of state above T,
yields the ideal results

Ar(p p, )-[PAr(p —p,—)]" ""
outside the crossover region, Ar(p —p, })kii T„datnhe
expected, interacting result

Ar(p p, )-[&A'r(p p, )—]'" '=[PA'r(p—p,)]'—
for Az(p —p, ) «kz T„where, correct to 0(e), v and a
are the correlation length and specific-heat exponent,
respectively.

Earlier work by other authors has also served to eluci-
date the Gaussian nature of the low-temperature critical
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behavior. Hertz has examined a range of model Hamil-
tonians of the form (7.30), but with ik„ in the first line re-
placed by various other expressions such as k„,

~ k„~, and
k„/k as appropriate to different physical situations. For
each case he calculates the dynamical critical exponent z
and finds that in dimensions greater than d &

——4—z, the
zero-temperature fixed point is Gaussian in character.
Although he does not discuss the Bose case explicitly, his
scaling arguments for the

~
k„~ case should apply. For

this he finds z=2, so that for d & 2 the behavior should be
Gaussian, in agreement with our findings.

Vvedensky and Creswicks have used the same tech-
niques to discuss the T,~O behavior using (7.28) (with
w=O} and do indeed find z=2. They derive recursion re-
lations to order e which {subject to minor discrepancies
which we suspect represent misprints) are identical to
those of Singh; they show how the recursion relations
interpolate between the Gaussian and s forms for T=O
and T~ 0, respectively.

Finally, Gerber s has used a mean-field approximation
to study the quantal XF model in the context of magne-
tism. Within his approximation he also finds a
Gaussian-to-XI' crossover at low temperatures but he ar-
gues for the validity of this qualitative conclusion beyond
the mean-field approximation.

In concluding this overview of other approaches to the
problem of criticality in an interacting Bose fluid at low
temperatures, we stress that none of the earlier authors
addressed crossover in the equation of state below T, nor
did they consider the superfluid density.
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APPENDIX: NONLINEAR
RENORMALIZATION-GROUP FLOWS

AND LOGARITHMIC FACTORS

The perturbation-theory analysis at the end of Sec.
IVD reveals a special role for d=3: logarithmic func-
tions of p appear at second order in the Green's-function
expansion and, presumably, are present in higher order
also. Such behavior is, in fact, to be expected on the basis
of renormalization-group arguments whenever the ex-
ponent p is a rational number, say Ji/q. Assuming p and

q are mutually prime the denominator q is precisely the
order of perturbation theory in which the logarithms will,

(1) —
A, (1)

d1
' '

d1
(Al)

for appropriate renormalization-group eigenvalues A, i, A.z.

By contrast the corresponding linear scaling fields, say r

and g, will satisfy these equations only to linear order: in
higher order the renormalization group will specify recur-
sion relations

—=A, it+aig +azgt+ait +2 2

I

dg =kg+big +hagi+bit + ' ' '
(A2)

where, for simplicity, we neglect further, irrelevant fields.
In the present case we have g =Pup/A T and
t = —Pp+2$( —,'d)g [see (4.16) and (4.42)]. For the pur-
poses of bringing out the essential features we consider
here only the special case in which az ——ai bi bz-— ——
—b3 —0 while a i —=Dp+0. Alternatively, we may as-
sume~" that t and g are an intermediate set of algebraic
(nonlogarithmic) scaling fields which have already ab-
sorbed the nonlineirities associated with the coefficients
assumed to vanish. Note, however, that in our analysis
we know g

—=0 for up =0 so that bs vanishes in any case.
[See the discussion following (3.10).] Further, it will be-
come evident below that the aig term is the significant
one.

In addition to the flow equations for the fields we re-
quire one for the thermodynamic function of interest, say,
G(t,g), in our case the susceptibility. Again for simplici-
ty suppose this is multiplicatively renormalized according
to

—G(t(1),g(l)) =A,pG(r(l), g(1))
I

with, to recapitulate,

dt ( I) 2 dg (1)=A, ,t{l)+Dpg (1), =A,2g{1) .

(A3)

(A4)

Now it is easy to check that

Do
(A5)

are nonlinear scaling fields provided I,, —2A,i&0. In-
tegrating the resulting equations (Al) and (A3) up to a
matching value, l~, yields

typically, first appear. In our case we have 1&P&0 for
2 & d &4 and so the smallest value of q is 2; furthermore,
we have sI}=—,', for d=3, so that further investigation is
worthwhile. In order to elucidate the appearance of loga-
rithms in this case we follow closely a derivation of Bar-
ma and Fisher based on Wegner's original discussion.

Within a renormalization-group formulation the non-
linear scaling fields are defined as those combinations of
the physical variables, T, p„up, etc. which renormalize
trivially, i.e., merely by a factor e, under the group ac-
tion, where 1 is the parameter govermng flow in the space
of Hamiltonians and lengths rescale by a factor of e
Thus if t, g are nonlinear scaling fields, one has, at least
formally,
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x =go/tNI with /=A, z/&i,

so we can write

(A7)

t'=—t(1')=toe ', g =—g{/ )=goe
(A6)

Gt=G(tt, gt)=G(to, go)e

where tp —t(to,go }. The value of / is to be chosen so that.

t t lies outside the critical region where the function

6(t,g~} can be regarded as known. ' lt is convenient

here to fix /t by the condition that 6(t,g ) have a fixed,
noncritical value, 6, independent of the starting parame-
ters to and go. Substitution in (A6) then shows that

A, l~
toe ' must be a function only of

function W when P= —,'. To this end consider the recur-
sion relations (A3) and (A4) when )(, i ——2A, 2 so P= —,

'
and

5=0. Substituting the solution g and solving the general
(5&0) equation for t yields

A,2lt(/}=[tp 5—'Dogp(e —1)]e ', (A16)

t (/) = ( to+ Dog p/)e
' .

On defining

wo{l)=goto /{1+Dogoto /»
the matching condition for 5=0 becotnes

(A17)

(A18)

provided 5&0; but as 5~0 this goes over continuously to
the 5=0 solution

tpe ' = W(x) .

Finally, (A6) yields

6(to,go)=6 [W(x)]r/tpr, with y= —Q/1L, i,

(AS)
6 =6[tt, (t two)'iz]

which implies

t =toe ' (1+Dogoto 1 )
X,It 2

=goe ' /wp(l )= W(wp),

(A19)

(A20)

which is just the standard scaling form

G {to go) =t o "W(go/t 3) (P+T~) . (A 10) (A21)

where W is a function only of wo. Rewriting (A18) as

1 =1/Dpwo to/Dogo—

As will be seen shortly W(x) and thence W(x) have
Taylor-series expansions.

Now: "What goes wrong when P= —,
''?" Clearly the

coefficient of gz in the nonlinear scaling field t diverges;
but another, less obvious, consequence is that W(x) in
(AS) is no longer well defined. To see this set

(Al 1)

and, using (A6)—(AS), note that the equation determining
W(x) is

finally leads to

exp[~i '»(go) —to/Dogo]=e ' '[wo W{wo}]

which allows one to conclude that wp is a function only of
the combinatloil zpW(tp go), where

zo
—=gotp ', W(to, go) =[1—1I,

&
'Dozo ln(go)] ' . (A23)

Substituting (A20) for 1 into the expression (A6) for 6,
and using this fact we obtain

6(W —5-'D,x'W&, x W~) =6'. (A12) 6{togo) =go ' W(zo~), (A24)
By taking derivatives one generates equations for the Tay-
lor coefficients, Wo ——W(0), Wi ——W'(0), . . . of W: the
first few are

where the scaling function W follows from (A22) and
(A23}. The final expression for 6 is then

6(Wp, O)=G (A13) 6{togo)=(to~ ') "W[go/(t ~ ') ] (A25)

Wi ———Gs( Wp, 0) WNI/O, ( Wp, 0),
Wz ——25 'Dp W(~) +0 (1},

(A14)

(A15)

where the subscripts t and g on 6 denote derivatives with
respect to the first and second arguments, respectively.
The last term in (A15) represents an an algebraic set of
terms, which remain finite as 5~0, depending only on
derivatives of 6 evaluated at t = Wp, g=O. Since the
matching occurs on a noncritical locus these derivatives
are all finite. Evidently, then, (A15) implies a divergence
of Wz and hence, via (A10}, of the scaling function
derivative W2 ——W"(0) as 5~0.

From the simplified recursion relations one has thus
recovered precisely the pathologies encountered in the
second-order calculations of Sec. IVD. [See Eqs. (4.69)
and (4.74).] It remains to demonstrate why a logarithm
appears and to determine what becoines of the scaling

tpW '=t =to —(Dp/A, , )gp 1n(gp) . {A26)

Hence, rather than the simple quadratic correction to to
observed in the nonlinear scaling field when P& —,

'
one

now has a logarithmic correction. But to linear order the
scaling variable is still gptp for a// P. Second, for tp&0
the function 6(to,gp) must have the Taylor-series expan-
sion

6(to go }=Go(tp)+ 6&(tp)go+ 62(tp)go+ ' (A27)

At first sight (A25), with its logarithmic dependences on
go, seems to violate this requirement. But, in fact, the
scaling function W(x) must have an expansion in x and

where now W(x)=x "W(x ). This result is really a
special case of the result of Barma and Fisher. i4

Some remarks are in order. First, the combination
toW ' is more transparently written



WEICHMAN, RASOLT, FISHER, AND STEPHEN 33

Inx with coefficients determined exactly so that all lngo
terms cancel .The remaining terms will, of course, carry
logarithms in to, but for to+0 that does not matter. By
carrying out the necessary inversions to calculate W too)
using (A20) and the relations (A22) and (A24), one actual-
ly finds

k(x) = 8'o[1+cix +c2 ix t lnx +ctx i+0 (x' Inx)],

(A28)

value found for c2i, namely —2D 7/g, ,
causes the leading lngo term to cancel. Thus to second
order in go one has

G(to,go)=to '$Vo[l+cigo/to +ct&o/to

——,'c2 i(go/t )lnt +O(gs)] . (A29)

Finally, therefore, this demonstrates the mathematical ori-
gin of the logarithmic factor in the perturbation expan-
sions when 1=3.
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