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Elementary excitations in quantum Bose fluids:
Application to liquid 4He

M. Saarela
Department of Theoretical Physics, Uniuersity of Oulu, Linnanmaa, SF 905-70 Oulu, Finland

(Received 15 July 1985}

The optimizing Euler equations for the dynamic linear-response function are derived starting
from the Jastrow ansatz for the wave function and including also the backflow effect. The elemen-

tary excitations in liquid He are calculated consistently using the hypernette--Chai approximation
for the uniform system as well as for weakly disturbed static and dynamic systems. The resulting
excitation-energy spectrum is found to agree well with experiments up to the maxon region giving a
maxon energy of 14.05 K and a roton energy of 11.7 K.

I. INTRODUCTION

For thro: decades the Bijl-Feynman dispersion rela-
tion' '

j'"(rl, t) =—plVla 1+I d'r2p'12'Vlb12

Jl (rl, r2;t)= —pl2(Vlal+Vlb12)+ d r3p123Vlb13
'(2) . (2) 3 (3)

PFl

has served as a starting point in discussions of the excita-
tions in liquid He. In the long-wavelength limit the rela-
tion becomes exact if the exact structure function S(k) is
used, whereas in the roton region it overestimates the exci-
tation spectrum by a factor of 2. The backfiow effect in-
troduced by Feynman and Cohen considerably improved
the agreement with experiments, but still a deviation of
some 50% in the roton energy remained. These works in-
spired a number of microscopic studies based on a
Jastrow-type wave function and perturbative corrections
to it, leading recently to good agro:ment with experi-
ments.

In this work we shall take a slightly different point of
view in calculating the elementary excitations in quantum
Bose systems, following the work by Ripka. In order to
describe nonequilibrium phenomena he assumed the wave
function of the system to be of the Jastrow form, allowing
for complex one- and two-particle correlation factors.
Therefore,

f(rl, . . . , rz, t) =exp( —,
' R +iI)

R =gu(r;;t)+ g U(r;, rt. ;t),

respective]y. Here we have introduced the shorthand no-
tations f, =f(rl, t), e 12 ——e (rl, r2', t) and employed the usu-
al definitions for the densities,

APl=
(y~ y) f 1

A (A —1) 2=p12 ~ ds2141 =plp2g12 ~

A (A —1)(A 2) 2=P123= ~ «3 I 0 I =P1P2P3g»3 .

The last two equations relate the two- and three-particle
densities into the corresponding distribution functions g12
and g123. The integration over the second coordinate in
Eq. (5) yields the sequential condition for the currents

r2 j'~ "r&,r2, t —pzj"' x~ ———j"' r~ . 7

The elementary excitations should transport momentum
and energy without an actual macroscopic transport of
mass. This enforces the conservation equation for proba-
bility density which at the two-particle level can be writ-
ten in the form

p12 +VI Jl (rl r2 t)+V2 J2 (rl r2 t)
Bt

(8)

I =pa(r;;t)+ g b(r;, rt;t) .

The one-particle correlation function u (r;;t) enters due
to inhornogeneity of the system and currents present in
the dynamic system necessitate a nonvanishing imaginary
part. A direct derivation of the one- and two-particle
currents using the wave function of Eq. (2) leads to the
expressions

The use of the sequential condition (7) then gives the
single-particle continuity equation

—pl+Vl j' '(rl, t)=0.
Bt

If the density pl and the radial distribution functions g12
and g123 were known we could solve for the currents from
Eqs. (8) and (9) and then calculate the dynamic properties
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of the system. In order to reach this goal we require that
the integral'

f „(e(t) ~

H —t e(a/at) ( q (t) )
(%(t) j%'(t))

including the Hamiltonian H of the system is stationary
against arbitrary variations of the wave function %(t),

1I(( t) e iA—Ptlhy(t)

The model wave function g(t) is the Jastrow function (2)
and )u is the chemical potential multiplied by the particle
number A.

In this work we will solve this optimization problem
within the hypernetted-chain (HNC) approximation
analogously to the solution of the problem studied in Ref.
11. The resulting equations determine the properties of
the dynamic inhomogeneous boson system. As an appli-
cation, we study the case where a weak external distur-
bance 5U(k, co) with fixed momentum and frequency is
applied to the uniform liquid He. As a solution we ob-
tain the dynamic linear-response function g(k, to). The
poles of X(k,to), determine the dispersion relation of the
elementary excitations in liquid He which can be com-
pared to measurements.

A similar approach was taken in a series of interesting
papers by Krotscheck et al. '2 They investigated various
properties of the free surface starting from a wave func-
tion where only the one-particle correlation function was
allowed to be time dependent. This makes the numerical

calculations tractable for strongly inhomogeneous systems
like surfaces. In the limit of uniform He the dispersion
relation becomes the Bijl-Feynman relation of Eq. (1}.
The present work adds the important backflow effect
within a scheme where the functional form of the back-
flow becomes optimized.

In Sec. II we derive the Euler-Lagrange equations for
the dynamic boson system. In Sec. III the linear-response
function X(k,co) is evaluated and the elementary excita-
tions obtained from the poles of X(k, to) are determined
and compared with experiments in Sec. IV.

(01(t}( H ~
%(t))

(%(t) i
e(t)) (13)

with the wave function defined in Eq. (11) can be readily
evaluated, yielding

II. OPTIMIZATION OF THE DYNAMIC SYSTEM

The Hamiltonian of the dynamic boson system,

A A A

H =— g V;+ g V(
~

r& —r
~
)+g U,„,(r;;t),

i=1
(i &1)

(12)

contains the two-particle potential V(
~
r; —

r~ ~
) and a

time-dependent, external, single-particle potential
U,„,(r;;t}. Its expectation value

E(t) Jd r& PiU,=„~(ri',t)+ f[()i(pi)' ] +p, ((()a)) )

+ —,
' d rid r2pip2 H12+ g12[(Vib12) +2Viai Vib, 2] + d rid r2d r&p1p2pig123Vib12 Vibii . (14)

3 3 2

N2

The HNC approximation I' Eo

pp A

+po
d r12V1N12 V1C12, (18)

determines the nodal sum %12 and the quantity H 12 is de-
fined as

giving the chemical potential p=(Eo/A)+(P/po). The
direct correlation function C,2 is defined by the relation

H12 V12g12+ If Vl(g12) 1 4 V1g12 Vi+12 I?n C12 =S12—
&
—&12 (19)

As the unperturbed reference system we take a uniform,
time-independent fluid which is found by setting
P1 =p2= const and U,„,=—0. The imaginary parts, a
b 12, of the wave function will then vanish. Such a system
has energy Eo

EO po
d ? 12~12

Inserting the results of Eqs. (13) and (14} and working
out the time derivative, we can write the variational prob-
lem of Eq. (10) in the form

5 f dt E(t) Ap, +A' f d r,piai—

+ 2 d ~1d ~2plp2g12~12
3 3

and pressure P
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where the overdots represent the time derivatives. Equa-
tion (20) contains four independent functions which are
chosen to be (pi)'~, (g,2)'~, a„and b,2. The nodal sum
depends on the above quantities through the Ornstein-
Zernike relation

+12 d r3p3(g13 1)C32 ~

3 (21)

Furthermore the three-particle distribution function g123
is approximated by the convolution approximation. A
straightforward variation" of Eq. (20) gives four coupled
Euler-l. agrange equations

Vi(pi)' +(pi)' [Wp(1)+ U,„,(1)+Fq(1)]=p(p1)'~2,

Vi [P1Vi(g12)' ']+(g12)' '[Pi ~12+ II'g(1,2)+~s(1,2)]+(1~2)=0,

V j'"(1)+p =0,
Vi j112'(1,2)+V2 j2121(1,2)+p%22'=0,

(22)

with the induced potentials

Wp(1)= —,
' f d'r2p2 H12+&2, — Vp', 2 V2C»

Wg(1, 2) = Vi (piV1%12)
2m

p&
d r3p3V3C13 V3C32,

tions (22). Since we are interested only in the linear
response we shall expand the Euler equations in terms of
small changes in the density po and the distribution func-
tion g12, pi po( 1+$1), and g12 ——g12(1+h12), respective-
ly. From the expansion we keep only the terms linear in

$1 and h 12 as well as terms linear in a 1 and b 12.
It is more natural to work in the Fourier space and we

choose the transformations

~( ) f dpi)d k t'1k rt+tat)~

(2m) po
r

I" (1)=11'2 a, + f d r2p2g, 2b12 +0 (a i,b 12),

Fg(1,2) =11lpib 12+0 (a i,b12) .
(24)

h 12 ——h (ri, ri, t)

daid q d k t(k r, +q(r, r2)+tttt-]
3 3

k, eq(2n} po

(25)

The first two Euler equations are familiar from the
variation of the static system but include additional terms
due to the imaginary part of the wave function (2) defined
in Eqs. (24). In the calculation of the response function
we are interested only in the terms hnear in ai and b12
and, thus, the quadratic ones will drop out. The last two
equations are just the continuity equations, (9) and (8),
with the currents defined in Eqs. (4) and (5). These four
Euler equations describe the properties of an inhomogene-
ous time-dependent boson system under an external driv-
ing potential U,„,(ri, t} as long as the Jastrow ansatz and
the HNC approximation are valid. They are of course
very complicated to solve for strongly inhomogeneous sys-
tems but for small deviations from uniformity we can
linearize the equations and find the solution for the
linear-response function.

III. THE DYNAMIC LINEAR-RESPONSE FUNCTION

In order to calculate the dynamic linear-response func-
tion X(k,c0) we take the single-particle potential in the
Hamiltonian (12) to be a weak external disturbance with
momentum k and frequency ro, U,rt(ri, t)~5U(k, co). It
disturbs the uniform boson system, e.g., liquid He, and
the response of the system must satisfy the Euler equa-

Similar transformations apply for a 1 and b 12.
The response function

X(k, t0) =p(gk „l5U(k, to)

is readily obtained from the first Euler equation,

11t k
4m

F [5Wp(1) +Fp(1)],1

k, t0
pQ '(k, c0)=—

(26)

(27)

where the notation P [ ] means the Fourier transform of
the qiuuitities in sqttttre brackets and 5W&(l) is a small
change in the induced potential Wz(1}. [As pointed out
earlier, Fz(1) is already linear in a 1 and b 12.]

Detailed evaluation of W[5$'~(1)] is done in Ref. 11
and we write it here in the form

% [5'(1)]= 2 (1—Sk)+ Wk„, (28)
1 fi kkt0, 4m

L

where Sk =—S(
~

k
~

) is the structure function of the uni-
form system. The expression for Wk„ is rather lengthy
and given in the Appendix. The Fourier transform
P [Fz(l)) can be directly obtained froin the solution of
the continuity equations (8) and (9). Therefore,

P [F (1)]= — (1+Mk ) (29)
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Mk„—— k q Sq —1 8k„q
(2m) po

where

iA
&k, (q)= — ~[bi2] .

mtagk ~

(30)

(31)

Inserting the results (28) and (29) into Eq. (27) we find
that

response function, Eq. (33), and the excitation spectrum,
Eq. (35), becomes small compared to k /Sk at k=O.
However, since our aim in this work is to discuss the ef-
fect of the optimized complex one- and two-body correla-
tions to the elementary excitations we shall leave a more
quantitative study of the elementary diagrams and the
three-body correlations to the future.

In the case of the charged boson gas, where the small-k
behavior of the structure function is quadratic,

fi k mto
p(g '(k, to)= — i+8't, ~ + i (1+Mk„) .

4m Ski ' ki
lim Sk ——
k ~Q 278 Cgp

(37)

(32)
and inverse to the plasma frequency co~, the elementary
excitations of Eq. (35) will start from a constant

When to=0 we recover from Eq. (32) the static linear-
response function"

lim ek ——ficop,
k-+0

(38)

k
p(yY '(k)=—,+~k, =o

4m Sk2

which in the limit of k =0 in liquid He becomes

lim p+ '(k) = — = —mc
l

k o p+

(33}

(34)

where E is the thermodynamic compressibility and c the
speed of sound.

The poles of the response function, X '(k, co)=0, deter-
mine the dispersion relation to=t0(k) and hence the exci-
tation spectrum ek ——Ace in boson fluids. It can be calcu-
lated iteratively since the quantities W~ and Mk are
only weakly dependent on co. The expression for eq can
then be written in the form'

Ak
k

~~k Sk

because limk oak „o——const (see Ref. 11).
In order to calculate the full excitation curve and espe-

cially to study its behavior in the roton region in He, we
must solve the last three Euler equations in (22). The
easiest one is the one-particle continuity equation which in
momentum space can be written in the form

d3
k Ak„——1 —f 3 (Sq —1)k (k+q)

(2n )3po

XBk,„(q)—k Bk ~(0) (39)

with

l
W[ai] .

mt0(k „
The two-particle equations in (22) lead to integral equa-

tions

where

S
mk =m(1+Mk, )' 1+ Wk,

' —1/2

c( g
hk „(q)—f, hk „(q'}Kk(q,q'}

(2m) po

=Tk(q)+~'tk(q»k, (q), (40)

In the long-wavelength limit limk oMk o ——0 [see Eq.
(30) and the Appendix] and 11mk o Wk „o=coilst. "
Thus we find from Eqs. (33}—(35) the familiar linear
behavior of the excitations

g3 I

~k, (q)+ f " ', &k,.(q')&k(q q')
(2n) po

= Tk(q)+tk(q)Gk „(q) (41)

lim ek ——Ack .
k-+0

(36) with

We should point out here that the speed of sound calcu-
lated from the slope of Sk at small k, when the uniform
He system is solved, within the HNC approximation at

zero pressure, does not agree with the one of Eq. (34).
This is due to the fact that limk oak „~0.

In order to find agreement between these two ways of
calculating the speed of sound one should add the elernen-
tary diagrams and the three-body correlations to the HNC
approximation. It is known (see, i.e., Refs. 14 and 15}
that they improve the agreement with the experimental
saturation energy and density in liquid He and also give
the correct behavior for the slope of the static structure
function at k =0. This means that the function Wk „ap-
pearing in both of the expressions for the static linear-

Gk, „(q)=hk,„(q)+, hk, „(q')(S, , —1),
(2m) po

where

(42)

Gq, (q) =~[~gi2]4k,

&g»
4,

Ri2

The expressions for quantities Ek(q, q'}, Ek(q, q'), Tk(q),
Tk(q), tk(q), and tk(q} are given in the Appendix. They
are all independent of the frequency u and contain only
ground-state quantities such as the structure function and
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the logarithm of the radial distribution function. The fre-
quency dependence enters through the second term on the
right-hand side of Eq. (40), co tk(q)Bk „(q).

The two coupled integral equations (40) and (41) are
rather complicated to solve numerically because the func-
tions hk~(q) and Bk„(q) contain two variables

~ q ~

and
the angle Hkq between vectors k and q. By expanding
these functions in terms of Legendre polynomials and per-
forming the angular integrations analytically we obtain a
set of coupled equations for the multipliers of the expan-
sion with single variable Iql. (The frequency m and
momentum k are merely parameters. ) In the expansion
we include polynomials up to I =6.

IV. THE ENERGY SPECTRUM OF LIQUID 4He

The Jastrow ansatz for the wave function together with
the HNC approximation lead to the set of Euler equations
(22) and provide us with a well-defined scheme, where the
uniform boson system as well as the weakly disturbed
static and dynamic systems can be solved within the same
set of equations. The input to these equations is the two-
particle potential which in the case of liquid He is chosen
to be the Aziz potential. '

The experiments we would like to describe here are the
excitation spectrum measurements done at saturated va-
por pressure (SVP). ' ' For that purpose we must first
solve the uniform system and find its saturation density
which with the Aziz potential is po

——0.0175 A . The
structure function obtained from these calculations has
too shallow a peak and it is too steep in the long-
wavelength limit as shown in Fig. 1. By including ele-
mentary diagrams and three-particle correlations a good
agreement with experiments is found. '

The next test of our equations is the static linear-
response function" X(k), which is shown together with
experimental results in Fig. 2. The agreement is very

FIG. 2. Static linear-response function of liquid He at SVP
compared with the measured results of Ref. 18.

good for small and large momenta. The speed of sound
found from Eq. (34) is c =236 m/s, whereas experiments
give c,„~,=237 m/s, ' but the peak of X(k) is not high
enough.

The excitation energy spectrum of Eq. (35} is calculated
through iterations. We start by solving Eq. (40) when
co=0. This gives us the static hk„o(q), which can be
used to calculate Bk o(q) from Eqs. (42) and (41) and then
the quantities Mko of Eq. (30} and Wko of Eq. (Al). In-
serting these into Eq. (35} we get the first approximation
for ek. The next iteration is obtained by setting ro=ek/A'
and using in Eq. (40) the function Bi, „(q) from the previ-
ous iteration step. It turns out that the co dependence of
ei, is quite weak (less than 10%) and, thus, the iteration
converges rapidly. There arises, however, one difficulty
which is seen by inserting Eqs. (42) and (40) into Eq. (41).
The factor multiplying Bk „(q) is then 1 —co t(q)t(q}. Be-
cause the integral term in (41) is small compared to unity
we must require that co t(q)t(q) &1 at all values of q
which leads to the condition

k
—4mSk„

(43)

If this condition is violated during the iterations, the
Legendre expansion of Eqs. (41) and (40) will not con-
verge any more. The reason for this difficulty is not well
understood, but if our system were consistent with the
fiuctuation dissipation theorem

Sk ——J ImX(k, co)
o 2 po

(44)

3.0

FIG. 1. Structure function of liquid He using the Aziz po-
tential (Ref. 16). The solid curve is the optimized Jastrow-HNC
result evaluated the SVP corresponding to the density

o 3
po

——0.0175 A . The dashed curve is the triplet-Feenberg result
of Ref. 15 which compares well with experiments.

leading in the one-pole approximation for X(k,co) in Eq.
(32) to the energy spectrum

iri k
&k= (45)

2mSk ( 1+Mk,„}
then this difficulty would not occur.

In Fig. 3 we plot the calculated excitation spectrum. It
follows the experimental points well up to k —1.5 A
giving a maxon energy 14.05 K compared to the experi-
mental one of 13.8 K. The linear behavior at small k is



ELEMENTARY EXCITATIONS IN QUANTIJM BOSE FLUIDS:

30. gy expressions (35) and (45) is plotted in Fig. 4. It starts
like k when k is small and has a maximum in the maxon
region.

OaO

0. 2.0

FIG. 3. Elementary excitation spectrum of liquid He. The
solid curve is the result of the present cwork the dashed curve is
the Bijl-Feynman dispersion relation using the structure func-
tion of Fig. 1 and the open circles are the measurements of Ref.
18.

determined by the speed of sound [see Eq. (36)], which
agrees with experiments within 1%. In order to avoid
violation of the condition (43) when k & 1 A, we have
evaluated the functions Mk„and Wk „needed for ek in

Eq. (35) at co=fik /4mSk/2. As mentioned earlier, ek de-

pends only weakly on ro during iterations and thus we be-
lieve that the present results are reliable.

In the roton region the calculated energies are clearly
above the experiments. We found the roton energy 11.7 K
compared to the experimental 8.7 K. Also the momen-
tum at the minimum is slightly shifted towards smaller
values of momenta. This is the deficiency of the HNC
approximation in giving high enough peaks for the struc-
ture function and the static response function when k-2
A

For comparison, we also plot in Fig. 3 the optimized
HNC result for the Bijl-Feynman relation of Eq. (1) cal-
culated at the saturation density po ——0.0175 A . It turns
out to be quite a poor approximation both at small k and
in the roton region.

Finally the function Mk appearing in both of the ener-
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APPENDIX

In this appendix we collect the lengthy formulas used in
the calculation of the dynamic response function of a
quantum Bose system. In order to profit from the sym-
metry of the functions gi2 ——g2~ and b~2 ——bit we change
the momentum space variable q~q —(k/2) in the evalua-
tion of these two-particle functions from the integral
equations (40)—(42). The functions hk (q), Gk „(q), and
Bk„(q) are then symmetric under the change of sign of
the variable q and thus only even values of / are needed in
the I.egendre expansion. In the numerical calculations we
take the maximum 1,„=6.

The expression for the quantity Wk„appearing in Eq.
(28) may be written in terms of two integrals

~k, 2 $ fJk(q)+~k, (q) j
d'q

(2m. ) po

where

(Al)

We have derived the optimizing Euler equations for the
dynamic inhomogeneous boson system starting from the
Jastrow ansatz for the wave function which also includes
the backflow factor. This set of four equations is solved
when a weak external disturbance is applied to liquid He.
As a result, we get the dynamic linear-response function
and the elementary excitation spectrum. %orking con-
sistently within the HNC approximation we find that the
calculated energy spectrum agrees surprisingly well with
experiments up to k —1.5 A . The roton dip at k —1.85
A ', however, is not deep enough. This difficulty may be
traced back to the too shallow peak in the structure func-
tion.

Jk(q) =zk(q)zk(q)/xk(q)+ I'k(q)

with

(A2)

k, u„

0.
1.0

k(A )

FIG. 4. Function Mk, „defined in Eq. (30).

Rk(q) =k.q(C+ C —1)(S+—S ) ——,
' k (S+S —1)

—(q'+ —,k')C+C (S+S +S++S ),

Zk(q)=k. ( —,'k+q)u++k. ( —,
' k —q)

&(u +(q ——,'k )C+C

( —,
' k+q) ( —,

' k —q)
Xk(q) = +s+ S

(A3)

(A4)



M. SAAREI.A

Y'k(q)+ C+ C [It q(S+ —S )

+(q ——,
' k )(S+ —1)(S —1),

+ —,'k (2S+S —S+ —S )],

uq =~[1m» &»—]=Iq0

In the above formulas we have used the notation

(A6)

(A7)

3 ~

&a (q)+ J Ba, (q')sk(q, q')
(2n) po

= Tk(q)+tk(q)Gk (q) . (A14)

It contains thc qualltltlcs

( —,&+q) ( —,&+q') ( —,
'

&—q) ( —,
' k —q')

S+S'+
+

S S'

f+ =f (
I 2 &+q

I
) . (AS)

The second term in the integral (Al) depends on the func-
tion hk „(q) and thus also on to

&k „(q)=f 3
hk„(q')

(2n) po
Tk(q) =

S+S'
X (Sq q

—1),
Xk q

k , (S+ —S )+ —,'(S++S —2) tk(q),

(A15)

with

and
X [Ut, (q, q')&k(q)/XJ, (q) —L k(q, q')] (A9)

1
tk(q) =

S+S Xk(q)

Uk(q, q')=2(q + —,'k }(S —1)—2q' (q —q')I

~k(q q')=[1 q(S+ —S-}
+ —,

' k2(S+ +S —2)](Sq q
—1) .

The integral equation (40) for hk (q),

d q'
~k,.(q) I—, hk, (q')&k(q, q')

(2n }'po

=Tk(q)+to tk(q)Bk (q),

includes the quantities

Ek(q, q') =S+S Uk(q, q')/Xk(q} —(Sq q
—1},

(A10)

(A 1 1)

(A12)

Here we have used a notation S+ ——S(
I

—,
' It+q'

I
).

In the numerical calculations it is important to be care-
ful with the singularity in Tk(q)

Sk —1 1
lim Tk(q}=

2 lim, , (A16)
q~ —k/2 k q~k/2 S(

I

—lr q I
)

because only if Gk „(q) exactly fulfills Eqs. (42) and (40)
at q =It/2, or, equivalently, the sequential condition"

lim Gh (q)=l —Sk,
q~k/2

then the singularity is canceled by the last term in Eq.
(A14). This can be guaranteed by replacing Gk „(q) by its
"solution" in terms of the integrals appearing in Eqs. (40)
and (42) and then

Tk(q) =S+S Zk(q)/Xk(q)+(S+ —l)(S —1),
(A13)

lim Tk(q) =1—Sk
q-+k/2

(A17)

4m
tk(q) = S+S /Xk(q) .

The integral equation (41) for Bk (q} is obtained after
the convolution approximation is used for qi23

cancels the singularity.
One simplifying approximation is made in the calcula-

tion of the integral equation (A14) by substituting the
term Sq q

—1 in ECk(q, q') by its angle average. This is
unimportant for the numerical results but simplifies the
Legendre expansion of the integral considerably.
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