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Theory of the upper critical field of superconducting superlattices
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The upper critical field of superconducting superlattices is calculated by taking account of spatial
variations of the following quantities of conduction electrons: the density of states, the diffusion

constant, the attractive interaction constant responsible for superconductivity, and the spin polariza-
tion. For applied magnetic fields parallel to the layers, these spatial variations cause a dimensional

crossover in the temperature dependence of the upper critical field H, 2~~. The spatial variation of
the density of states is most important for the effect of the dimensional crossover observed in

Nb/Cu superlattices. For applied magnetic fields perpendicular to layers, a new type of crossover is

predicted in the temperature dependence of H, qj for superlattices composed of a high-H, 2 material
and a love-H, & material. The anisotropic spin polarization of conduction electrons induced by ap-

plied magnetic fields explains the anomalous behavior of H, 2 observed in V/Ni superlattices.

three-dimensional to the two-dimensional behavior occurs
in the temperature dependence of H, i~~. A similar cross-
over was observed by Kanoda et al. in V/Ag superlat-
tices.

The V/Ni superlattice is an example of artificially
prepared magnetic superconductor. The magnetic effect
of Ni layers on superconductivity is controlled by chang-
ing the thickness of Ni layers. When the thickness of Ni
layers is decreased, the Curie temperature of Ni decreases
to lower than the superconducting transition temperature
of V and vanishes in the vicinity of 10 A. Below this film
thickness the strong pair breaking effect due to the spin
fluctuation and the spin polarization in the Ni layers is
weakened enough so that the V layers couple through the
Ni layers by the proximity effect. Homma et al. mea-
sured the upper critical field of the V/Ni superlattices and
found the anomalous temperature dependence of H, i.
Close to the superconducting transition temperature the
parallel upper critical field H, i~~

is smaller than the per-
pendicular critical field H, ii, while at low temperatures
the anisotropy of H, i reverts to the normal one, i.e.,
H, i~~ & H, ii. To explain this anomalous behavior of H, z
we consider the pair breaking mechanism due to the spin
polarization of conduction electrons in the Ni layers. Ac-
cording to the proximity effect, the conduction electrons
in the Ni layers becomes superconductive. At high tem-
peratures near the superconducting transition temperature
the vortices extend over many layers and the superconduc-
tivity is affected by the spin polarization. The spin polari-
zation of the conduction electrons in the Ni layers is an-
isotropic; the spin polarization induced by the parallel
magnetic field is larger than that by the perpendicular
magnetic field. This is inferred from the anisotropy of
magnetization measured in Mo/Ni superlattices. There-
fore, the effect of the pair breaking is larger in the parallel
magnetic field than in the perpendicular magnetic field.
When the size of the vortices becomes less than the
separation of the superconducting layers at low tempera-
tures, the cores of vortices are preferentially situated in
the Ni layers for the parallel magnetic field. Therefore, at

I. INTRODUCTION

Artificially prepared superlattices, such as Nb/Ge, '

Nb/Cu, V/Ag, and V/Ni, are a new class of supercon-
ducting materials. These superlattices exhibit novel phys-
ical properties when the superconducting films with the
thickness comparable to the superconducting coherence
length are separated by a suitable metal, semiconductor,
or insulator so as to establish the high degree of anisotro-

py in the superlattices. Of particular interest is the
behavior of the upper critical field H, i. The temperature
dependence of the upper critical field parallel to the layers
H, i~~ shows dimensional crossover, i.e., it changes from
the bulk three-dimensional to the two-dimensional depen-
dence at the particular temperature. The behavior of H, i
and its anisotropy are quite sensitive to the strength and
nature of the coupling between the superconducting
layers.

In Nb/Ge superlattices, the superconducting Nb layers
are coupled by the Josephson tunneling through the insu-
lating Ge layers with the thickness of the order of 10 A.
A Josephson tunneling model has been proposed by
Lawrence and Doniach and later studied extensively by
Klemm, Luther, and Beasley. 6 This model explains suc-
cessfully the temperature dependence of the upper critical
field of Nb/Ge superlattice. '

In Nb/Cu and V/Ag superlattices, on the other hand,
the superconducting layers are coupled through normal
conducting Cu or Ag layers by the proximity effect. The
relatively strong coupling between the superconducting
layers in the superlattices allows a large normal metal
thickness of the order of 100 A. Banerjee et al and.
Chun et a/. have investigated systematically the tempera-
ture dependence of the parallel and perpendicular critical
fields H, i~~ and H, ii by varymg the thickness of Nb and
Cu layers in Nb/Cu superlattices. When the ratio of H, i~~

to H, ii at low temperatures is plotted as a function of the
layer thickness a peak appears at the layer thickness com-
parable to the superconducting coherence length.
Around the peak the dimensional crossover from the
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low temperatures, the anisotropy of H, i reverts to the
normal one as observed in Nb/Ge, Nb/Cu, and V/Ag su-

perlattices.
For superconductor/normal-metal superlattices such as

Nb/Cu and V/Ag we take into account the spatial varia-
tion of the electron density of states, the diffusion con-
stant of conduction electrons, and the BCS electron-
electron interaction constant. All of these quantities are
assumed to be uniform in each metal layer. For superlat-
tices of superconductor/normal-metal with the large spin
susceptibility such as V/Ni, we consider the effect of the
spin polarization of conduction electrons in the magnetic
layers in addition to the effects mentioned above. The
preliminary results have been presented elsewhere. '0

In Sec. II we present a general formulation for the
upper critical field of the superlattices and derive the
equation to determine the parallel and perpendicular
upper critical fields. The results of numerical calculations
of the upper critical fields for superconductor/normal-
metal superlattices are presented in Sec. III. Numerical

results for superlattices of superconductor/normal-metal
with the large spin susceptibility are given in Sec. IV.

II. FORMULATION

We consider a superlattice composed of two kinds of
metal layers. For simplicity, we assume that the electron
density of states N(r), the diffusion constant of conduc-
tion electrons D(r), the BCS electron-electron interaction
constant V(r), and the mean-field exchange potential due
to the spin polarization of conduction electrons I (r) are
uniform inside the layers and change discontinuously at
the interfaces.

When the phase transition at H, i is of second order, the
superconducting order parameter h(r) is governed by the
linearized integral equation"

b(r)= V(r)k&T Q f d r' Q„(r,r')h(r'), (1)

where the kernel is

P„'(r',o )p P&(r', r)P&(r, A, )p~„(r,tt)
Q (r, r')= ——,

'

( gz iso)—(g„+ito)

where to=(2l+1)skit T, I being integers, and p=icr„, ob ieng the Pauli matrix. The wave function P„(r,r) is calculated
from the Schrodinger equation

RV —A—(r) 5,+u, (r) $„(r,r) =gqPq(r, o), (3)
2ppl C

where }M is a quantum number, r is the spin coordinate, A(r) is the vector potential, and u, (r) is given by

u, (r)=uo(r)5, +I (r)(o,), . (4)

In (4) the first term is an ordinary one-electron potential including the scattering potential due to impurities and
boundaries, and the second term is the mean-field exchange potential from the spin polarization of conduction electrons.

Now we introduce a function' '
g„(r,r';Q)= ——,

' g g gP„'(r',o)p P„'(r',r)P„(r„iL)p~„(r,x)5(Q+g„f„). —
V CT t AK

The Fourier transform of g&(r, r', Q),

g&(r, r';t)= f dQg„(r,r', Q)e

is a one-electron correlation function, namely

g„(r,r';t)= ——,
'

(}u,
~

K (t)5(r—r(t))5(r' —r(0))K(0)
i }u),

where K(t) and r(t) are Heisenberg operators describing
the time evolution, respectively, of the time-reversal
operator K= t'o&C (w—ith C the complex-conjugation
operator) and the position operator for one electron.

~
p)

is the Dirac's ket vector whose corresponding (r,r) repre-
sentation is P„(r,r).

Using (5)—(7), we rewrite the kernel Q (r, r') of (2) in
terms of the correlation function

*

Q (r,r')=g f dg f dQ f

gg (r, r'; t)=+ 5(g—g„)g„(r,r';t), p =(n, o ) .

In (8) the dominant contribution to the integral comes
from small values of g, and thus g ~ (r, r', t) can be approx-
imated by g~ 0(r, r';t), where )=0 corresponds to the
Fermi energy. Then, we have

Q„(r,r')=2m g f dte ~" ~'g~ 0(r,r';t), (10)

For t —+0, g~ 0(r, r', t) reduces to the initial condition

lim g~ 0(r, r', t) =5(r r') + 5lg'&) g—
~
P&(rr) it~o

= —,
' 5(r—r')N (r),
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—K(t)= —I {r(t})tr,K(t) i— K(t),8 2i .d8(t)
dt

(12)

8(t)= f ds A(s), (13)

where the expression of 8(t) results from the semiclassical
phase approximation.

The probability density of finding a particle at the posi-
tion r satisfies the continuity equation

where N(r} is the position-dependent density of states at
the Fermi level. Here we assumed that the density of
state is constant near the Fermi level.

The operator K(t) in (7) satisfies the equation of
motion'

—5(r—r(t))+V i(r, r(t))=0,

where i{r,r(t)) is the current operator of the particle.
When the motion of r(t) is controlled by a diffusion (ran-
dom walk) process, i(r, r(t) ) is given by

D—(r}V5(r r(—t)) where D = —,
'

vol is the diffusion con-
stant, vF and l being the Fermi velocity and the mean free
path in the normal state, respectively. Therefore,
5(r—r(t)) obeys the familiar diffusion equation

—5{r—r(t))=D(r)V~5{r—r(t)) .

Using (7), (12), and (14), we obtain the gauge-invariant
form of the equation of motion for g ~ 0(r, r', t)

A'—+2iI (r)(a, ) g~ 0(r, r', t)=fiD(r) V — A(r) g~ 0(r, r';t) (t &0) .2l8
t (15)

With the aid of the equation of motion (15) we can con-
struct a differential equation for Q (r, r'). I.et us intro-
duce an auxiliary quantity R (r, r') defined by

R„(r,r')=2m g f dt(o, )~g 0(r, r', t)e

R (r, r')=[N(r)N(r')]'~ g bi&11&(r')p~(r), (22)
A A'

and inserting (21) and (22) into (17) and (18), we have the
equations for the expansion coefficients aqua and bii

By using (11) and (15) we can show that Q (r, r') and
R„(r,r ) satisfy the following differential equations:

[2
~

co
~
+L (V)]Q„(r,r')+2iI (r)R„(r,r')

(2 le I+"}au.+2t g «iI. I g)bp. 2~5„„-
(2

~

tv [ +&g)bye +2i g (A,
~

I
~ g)agi ——0, (24)

=2m 5(r r')N (r), —(17)

(18)[2
~

co
~
+L(V)]R (r, r')+2iI (r)Q„(r,r')=0,

where the linear operator L ( V') is defined by

where the matrix element (A,
~

I
~
g) is defined by

~ g) =f d r gf (r)I (r)1{~(r) . (25)

Solving (23) and (24} and inserting a~& into (21) we obtain
the expression for Q (r, r')

L (V)= —RD (r) V — &(r)
Ac

(19) Q„(r,r') =2m[N(r)N(r')]'~ g f~(r)I ~~ (c0)g~ (r') . (26)

L (V}ek(r}=shel(r} (20)

with appropriate boundary conditions at the interfaces
mentioned later. By expanding Q (r, r') and R„(r,r') in
terms of fi(r)'s

Q„(r,r') =[N(r)N(r')]' g aii fg(r')pq(r), (21)

In order to solve (17) and (18), we introduce eigenfunc-
tions P~(r} and eigenvalues sq of the operator L (V),

In (26), I ~'(to) is the inverse matrix element of I (co).
The matrix element of I (t0) is given by

(A,
/

I
f g) (g f I. /

ll, ')
~+.,)5„+4+

2
I
~

I +eg

(27}

If we make use of (26), our starting integral equation (1)
is written as

F(r)=2nT[N(r)]'~ g

gpq(r)Iraq'(co)

f d r'gi(r')V(r')[N(r')]' F(r'),

(29)

where F(r)=b(r}/V(r) is the pair function. By expand-
ing F(r) in terms of 1bq(r),

F( r) =[N (r)]'r g cqgi(r), det 5~ —2m'Tg g I gg (co)(g
~

VN
~

A, ') =0,
OP

(30)

I

that this matrix equation has nontrivial solutions, the fol-
lowing secular equation must vanish:

we convert (28) to a matrix equation of ci's. If we require where
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(g( V))) (A, ') = J d'r))((r))'(r))))(rhpz(r) . (31)

The quantities I i,~ and (g ~

VN
~
I,') include the vector

potential. From a solution of the secular equation (30) the
upper critical field is determined as a function of tempera-
ture.

%e must now pick the appropriate boundary conditions
at the interfaces. De Gennes has derived the boundary
conditions that the quantities

h(r)/N(r) V(r) =F(r)/N(r) (32)

and

V — A(r) b,(r)=D(r) V — A(r) F(r)
V(r

(33)

are continuous at the interfaces. When solving the eigen-
value equation (20), we impose on [N(r)]' t'ai(r) the
same boundary conditions as those for F(r). Then, from
relation (29), F(r) automatically satisfies the boundary
conditions (32) and (33). Equation (30) has many solu-
tions under the boundary conditions. The highest
magnetic-field solution among the solutions corresponds
to the upper critical field. In the next section we calculate
the upper critical fields when the magnetic field is applied
parallel and perpendicular to the layers of superlattices.

III. SUPERCONDUCTOR/NORMAL-METAL
SUPERLA i=a ICES

Let us consider a superlattice composed of alternating
layers of a normal metal and a superconductor, with
thickness of d~ and dz, respectively. The z axis is taken
perpendicular to the layers. The geometrical configura-
tion is schematically illustrated in Fig. 1. The electron
density of states N(z), the diffusion constant D(z), and
the electron-electron interaction constant V(z) are as-

FIG. 1. Geometrical configuration of a superlattice.

sumed to be uniform in the layers, and are denoted by Ns,
Ds, and Vs for the superconducting layers (S layers), and
N~, Dz, and V~ for the normal-metal layers (N layers),
respectively. In this paper, the term of the normal-metal
layers is understood to include the layers of weak super-
conductors. In order to elucidate the effect of the spatial
variation of N(z), D(z), and V(z) on the upper critical
field, we examine these effects separately.

A. Effect of N(s) on H, ~

We first consider the effect of the spatial variation of
the density of states N(z) on the upper critical field. The
density of states in the superconducting (S) and normal
(N) layers is assumed to be of the form

Ns for nL dz/2 &z & nL—+ds/2 for S layers
N(z) = ~

Nz for nL +ds/2 &z & (n + 1)L dz/2 for N—layers, (34)

T
@

1 &6 —q'( —,
'

) =0, (35)

vrhere

I~" IPG«) I'
T, = 1.134cuD exp

J d «PG(r)N(z)V(z)QG«)

(36)

with n being integer S and L =ds+dN. We assume
Vz ——V~ (—= V) and Dz ——DN (=—D). We calculate the
eigenvalues ei and the eigenfunctions gi(r) of Eq. (20)
under the boundary condition that

N(z)[(d/dz) 1nfi(r) —(2ie/i)iic)A, (r)]
is continuous at the interfaces. Using the ground-state
wave function QG(r) with the lowest eigenvalue sG as a
variational function, we calculate the secular equation (30)

where T, is the superconducting transition temperature of
the superlattice, %(z) is the digamma function, and coD is
the Debye temperature. Among c~'s, cG gives the highest
magnetic field which corresponds to H, 2. Detailed calcu-
lations for eG and QG(r) are presented in Appendixes A
and B. In the following we confine ourselves to the super-
lattices with small values of Nz/Ns, since the above vari-
ational calculation is exact in the limit of Nz/Ns~0.
This case may correspond to the Nb/Cie superlattice. The
results may also be applicable to the Nb/Cu and V/Ag
superlattices, since the densities of states of Cu and Ag
are much smaller than those of Nb and V.

In Fig. 2 we show the temperature dependence of the
calculated upper critical fields 0,2~~

and 0,2& for several
values of the layer thickness 1=ds ——d~. The ratio
X~/N~ is taken to be 0.15. The solid and dashed curves
denote the parallel (H, 2~~) and perpendicular (H, ii) upper
critical fields, respectively. As seen in Fig. 2, for the
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C2J.

-. NN/Ns=0

FIG. 2. Temperature dependence of the parallel {solid curves)
and perpendicular {dashed curves) upper critical fields of the su-
perlattices with the spatial variation of the density of states
N{z) shown for several values of layer thickness d=dq ——dz.
We take N~/Xq ——0.15, Vq ——V~, and Dg ——B~. In the figure
8~~{0) is the upper critical field of the bulk superconductor of
the S layer material and gg(0) = [po/2~Hs2(0)1

values of d/gs(0) from 0.6 to 2, H, i~~ sharply increases
with a concave curvature. This temperature dependence
may show the occurrence of the dimensional crossover; at
high temperatures near T„H,i~~

varies linearly in T like

H, 2 in a three-dimensional superconductor, and at low

temperatures it varies in a square-root fashion in T like

H, q in a two-dimensional superconductor. This tempera-
ture dependence originates from the fact that in the T-
linear region the pair function F(r) spreads over many
layers, whereas at low temperatures it is confined almost
in a single 8 layer. When the value of d/gs(0) increases,
the crossover temperature at which H, 2~~

turns upwards
shifts to a higher temperature. For d/gs(0) =0.4, H, 2~~

behaves like an ordinary bulk superconductor. The per-
pendicular upper critical field H, 2i is almost independent

=0

FIG. 4. Temperature dependence of the calculated upper crit-
ical fields H, ~~~

shown for several values of Xg/Nq. We take
d=ds=d~ 0 70)——q(0.), Vq ——V~, and Dq=D~ The. open cir-
cles are the experimental values of the Nb/Cu superlattice with
200 A obtained by Banerjee et al (Ref. 7).

of the layer thickness d.
Figure 3 shows the ratio of H, z~~

to H, 2i at T=0 & as
a function of layer thickness d. The solid curves indicate
the ratios of Hci~~/Hc2i for the values of Nz/Nz 0.05, ——
0.1, 0.15, and 0.2. A peak appears in each curve at the
thickness slightly below gs(0). For the large thickness,
H, 2~~

tends to H, i due to the surface superconductivity.
The dashed curve for Nz/Ns 0 tends to——the well-known
value 1.695 of H, &/Hc2q for the large thickness. ' Baner-
jee et al. observed a sharp peak of Hc2~~/H, zi between
100 and 300 A in the Nb/Cu superlattices. The experi-
mental result may be explained by the above mechanism.

The temperature dependence of the parallel upper criti-
cal field H, 2~~

is shown for several values of NN/Ns in
Fig. 4. The layer thickness is taken to be d/gs(0) =0.7.
As seen from the figure, H, 2~~

shows the dimensional

l.5

O
CU . l5

F4

Cl

di(s(0)

FIG. 3. Ratio of H, q~~
to H, q& at T=0 K as a function of the

layer thickness d=dq ——d~. The parameters are the same as
those in Fig. 2.

H /H„{O)= O. ~

o0.5 . ~~0.6
I~j

!lea ~
l ~~

~ ~)
SSSHSS; RR~

Q I 2 3 5
Z/gs(O)

FIG. 5. Spatial variation of the pair function F{r}in the su-

perlattice with N~/'Ng ——0.15 and several values of H, ~~~
{see

Fig. 4}.
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crossover. The open circles in the figure show the experi-
mental data of the Nb/Cu superlattice with thickness 200
A obtained by Banerjee et al. The calculated H, z~~

for
E&/Ns 0.——15 is in good agreement with the experimental
values. The value of NN/Ns 0.——15 is very close to the
experimental value yc„/yNb-0. 16, where yc„and yNb

are, respectively, the coefficients of the normal-state elec-
tronic specific heat of Cu and Nb. ' From the value of
d /ps( 0) =0.7, gs(0) is estimated to be 286 A which is
comparable to the coherence length of Nb. In the above
calculation we assume that Do, DNb.——Since the relevant

layer thickness d is much less than the mean free path of
bulk Cu, the mean free path may be limited by the layer
thickness. The mean fry path of bulk Nb is comparable
to the layer thickness d. Therefore, we assumed

Do, /DNb ——1 in the analysis of the experimental data.
Figure 5 shows the spatial variation of the superconduct-
ing pair function E(r} in the superlattice with

NN/X~ 0——.15 for several values of H, i~~. In the cases of
H/H, 2(0)=0.2 and 0.4 the pair function F{r) spreads
over many layers so that the superlattice behaves like a
three-dimensional bulk superconductor. On the other
hand, for H/H, 2(0)=2 the pair function is almost con-
fined within a single S layer so that the superlattice
behaves like a thin film superconductor.

B. Effect of D(z) on H, 2

Next we consider the upper critical field of the super-
lattice with the spatial variation of the diffusion constant

Ds for nL ds/2—&z&nL+ds/2 for S layers
D(z) =

D~ for nL+ds/2&z&(n+1)L ds/2 —for N layers. {37)

The other parameters are constant in space. Since
V(z)E(z) [=N(0)V] is constant, the matrix element
(iL

~
VN

~

iL'} in (30) has the form 5~%(0)V. The secular
equation (30}then reduces to a simple form

—'P( —,
'

)=0, (38)

where eG is the lowest eigenvalue of Eq. (20). ea and the
corresponding eigenfunction fa(r) are calculated under
the boundary condition that

D (z)[(d/dz) lngG(r) (Pic/zie) A—,(r)]
Dsks tan( ,

'
ksds ) =D~—x~tanh( —,

'
IrNd~ ), (39)

the diffusion constant. The thicknesses of the S and N
layers are taken to be d/g (s 0)=0.75. As seen from Fig.
6, the crossover from the three-dimensional to the two-
dimensional behavior occurs for the large values of
Div/Ds.

The perpendicular upper critical field H, 2i is calculated
in the following way. As shown in Appendix B, the
lowest eigenvalue eG in (38) is calculated from the equa-
tion

]/2
l D~&G

S —1
4«0} Dsex

is continuous at the interfaces. The calculations for eG
and Pa(r) are shown in Appendixes A and B. We should
note that QG(r) is nothing but the pair function F(r) for
cG ——1 i[%(0)]'~z in (29}.

In Fig. 6 we show the calculated parallel upper critical
field H, z~~

of the superlattice with the spatial variation of

H
H, 2(0)

~a H1—
N 7

H, z(0)

where e~ (2e/Pic)AD&H, ——H, z(0) is the upper critical
field of the bulk superconductor of the N-layer material,
and g'~(0)=[$0/2mH, z(0)]' . In the X layers the pair
function damps with the damping constant ~~ from the
interfaces and in the S layers the pair function oscillates
with the wave number ks. Similar calculations were per-
formed by Biagi et al. '7

Figure 7 shows the perpendicular upper critical field
H, zi as a function of temperature. The parameters are
the same as those of Fig. 6. As seen from the figure, the
remarkable upturn appears in Hype especially for the
large values of D~/Dz. In the vicinity of the transition
temperature the pair function is almost uniform in the
direction of the vortices. The ratio of the initial slope of
H, ii to that of H, 2 is limitmi by the value of 2, because it
1S g1ven by

(2D~/Ds )/(I+D~/Ds ) .

When the temperature decreases, the pair function in the
S layers increases rapidly and is confined in the S layers.

0 0.5
T/Tc

FIG. 6. Temperature dependence of the parallel upper criti-
cal field H, &~I

of the superlattice with the spatial variation of the
diffusion constant D(z) shown for several values of D&/Dz.
We take d=dq d& 0 75gq(0)——, Vz ———Vz. , and Ns Nz In the- .
figure H, &(0} is the upper critical field of the bulk superconduc-
tor of the X-layer material.
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IO IO

O

z o 5

0.5
rf rc

FIG. 7.. Temperature dependence of the perpendicular upper
critical field H, qj shown for several values of D~/Ds. The pa-
rameters are the same as those in Fig. 6.

0.5
/Tc

FIG. 8. Temperature dependence of H, 2j shown for several
values of dv /g~(0) and dN/g~(0) =2 The. parameters are tak-
en to be Nx/Ns=1 and Dx/Ds=20

As a result, the temperature dependence of H, zi is almost
the same as that of the S layers.

Figure 8 shows the temperature dependence of the per-
pendicular upper critical field H, zi for several values of
the S-layer thickness. The N-layer thickness is fixed at
d~/g~(0) =2. As seen from the Fig. 8, H, 2i is quite sen-
sitive to the value of ds/gz(0). Figure 9 shows the tem-
perature dependence of H, 2i for several values of the N
layer thickness. The S layer thickness is fixed at

s/gN(0)=0. 75. When the S-layer thickness is fixed,
H, zj is insensitive to dN/g~(0)

I.et us consider the spatial variation of the density of
states in addition to the diffusion constant. The lowest
eigenvalue eG in (35) is determined from the equation (see
Appendix 8)

DsNskstan( z ksds ) =DxNzxNtanh( ,
'

IrzdN ), —

where ks and a'~ are given by (40) and (41). Using
(40)—(42) we calculate the perpendicular upper critical
ield H, 2i. In Fig. 10 we show H, 2i for Dz/Ds ——25 and

several values of Ns/N~. Other parameters are the same
as those in Fig. 7. As seen from the figure, for small
values of Ns/Nz, a sharp upturn curvature appears. In
this case, the pair function is confined in the N layers
above the temperature at which the upturn occurs,
whereas below the temperature the pair function is con-
fined in the S layers.

C. Effect of V{z) on H, 2

We consider the upper critical field of the superlattice
with the spatial variation of the electron-electron interac-
tion constant V(z), which is assumed of the form

s or nL —ds/2&z gnL+ds/2 for S layersV for

o. nL+d, /2~z~(n+1)L d, /2 for N la—y,.s. (43)

Ns =N~ [=N(0)] and Ds D~ ( =D) are a—ssumed.
When a magnetic field is applied parallel to the layers,

the secular equation to determine the parallel upper criti-
cal field H, z~~

is given by

det 5
2 4rrks T

I dzw& (z —zo )
g(&)

X V(z)w (z —zo)
vp

g( r)

(45)

1
N(0)(n

i Vim) =0, (44)

where Tz is the transition temperature of' the bulk
superconductor of the S layer t '

1

e =(2n 1 2ee„=n+ )(2e/Pic)~H, q'(z) is the digamma function,
and (n

~
V

~
m ) is defined by

whe«g~)=(po/2~H)' and w„(z) is the Weber func-
F« the»lues «zo and &, the secular equation (44)

gives a discrete set of values of H. Among the magnet, c
ields, we take the largest value. Then, varying zo we cal-

cu ate the maximum value of H, which corresponds to
~2II

The perpendicular upper critical field H, 2& is calculated
from the secular equation
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D
ZOr

0.$

FIG. 9. Temperature dependence of H, 2~ for several values

of d~/f~(0) and ds/)N(0) =0.75. The parameters are taken to
be NN/Ng ——1 and D~/Bg ——25.

Hc2ll----- H

rn Q

~ .5 r
1.75 y

Q 0.5 1

T/Ts

FIG. 11. Temperature dependence of the parallel (solid

curves) and perpendicular (dashed curves) upper critical fields of
the superlattice with the spatial variation of the BCS interaction

constant V(z) is shown for several values of the layer thickness

d =ds=d~. e take VsNs=0 3 V~Nw =o Ns =Nw

Dg ——D~.

te„.+mG'
det 5gg~+ 0 —+

2 4m kg T

+in T
N(0) Vg g ——0,1

(46)

where G =2mn/L is the reciprocal vector of the superlat-
tice, and Vg is the Fourier component of V(z) and given

by

Vg = Vivsgp+ ( Vs —V~ )(ds/L )sin(Gds/2) /(Gds/2) .

In Fig. 11 we show the temperature dependence of the

upper critical fields for several values of the layer thick-
ness d =ds ——d~. The parameters VsNs ——0.3 and
V~N~ ——0 are used. The solid curves show the parallel
upper critical fields H, z~~

and the dashed curves show the
perpendicular upper critical fields H, zi. The temperature
dependence of H, z~~

for d/gq(0) =5 and 10 behaves like a
two-dimensional film near T, and that of bulk well below

T, . For d/gs(0)=3, the typical two-dimensional-like
behavior, i.e., H, z~~ac(1 —T/T, )' is seen in the whole
temperature range. These temperature dependences ori-
ginate from the fact that the S layers are decoupled and
behave independently because the penetration depth of the
superconducting order parameter into the N layer is less
than the thickness of the N layers. When the film thick-
ness becomes smaller, a small upturn curvature appears in
the temperature dependence of H, z~~. When d/gz(0) is
near unity, the superconducting order parameters spread
over many layers so that the superlattice behaves like a
three-dimensional superconductor.

Figure 12 shows the ratio of H, z~~
to H, zi at T=0 K

(solid curve) and the superconducting transition tempera-
ture (dash-dotted curve) as a function of the layer thick-
ness d =dq ——d~. The parameters are the same as those in

O
-I
N
O

t 0.5

0
O. I

aalu I

figaro

~ t I i L a ~ I

l IQ IOO

FIG. 10. Temperature dependence of the perpendicular upper
critical fields H, q~ with the spatial variation of the density of
states X(z) and the diffusion constant D(z) is shown for
D~/D~ ——25 and several values of Nq/X~. Other parameters
are the same as those in Fig. 7.

d/gs(O)

FlG. 12. Ratio of H, ~~~
to 8,2& at T=O K (solid curve) and

the superconducting transition temperature of the superlattice
(dash-dotted curve) are shown as a function of the layer thick-
ness d. The parameters are the same as those in Fig. 11.
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Fig. 11. At the layer thickness d!fs(0)-2.3 a peak ap-

pears in the solid curve. It is seen from the Fig. 12 that
the peak of H, 2~~/H, ii appears in the transition region
where the superconducting transition temperature T,
changes from Tq to -0. Note that for d/gs(0) «1, for
which the pair function F(r) should be uniform in the su-

perlattice; (46) has a solution of so-called Cooper limit for
the transition temperature. '

The superconductive coupling between the S layers
changes with the electron-electron interaction constant
V~ in the N layers. In Fig. 13 we show the upper critical
fields of H, 2~~

and H, 2& as a function of temperature for
several values of VN /Vs. For the small values of V~/Vs,
the superconducting transition temperature decreases due
to the proximity effect. The anisotropy of the upper criti-
cal fields increases with decreasing V~/Vz.

D
GJ

K 0.5

0.5

FIG. 13. Temperature dependence of H, 2II (solid curves) and
H, ii (dashed curves) shown for several values of V~/Vg. The
layer thickness is taken to be d/fq(0}=2.

IV. SUPERLATTICE OF
SUPERCONDUCTOR/NORMAL-METAL

WITH LARGE SPIN SUSCEPTIBILITY

In this section we calculate the upper critical field of a
superlattice composmi of superconducting layers (S layers}
and normal-metal layers (N layers) with a large spin sus-

ceptibility. The most important effect on the upper criti-
cal field comes from the exchange-enhanced spin polariza-
tion of conduction electrons in the N layers. When the

I

thickness of the N layers are thin enough, the N-layers be-
come superconductive due to the proximity effect. The
spin polarization in the N layers acts as a pair breaker for
the Cooper pairs.

The spatial variation of the exchange interaction con-
stant I (z) between conduction electrons is assumed of the
form

0 in nL dz/2 &z &—nL +dz/2 for S layers
I(z)= '

I in nL+ds/2&z &(n +1)L —dz/2 for N layers.

det 5„ln
T —2m Tg I „'(co)—

(48)

We take the density of states and the diffusion constant to
be constant. Neglecting the spin polarization in the S
layers, we consider only the Pauli paramagnetic effect due
to the spin polarization in the N layers. When the mag-
netic field is applied parallel (perpendicular) to the layers,
the mean-field exchange potential I ~~(z) [I~i(z}]due to
the spin polarization m ~~(z} [m i (z)] is given by
I ))(z)=I(z)m()(z) [I i(z)=I(z)m, (z)]. We assume that
the N layers are in the paramagnetic state down to 0 K.
The parallel and perpendicular spin-polarization densities
induced by applied magnetic fields are, respectively, given
by m~~(z)=X~~H and mi(z)=X&H for the N layers, and

m~~(z) =mi(z)=0 for the S layers, where X~~ and Xi are,
respectively, the parallel and perpendicular exchange-
enhanced paramagnetic susceptibility of the N layers. We
neglect the temperature dependence of X~~ and Xi. Since
Nv NN and Ds ——Dz, the boundar——y conditions (32) and
(33) are reduced to the condition that

[(d/dz) lnF(r) (2ie/Pic)A, (r)]—
is continuous at the interfaces.

From (27) and (30) the parallel upper critical field H 2[~

is determined from the secular equation

I „(eo)=(2
i

e0
i +s„)5„

(il
/ X[/ f

I & (I
[ X(( [ m )

I+a
where

(49)

O
M ~O5

0 0.5
T/Tc

FIG. 14. Temperature dependence of the parallel upper criti-
cal field of the superlattice with the spatial variation of the ex-
change interaction constant between conduction electrons shown
for several values of Tl~~. We take ds/gs(0}=4, dIv/g's(0}=&,
Vs —~w, W, =X~, and a~ ——a~.

where n is integer and T, is the superconducting transi-
tion temperature. In (48} I '(co) is the inverse matrix of
I'(co), whose matrix element is
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C)

M o0.5

0 0.5 I

T/Tc
FIG. 15. Temperature dependence of the perpendicular upper

critical field of the superlattice is shown for several values of g&.
Other parameters are the same as those in Fig. 14.

0 0.$
T/T

FIG. 16. Parallel (solid curve) and perpendicular (dashed
cu.rve) upper critical fields shown as a function of temperature.
%'e take gI~

——30 and g& ——4. Other parameters are the same as
those in Figs. 14 and 15.

e„=(2n + 1)(2e/kc )iriDH,

D being the diffusion constant, and the matrix element
(n

~ X(( ~
m & is given by (45) if V(z) is replaced by y(((z).

The perpendicular upper critical field H, ii is deter-
mined from the secular equation

where 6=2n n /L and I GG (ai) is given by

I Gg (ra) =(2
~
ai

~
+s„a+ADG ~)5GG

det 5gg ln
T

C

2~T g—I'gg (a) )— GG' =0,
+4I H (51)

G- 2
~
a)

~
+s„a+iriDG

"z

(50) with

& 6
I &i I

6'& =&i'I&GG' (~s/L)—sin[(6 —6')ds/2]/[(6 —6')ds/2]I .

In Fig. 14 we show the calculated parallel upper critical
field H, 2~~

as a function of temperature. The layer thick-
ness is taken to be ds/gs(0) =4 and CN/gs(0) =1 We in-
troduce a dimensionless parameter g~~

——IX~AH, q(0)/T, .
As seen from the figure, for large values of rj~~, H, q~~

is
strongly suppressed near the transition temperature, since
the pair function penetrates into the N layers and suffers
from the pair breaking effect due to the spin polarization.
At low temperatures the size of the pair function is small-
er than the thickness of the S layers, and the pair function
is confined within the S layers. Therefore, H, q~~

is not
depressed at low temperatures.

Figure 15 shows the temperature dependence of the per-
pendicular upper critical field HgQJ The parameter gi
denotes IXiH, 2(0)/T, . For the perpendicular magnetic
field, the pair function in the X layers is affected by the
pair breaking effect down to 0 K, since the vortex lines
penetrate through the S layers. As seen from Fig. 15, a
concave curvature appe'mrs around T/T, =0.6 for the
large value of gi.

Figure 16 shows the upper critical field when the spin
susceptibility is highly anisotropic. Vfe take g~I

——30 and
gz ——4. The solid curve shows H, 2t~ and the dashed curve

shows H, 2q. As seen from the figure, at high tempera-
tures H, q~~

is lower than H, 2i since the spin polarization is
larger for the parallel magnetic field. However, at low
temperatures H, q~~

becomes higher than H, qi, because he
pair function can be confined in the S layers for the paral-
lel magnetic field. Such a crossing behavior has been ob-
served in the V/Ni superlattices by Homma et a/. The
anisotropy of rI~~ p&rji is inferred from the measurement
of magnetization in the Mo/Ni superlattices.

Brodsky found superconductivity in sandwiches of met-
als such as Au/Cr/Au 'Zinn .et a/. investigated the
properties of sandwiches of superconductor/ferromagnet
such as Pb/EuS.
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APPENDIX A: PARALLEL
UPPER CRITICAL FIELD H2, i)

that wi (z) satisfies the following Weber equation:

2 + 4z w~ (z)=(Ai+ —, )wi (z), (A2)

yt(r)=e "
wi, ([v 2/g(T)](z —zo)) (k„=o), (Al)

where wi(z) is the Weber function, g(T)=(go/2rrH)'i2,
and zo (Ac——/2eH)k . Insertion of (Al) into (20) shows

The magnetic field is applied parallel to the layers in
the y direction. We take the vector potential A(r)
=(Hz, 0,0) and assume that fi(r) in {20) is of the form

where A,i has different values A,s and A,st when z is the S
layers and the N layers, respectively. The eigenvalue ei of
(20) is related to A,s and A, iv through

2ADg, 2fiDg(~s+ t )=, (~N+ 2 ) . (A3)
g'(T) g (T)

The general solution of (A2) in the nth S and N layers
can bc written as

g(z)=tzswi {[v2/g(T)](z —zo))+pswi ( —[v 2/g(T)](z —zo)) «r z„&z&z„+,

+(z)=tzivwi„([v 2/g(T)](z —zo))+pNwi„{—[v 2/g(T)](z —zo)) for z„+&z &z„+i,

(A4)

(A5)

where a's and p's are numerical coefficients and
z„-=+ds/2+n(ds+div) are the positions of the inter-
faces. The coefficients tz's and p's and the eigenvalue si
are determined by the boundary conditions

I

that P(z) satisfies the following equations

dz s 1

2 Ps(z) = —
z (t)s(z) for S layers,

dz 2 'llDs gz( T)

NsDs lng (z„+) =NNDtt ln+ {z„+), (A6)

NsDs loess+'(z„+i)=NttDtt Ings~(z„+i), (A7)

2

dz g
((t~(z) for N layers,

g'( T)

(B3)

lim Ps(z)= lim +(z)=0.
S ++00 S~+ ao

APPENDIX 8 PERPENDICULAR
UPPER CRITICAL FIELD H gg

(A8)

Ps(z) =aocos(ksz) for —ds/2 &z & ds/2, (B4)

where (()s(z) and (()iv(z) are the wave functions in the S and
N layers, respectively. By noting that the derivative of
the ground-state wave function at the center of the S and
N layers should vanish, we have

The magnetic field is applied perpendicular to the
layers in the z direction. We take the vector potential
A(r) =(O,Hx, O) and assume fi(r) in (20) of the form

fi„(r)=P(z)w„o{[v2/g(T)]x) (k„=O),
where w„(z) is the Weber function with integer n and
g(T)=(go/2mH)'i. We take n =0 which corresponds to
the lowest eigenvalue. Insertion of (Bl) into (20) shows

ds+div
4N(z)=Pocosh triv z—

2

for ds/2&z &ds/2+der, (B5)

where ks and triv are given in (40) and (41). From the
boundary conditions (32) and (33), we have Eqs. (39) and
(42) to determine the lowest eigenvalue sG.
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