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Hartree and Jastrow approximations for monolayer solids of Ne, Dq,
H2, He, and He
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Calculations are reported for monolayer solids of Ne, 02, Hq, He, and 'He, with Hartree and Jas-
trow approximations for Lennard-Jones potential models in mathematical two dimensions. Esti-
mates are made fox the energies of solids at condensation, for enthalpies of the compressed solids,
for the highest densities which can be reached for adsorption on the basal plane surface of graphite
and on the (111)face of silver, and for energies of registry V 3 lattices on graphite. Melting of the

monolayer solids of helium is treated.

I. INTRODUCTION

There are several reasons for a renewed interest in the
theory of monolayer solids with large quantum effects.
Atom-surface scattering experiments' have improved
the knowledge of the holding potential for light adsor-
bates such as helium and hydrogen. The large compres-
sions of the monolayer solids of helium and of hydrogen
on basal plane graphite which are achieved before further
layer condensation make these systems significant for gen-
eral discussions of the conditions which may lead to lim-
ited layer growth in physisorption. For helium adsorption
with a weak holding potential, as on hydrogen films,
there is a question whether the limiting state of the mono-
layer is a liquid or solid. In the physical adsorption of H2
on a smooth surface such as the (111) face of sil-
ver, H2/Ag(111), the system may be close to the regime
where a quantum system at very low temperatures con-
denses as a liquid rather than as a solid. We report here
the results of calculations using the Hartree and Jastrow
variational approximations to the qutmtum mechanics of
two-dimensional systems, with estimates of energies and
lattice constants for several adsorbate/substrate combina-
tions of recent experiments.

The most systematic theoretical study of the relative
stability of solid, liquid, and gas phases at very low tem-
peratures, for light atomic masses, has been the elabora-
tion of the quantum-mechanical law of corresponding
states by Nosanow and co-workers. ' " They used the
Jastrow variational theory and Lennard-Jones pair poten-
tials for the interactions among the atoms. We extend
their results by determining the critical de Boer parameter
in two dimensions where the ground-state energy of the
boson liquid becomes equal to that of the solid.

Nosanow and Shaw' developed the Hartree approxi-
mation for the three-dimensional inert gas solids. No-
vaco' ' performed Hartree calculations for monolayer
solids of helium, both for mathematical two dimensions
and with allowance for vibrations perpendicular to the
substrate for helium adsorbed on graphite. %'e report ex-
tensive calculations for the Hartree approximation to

Lennard-Jones systems in two dimensions. Novaco's
work for He on graphite is updated by use of holding po-
tential parameters derived from atomic scattering experi-
ments' and there is an application to He/Ag. Calcula-
tions for the D2 and H2 parameters lead to estimates for
the limit of monolayer compression in adsorption on gra-
phite and on Ag(111), the first theoretical treatment of
the limit for these systems. The energetic stability of the
~3R30' lattices of Dq, Hi, He, and He on graphite is
also treated, and there are estimates for an Einstein oscil-
lator frequency of the v 3 lattices of Dz and Hi on gra-

phite. "
Liu et al. ' examined the melting transition of two-

dimensional He using Jastrow variational calculations.
We extend their work to other de Boer parameters, and
find some changes in the He melting parameters. The
Jastrow results are also used to calculate the zero-
temperature equation of state of the compressed quantum
monolayer solids.

Monolayer solids of neon have been treated' ' with
approximations which lead to 5% differences in the la-
teral ground-state energy. We use the Hartree and Jas-
trow approximations for a Lennard-Jones potential model
and determine the ground-state energy to 1% for the
given model, thus clarifying the relation among the vari-
ous approximations for neon.

The organization of this paper is as follows. Section
II A contains a summary of the interatomic potentials and
adsorption and cohesive energies which are used in the
calculations; Sec. II B contains a review of the approxima-
tion techniques for calculating the energy of a quantum
monolayer. The applications are contained in Sec. III.
An overview of the results is presented in Tables III and
IV. Section IV contains some concluding remarks. There
are two Appendices: Appendix A contains a summary of
a variation-perturbation approximation to the Hartree
theory which has good accuracy for neon and is a useful
preliminary to detailed calculations for Dz, Appendix 8
contains a summary of lattice dynamical calculations on
the bilayer condensation of Di on graphite and comments
on a possible structural reorganization' of the bilayer into
an oblique unit cell.
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II. COMPONENTS OF THE CALCULATIONS

A. Interaction models and cohesive energies

1. Adsorbate-adsorbate interactions

We take the adsorbate-adsorbate (inert gas atom-atom
and molecule-molecule) interactions to be given by
Lennard-Jones (12,6) pair potentials:

P( r) =4@[(o/r)' (a/—r) ]
=a[(RO/r)' —2(RO/r) ], (2.1)

with parameters given in Table I. Properties calculated
with the de Boer—Michels Lennard-Jones potential for
helium are close to those for more complex multiparame-
ter potential models. ' The Lenny-Jones potential
model for the isotopic hydrogen series omits anisotropic
interaction terms and is a more primitive model, but it
leads to values for the ground-state energy and lattice
constant of the three-dimensional (3D) solids which are
close to the experimental values. The parameters for
neon also reproduce properties of the 3D ground state
rather well.

The adsorbed Hq and D2 are modeled here as spherical-
ly symmetric objects, although small departures from free
3D rotor states are observed for Hq/Ag(111) and
D2/Ag(111).

The de Boer parameter for atoms (molecules) of mass
m interacting through the Lennard-Jones (12,6},LJ(12,6},
potential is

A' =h /(oV m e), (2.2)

where h is Planck's constant. A second form of this pa-
rameter used by Nosanovr and co-workers' is

rl =[A'/(2m )] (2.3)

Dimensionless energies, densities, spreading pressures,
and entha!pies are constructed with the energy and length
scales of the Lennard-Jones potential by

E'=E/e, p'=per, p'=po'/e,
(2.4)

h'=E'+(p'/p') .

There are several advantages for the computations aris-

ing from the simplicity of the Lennard-Jones form, Eq.
(2.1). In the Hartree calculations, we perform two angular
integrations analytically. In the Jastrow calculations,
McMillan scaling greatly reduces the number of Monte
Carlo simulations required for the variational searches.
Putting results for the two-parameter Lennard-Jones form
into the format of the quantum-mechanical law of corre-
sponding states'c provides a way to follow systematic
trends of the quantum effects and to construct interpola-
tions for other cases.

We do not explicitly include the several adsorption-
induced modifications to adsorbate-adsorbate interactions
which are known3 to yield 10% to 20% adjustments in
the lateral energies of inert gases on graphite and on
Ag(111). Estimates of these effects may be obtained by
fitting an LJ(12,6) potential to the net pair potential and
then interpolating in our results.

The distinction in the Lennard-Jones parameters for
H2 and D2 is omitted. The Michels values for D2 would
lead to a de Boer parameter differing by 2% from the
value in Table I; the effect of such adjustments can be es-
timated by interpolating in our results. Anisotropic com-
ponents of the molecule-molecule interaction are omit-
ted although they are significant for the orientationally
aligned phases of the 3D solids and of ortho-H2 on gra-
phite ' and may be significant for the structure of the
compressed monolayer (see also Appendix B).

2. Adsorbate-substrate interactions

The ground-state energy, eo(hold), of a single helium
atom or hydrogen molecule in the holding potential is list-
ed for several adsorbate-substrate combinations in Table
II. The energies are derived from resonances observed in
selective adsorption scattering experiments. The values
for D2 on graphite and D2/Ag(111) are based ' on a com-
bination of data for excited states of those systems and for
the Hz cases, since the ground-state levels of the D2 sys-
tems were not detected in the experiments. The entry for
Ne on graphite comes from a calculation' for a holding

TABLE II. Adatom-substrate ground-state energy. Energy
co{hold) in K.

TABLE I. Lennard-Jones {12,6) potential parameters. e (in

K) and cr (in A) of the LJ(12,6) potential function, Eq. (2.1); de
Boer parameter A» defined in Eq. (22).

System

Adsorbate

"Ne
H2

D2
4He

He

Graphite'

350b
482'
S16'

135'

Substrate
Ag

298

52g

CQ

197'

52"

"Ne'
0 b

H b

He'
He'

36.76
36.7
36.7
10.22
10.22

2.786
2.958
2.9SS
2.S56
2.556

O.S7942
1.216
1.720
2.67
3.08

'From Ref. 2'7.

From Ref. 24„neglecting the distinction between parameters
for 02 and H2.
'From Ref. 20.

'Basal plane surface of graphite.
Calculated, Ref. 17, from a holding potential fitted to gas-

surface virial data.
'Reference 2.
On the (111}face of Ag, from Ref. 5.

'On the (110) face of Cu, Ref. 4.
fFrom a review, Ref. 1.
On the (110)face of Ag, Ref. 3.

"On Cu(113) and Cu(115), Ref. 4.
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potential model fitted to gas-surface virial data.
The ground-state energies for H2/Cu(110) and

Hz/Cu(115) differ by less than 5%%uo, the ground-state ener-

gies for He on Cu(113), Cu(115), and Cu(117) differ by
about 10%. Thus the experimental value for
He/Ag(110) may be close to the value of Ag(ill), al-

though registry effects of the adlayer with the substrate
depend on which substrate plane is exposed.

The binding energy of a single helium atom on a comp-
leted helium monolayer on graphite was derived by No-
vaco32 from an analysis of adsorption isotherm data:
30.0+0.1 K for 4He/ He on graphite and 25.4+0.1 K for
He/ He on graphite. Corresponding information for ad-

sorption of helium on metals, such as the He/Au sys-
tem, is not yet available.

TABLE III. Three-dimensional ground state. Cohesive ener-
0

gy in K and nearest-neighbor spacing I. in A.

System E(3D) (K} L (A) Source

H2

232
—222
—228

—132.8
—129
—137

—89.8
—65.9
—85.47

3.155
3.168
3.159

3.605
3.559

-3.58

3.789
3.769
3.784

expt. '
Hsrtreeb
Jastrow'

expt.
Hartreeb
Jastrow'

expt. d

Hsrtreeb
Jastrowf

3. Three-dimensiona1 ground-state properties

The ground-state energy E30 and nearest-neighbor
spacing L of the three-dimensional solids of Ne, Hz, and

D2 are listed in Table III. For the helium isotopes, the

ground state is a liquid: the entries in Tables III give the
number density of the liquid as well as the nearest-

neighbor spacing in the solid at the melting curve near 0
K. These data are taken from recent reviews and compila-
tions 21,25,28, 34

B. Approximation techniques

The ground-state energy of a near-harmonic solid can
be approximated using the zero-point energies of the nor-
mal modes determined with harmonic lattice dynamics.
The quasiharmonic theory of few-layer systems is the
development of this approximation to include two- and
three-layer condensation phenomena. 35 Results of the
quasiharmonic theory for the bilayer condensation of Dq
on graphite are summarized in Appendix B.

When the atomic or molecular motions in the solid are
strongly anharmonic and the root-mean-square displace-
ments from lattice sites in the solid are an appreciable
fraction of the nearest-neighbor spacing, other approxima-
tion methods are necessary to determine the ground-state
structure. The Hartree theory' ' is based on a self-
consistent treatment of noncorrelated displacements from
the lattice sites and is a generalization of the Einstein os-
cillator model of a solid. The quantum-cell theory, '

based on the Lennard-Jones and Devonshire cell model, is
a non-self-consistent version of the Hartree theory. The
Jastrow approximation' ' ' ' includes correlation
among the motions and is applicable to a quantum liquid
as well as to the quantum solid. Both the Hartree and
Jastrow theories are variational approximations in quan-
tum mechanics.

In the Hartree and Jastrow theories the basic calcula-
tion is to find a variational upper bound on the lowest en-

ergy at a prescribed density for the many-body Hamiltoni-
an (N +co):—

3He

—7.14
—5.95

0.49

—2.52
—2.92

9.70

3.67

3.74

liquid, expt. ~

Jastrow"
solid expt. '

liquid, expt)
Jsstrow bosons"
solid„expt.'

H = —g —g V;+ —,
' gp(rj) .

i =1 i+j
(2.5)

1. Hartree theory

For Eq. (2.5) and in the following, lengths are written in
units of the LJ(12,6) cr, Eq. (2.1).

'Reference 28.
Hartree calculation with LJ(12,6) potential of Table I; this

work.
'Jastrow variationsl calculation for LJ(12,6) potential of Table I;
Ref. 27.
~Reference 25.
'As in c, based on Monte Carlo data of Ref. 26; the separation I.
for the minimum-energy solid is poorly determined in our calcu-
lation and may be accurate to about 1%.
As in c, Ref. 26.
IFrom Ref. 21, liquid density 0.0218 A
"For LJ(12,6) potential of Table I; liquid density 0.0196 A
Ref. 41.
'Enthalpy and nearest-neighbor spacing for a solid at the melt-

ing curve st zero temperature, Ref. 34,
'From Ref. 21, liquid density 0.0164 A
"Jastrow calculation for LJ(12,6) potential of Table I snd bosons
of 3He mass, Ref. 41, liquid density 0.0142 A.

The Hartree variational theory requires a functional op-
timization of the one-body factor P in the trial ground-
state wave function:

'pH= g 4(r;) (2.6)

The nonlinear integral equation for f obtained by minimi-
zation of the trial energy

fdr), . . . , dr~4'HH%H
E~H = (2.7)fdli, . . . , drN

i 0H
i

is

~V~/(r;)+ —g fdr, ~g(r, ) ~2$(r~j)f(r;)=&of(r;)
j {+i)

(2.8)
with corresponding energy
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'2
Jdr, ( g( rj) (

rj r pjo ~o
j~o

EH /(&e) =&c
26

(2.9)

6V», g Jo(gcuj), (2.10)

where g~ is the shortest nonzero reciprocal-lattice vector,
2.95 A for graphite, and Jc is the zeroth-order cylindri-
cal Bessel function.

A further approximation, starting from the Hartree
theory, leads to an estimate of an Einstein energy for
single-particle excitation. If the relaxation of the nigh-
bors of the excited particle is neglected, the approximate
Einstein energy is the difference of the ground-state ener-

gy eo of Eq. (2.8) and the first excited-state energy ei of

We seek solutions f(u) which are circularly symmetric
(spherica]ly symmetric in three dimensions) in the dis-

placements uj ——rJ —RJ from the lattice sites, in analogy
to the Nosanow and Shaw three-dimensional theory. 'i
Rosenwald' included angular dependences refiecting the
symmetry of the cell defined by the neighboring sites of
the lattice in calculations for the 3D sHe solid, but the
changes in the enthalpy were only 10% relative to the re-
sults for the spherically symmetric trial function. With
the circularly symmetric 1( and the Lennard-Jones pair
potential the angular integrations implicit in the expecta-
tion value in Eq. (2.7) can be performed analytically, as in
the 3D case. '

We also use the Hartree theory for a study of the stabil-
ity of registry v 3 lattices of helium and hydrogen on gra-
phite. The Hamiltonian H, Eq. (2.5), then has an addi-
tional registry energy term

I

the cell potential:

V rP+ —g Jdr, g(rj'|~go(rJ)~ gtr, )=e~P.
j (~i)

(2.1 1}

In Eq. (2.11), Pc is the ground-state solution of Eq. (2.8);
for the v 3 lattice the registry potential, Eq. (2.10), is add-
ed in Eqs. (2.8} and (2.11). In our applications, the first
excited state has one unit of angular momentum. The ex-
citation energy e(ei —eo) is related to the mean-square dis-
placement in the ground state, (ri), by an inequality
based on the dipole sum rule in D dimensions:

(r~}&D))l /[2m@(e& —eo)t .

The values of (ri) in the applications of Sec. III are
within 3% of this upper botlnd.

The numerical solution of Eq. (2.8) for two dimensions
is with conventional methods. The equation (in the radial
variable only) is solved by iteration and Hartree damping,
with a solution of the Schrodinger equation within each
iteration by the Cooley algorithm. Twelve sheHs of
neighbors are included in the potential sums in the self-
consistent calculation; the effect of further shells of neigh-
bors is added with a static lattice sum end correction.
Grid sizes of fractions 0.01, 0.005, and 0.0025 of the
nearest-neighbor spacing are used in the numerical in-
tegrations; energies determined with the 0.0025 grid ap-
pear to have precision better than 0.01 in E/e and 0.05 in
the scaled enthalpies.

Results for the ground state of the two-dimensional

TABLE IV. Monolayer properties. Calculations with Hartree and Jastrow trial functions for the
LJ(12,6) models of Table I.

System Eo (K.)'
Hartree

1.„(A)' L )(30) (A) Eo (K)
Jastrow

I.„(A')' L, , (30) (A')b

Ne on graphite
Dq on graphite
DQAg(111)
H2 on graphite
H2/Ag {111)
4He on graphite
HeyAg(110)
He on graphite

—78.5
—35.3
—35.3
—7.96
—7.96

3.282
3.784
3.784
4.180
4.180

3.116
3.34
3.46
3.45
3.58
3.15
3.52
3.27

—81.0
—44.0
—44.0
—22.3
—22.3

0 Sc,d

0 5c,d

3.26
3.72
3.72
4.07
4.07

3.33'
3.44
3.41
3.52
3.09
3.41
3.20

Q

'Energy (in K) and nearest-neighbor sparing (in A) of the two-dimensional ground state; no substrate re-
gistry effects.

0
Monolayer nearest-neighbor spacing in A for which the upper bound in Eq. (3.4) is achieved; E3n cal-

culated in the same variational approximation as hh„.
'20 ground state is a liquid, Refs. 45 and 46.
This work; a more-detailed treatment (Ref. 45) has —0.62 K at 0.037 A

'No calculation.
fBy extrapolation (Fig. 1).
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(2D} and 3D solids obtained from our solutions for the
Lennard-Jones models of Table I are presented in Tables
III and IV. In the neon case, which is the only one over-
lapping with previous workers, our value for the 3D
ground-state energy differs from Hansen's value by
0.5%; we did not identify the source of this difference.

The quantum-cell-model approximation of recent
I

work' ' for Ne on graphite differs from the theory of
Eqs. (2.6)—(2.9) in not having a self-consistent determina-
tion of the cell potential and in miscounting part of the
interaction energy. The ground-state energy in the
quantum-cell (QC) model, for given lattice sites AJ, is ob-
tained from the ground-state solution of the Schrodinger
equation,

V2$(u)+ J de„+[P(R&+u) P(R—~)j f(u)=QP(u), (2.12)

Zqc/(Xe) =g+ g y(&)0) .
2E )~0

(2.13)

An analysis of the relation of this energy to the Ha«ee
energy EH is given in Appendix A, using a perturbation-
variation theory.

gf(u&) g f(r,&) . (2.14)

We use this trial function in mathematical two dimen-
sions, with the McMillan form for the pair factor

f(r) =exp[ ——,
' (b/r)'],

and two forms for the one-body factor:

/=1 (fluid),

/=exp( —Au /2) (solid} .

(2.15)

(2.16)

(The wave function for the solid is not fully symmetric. )

The formalism is the same as that used by Liu, Kalos, and
Chester. ' The trial energy for the LJ(12,6) potential is

2. Jastrom theory

The Jastrow variational theory for a many-boson sys-
tem has trial functions of the form

p b 1.80, (2.20)

beyond which the system crystallizes. The largest value
of this combination of density and b parameter in our
treatment of the fluid phase occurs in the neon case,
where the product p'b almost reaches 1.5.

The Jastrow ground-state parameters of 3D Ne, from
Hansen, and of H2, from Bruce, are listed in Table III.
The Jastrow ground-state energy for 3D D2 listed there is
derived from Bruce's Monte Carlo data. The entries for
helium are taken from the literature. '

The expectation values required in Eqs. (2.17) and (2.19)
are obtained from primary calculations by McMillan scal-
ing. We augmented the tables presented by Liu et al. '

with several more Monte Carlo calculations to extend the
variational search to the parameters corresponding to H2,
D2, and Ne. Most of the new calculations were for Monte
Carlo cells of 36 particles and some for 100 particles; the
data are presented elsewhere. The Monte Carlo expecta-
tion values appear to be statistically accurate to 1%; re-
peating some of the cases treated by Liu et (zl. '6 also gave
agreement to 1%. Our Jastrow calculations use a com-
bination of the Liu data and the new data, although there
are some irregularities in the combined data set.

The Monte Carlo calculations are based on the
correspondence of the expectation values to averages for a
classical inverse power-law fluid. It is worth noting that
Novaco and Shea determined the limiting density of the
fictitious fiuid corresponding to Eq. (2.15}to be

+ 25 r} --, +(Arl/2),r7
(2.17)

where the expectation values of the inverse power laws are
defined in terms of the pair distribution function by

(2.18)

The virial theorem for the spreading pressure p is

(2.19)

it remains vahd for the pressure derived from variational
energies if the length scale in the trial function is optim-
1zed.

III. APPLICATIONS

This section is divided into six subsections. The criteria
for the limit of monolayer compression are summarized in
Sec. IIIA. The condition for the onset of a quantum
liquid as the ground state of a 2D boson system is given in
Sec. III 8. The results of calculations for neon are given
in Sec. IIIC. Results for the equation of state of the
monolayer quantum solid with no substrate registry ef-
fects are presented in Sec. III D for hydrogen and in Sec.
IIIE for helium. Calculations on the stability of the
V 3R 30' lattices of helium and of hydrogen on the basal
plane surface of graphite are summarized in Sec. III F.

A. Criteria of the zero-temperature phase equilibria

The conditions of the phase equilibria at zero tempera-
ture are stated in terms of the enthalpy h per particle and
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the spreading pressure p derived from the internal energy

per particle by

(3.1)

(3.2)

In these equations a is the area per particle and the partial
derivative is taken with other structural parameters (e.g.,
the interlayer spacing) held constant at the values which
minimize the energy u for the given a. We use Eq. (3.1)
as a check on the internal consistency of calculations with
the virial theorem for the pressure, Eq. (2.19). At zero
temperature the enthalpy per particle is equal to the
chemical potential.

The conditions of mechanical and mass transfer equili-
brium between two monolayer phases I and II at zero
temperature are

The scaled coexistence densities are pf' ——0.375 and

p, =0.43, with energy E'= —0.222. The ground state of
the 20 solid is so dilated as to become mechanically un-
stable in the quasiharmonic approximation already at
A' =0.704.

For the I.J(12,6) series, with similar trial functions,
Nosanow et a/. ' found the onset of the boson fluid in
three dimensions is at A' =2.60, g =0.171. Later,
Nosanow adjusted the calculations so as to reproduce
the zero-temperature solidification pressure for helium.
The critical de Boer parameter is then displaced to
A =2.32, g=0.136.

Thus, H2 physisorbed on a very smooth substrate sur-
face, perhaps Ag(111), is likely to condense at very low
temperatures as a solid and not as a quantum liquid, al-
though it would have a low melting temperature.

SI III ~

~i=lin .
(3.3)

A]gg (E3D eo(hold} ~ (3.4)

A more stringent bound is available when the second-
layer condensation energy aqua is known:

hi„(bilayer limit) & eii —ep(hold) . (3.5)

Equation (3.4) can be applied in the absence of any in-
formation on the bilayer structure. As shown in Secs.
III C and III E it is informative because the limit on the
nearest-neighbor spacing set by Eq. (3 4} does not differ
much from that set by Eq. (3.5). For He on graphite,
values for the binding of a second-layer helium atom to
the graphite and first-layer helium are good approxima-
tions to e» because the lateral binding-energy terms in the
second layer are small.

B. Critical de Boer parameter for onset
of a boson liquid ground state

The ground state of a many-body system is a fluid rath-
er than a solid when the confinement kinetic energy is
large. The transition occurs when the ground-state energy
of the fluid becomes equal to that of the solid, a horizon-
tal tangent in the Maxwell construction. For the 20
many-boson system interacting via LJt12,6} pair poten-
tials, we find, using the variational trial functions of Eqs.
(2.14)—(2.16), that this occurs at

A =2.16,
(3.6)

q=0. 118 .

Equations (3.3) are equivalent to the Maxwell double
tangent construction for first-order phase equilibrium and
are used in Sec. III E for the determination of the freezing
of two-dimensional (2D) helium. '

The extent to which the zero-temperature monolayer
can be compressed is limited by the formation of three-
dimensional (3D) bulk phase with ground-state energy
E3D per particle. The ground-state energy in the holding
potential eo(hold), from Table II, and EqD set a bound on
the enthalpy arising from adatom-adatom interactions:

Monolayer neon was previously treated with quasihar-
monic lattice dynamics' and with the quantum-cell ap-
proximation. ' ' %e now summarize those results and
present the results of the Hartree and Jastrow calcula-
tions.

The ground state of the LJ(12,6) Ne in the quasihar-
monic approximation has energy —89.4 K and nearest-

neighbor spacing L =3.288 A in two dimensions and ener-

gy —237 K and L=3.160 A in three dimensions. The
parameters of the bilayer condensation at zero tempera-
ture are (these values are corrections of results reported in
Ref. 17) as follows: L i ——3.142 A, L i ——3.164 A,
zi2 ——2.55 A, p= 16.3 KlA, and chemical potential
(enthalpy) p= —295 K. The ground state of the 2D
LJ(12,6) Ne in the quantum-cell approximation has's en-

ergy —82.7 K at L=3.285 A.
The ground-state parameters in the Hartree and Jastrow

approximations for 2D LJ(12,6) Ne are listed in Table IV.
The Hartree energy is —78.5 K at L=3.282 A, showing
that the self-consistency term omitted from the quantum-
cell theory is 4 K; this agrees with the perturbation-
variation analysis in Appendix A. The minimum Jastrow
energy is —81.0 K at L=3.26 A; that is, the quantum-
cell energy contains partially offsetting errors by the om-
issions of the self-consistency term in the cell potential
and of the correlation energy. We believe the size of the
difference in the values of L from the Hartree and Jas-
trow calculations is an artifact of small irregularities in
combining our Monte Carlo data with the data of Liu
e~ al. "

The corresponding comparisons for the ground state of
3D LJ(12,6) Ne are energy —222 K at L=3.168 A in the
Hartree calculation and —228 K at L=3.159 A in
Hansen's Jastrow calculation.

The bound on the monolayer enthalpy set by the 30
cohesive energy, Eq. (3.4), is reached for a monolayer
L=3.116 A, which is 1% smaller than that set by the
quasiharmonic theory of bilayer condensation. If the
quasiharmonic value for e» is used in Eq. (3.5) as a limit
on the lateral enthalpy from the Hartree approximation,
the limit on the monolayer lattice constant is 3.158 A,
1.4%%uo larger than the value from Eq. (3.4) and 0.5%%uo larger
than the value from the quasiharmonic theory. The 2D
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Hartree theory thus leads to estimates of 5% rnonolayer
compression before bulk formation and 4% compression
before bilayer formation. The difference from the use of
Eqs. (3.4) and (3.5} is more significant here than in Secs.
IIID and IIIE where the net range of compression is
larger, but this analysis does specify the lattice constant of
the strongly compressed monolayer to 1%. Equation (3.4)
sets an informative limit on the monolayer lattice constant
because the enthalpy is a rapidly varying function of lat-
tice constant in the strongly compressed monolayer.

«« ~ ~ ««« ~ ~ « ~«

Hp J

D. H2 and 02

Results for the LJ(12,6) ground state of Di and of Hr
are presented in Table III for the three-dimensional (3D)
solid and in Table IV for the two-dimensional (2D) solid.
The 3D H2 Jastrow results were obtained by Bruce,
while the 3D D2 Jastrow results are from our calculations
with Bruce's Monte Carlo data. The large difference be-
tween the ground-state parameters of H2 calculated with
the Hartree and the Jastrow approximations in three di-
mensions also appears in the results for two dimensions.
As expected, these differences are smaller for the ground
state of D2.

Monolayers of H2 and D2 on the basal plane surface of
graphite are observed" to condense as v 3R30' lattices and
to compress as triangular lattices to limiting values of the
nearest-neighbor spacings L of 3.51 A for Hz and 3.40 A
for D,.

The calculations lead to estimates of the energies at the
condensation and of the limit set on the monolayer
compression by the chemical potential of the ground-state
3D sohds, Eq. (3.4}. They also show changes in the
monolayer limit for adsorption on Ag(111), for which the
holding potential is not as deep as on graphite. '

The lattice constant of the ground state of 2D LJ(12,6)
H2 is within 5% of the 4.26-A spacing of the W3
lattice on graphite; the difference in the Jastrow energy
between the minimum-energy lattice and the ~3 lattice is
only 0.6 K/molecule. Thus, small amphtudes Vs, Eq.
(2.10), for periodic components of the molecule-graphite
potential may suffice to stabilize the V 3 lattice; this is
discussed further in Sec. IIIF. The ground state of the
unmodulated 2D liquid has energy —16.3 K/molecule
and is unstable relative to the solid.

The lattice constant of the ground state of 2D LJ(12,6)

2 is 12% less than the spacing in the v 3 lattice. The
minimum-energy solid has a Jastrow energy 9 K/molecule
lower than that of the liquid. This solid has Jastrow ener-

gy 9 K/molecule lower thm that of a solid at the W3 den-

sity, without the registry potential.
e use the Hartree and Jastrow approximations for the

enthalpy as a function of lattice constant to estimate lim-
its for the monolayer compression, with Eq. (3.4). The
enthalpies are shown in Fig. 1 and the limits on the mono-
layer lattice constant are listed in Table IV. The Jastrow
value is 3% smaller than the experimental value for Hz
on graphite and 2% smaller than the experimental value
for D2 on graphite; the Jastrow values from Eq. (3.5)
would be larger than the values in Table IV. The mono-
layers condense in v 3 lattices with L=4.26 A, so that

g Ag

I

1.00
I

1.05
o

' ~\
~«~«

~«~«

~« ~«
~ «~«~«~« ~«

I

1.10

FIG. 1. Reduced lateral enthalpy p~„/e as a function of the
reduced lattice constant L/Ro of 2D triangular lattices at zero
temperature. The curves are the results of Hartree (H) and Jas-
trow ( J) calculations for LJ(12,6) potentials with the parameters
for D2 and H2 listed in Table I, The horizontal lines labeled Ag
and Gr denote compression limits set by the formation of 3D
solid, using data of Table III and of Table II for the holding po-
tentials on Ag(111), Ref. 5, and on basal plane graphite, Ref. 2.

this method of estimating the limit of compression gives
the limit on L for the Hr on graphite to 0.1 A, with an
observed range of 0.75 A and for Di on graphite to 0.05
A, with an observed range of 0.85 A. These are quite sa-
tisfactory estimates considering the simplicity of the in-
teraction models and the idealization to two dimensions in
the calculation.

The entries in Table IV for the adsorption on Ag(111)
show changes of 0.1 A, relative to the values on graphite,
in the nearest-neighbor spacings of the limiting mono-
layers of Dz and Hi. These changes are a direct conse-
quence of the 200-K difference in the single-molecule
ground-state energy on Ag(111) and graphite.

E. 4He and boson 3He

Results for the LJ(12,6) model for He and for bosons
of He mass are presented in Tables III, IV, and V. The
Jastrow-theory values for 3D helium are the results of
Schiff and Verlet; ' further calculations on He with the
LJ(12,6) model and with more modern potentials are
available. The many-boson theory for He is easily ap-
plied with the He mass; it treats fermion exchange effects
for He incorrectly, but may give a fair account of the
enthalpy of compressed monolayer solid He.

There were several treatments' ' ' of monolayer
He on graphite prior to the determination' of the holding
potential by atom-surface scattering experiments. Our re-
sults for the compressed monolayer solids show the
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changes which follow from the use of the new informa-
tion and from a somewhat more complete evaluation of
the 20 Jastrow theory; there is now a quite close agree-
ment with the low-temperature chemical potential as a
function of density derived from thermodynamic data by
Goodstein and co-workers. ' The results in Table V
for the freezing transition of the 2D LJ(12,6) boson sys-
tem extend the work of Liu et a!.'

Thermodynamic measurements gave values for the
(low-temperature) high-density limit of monolayer He on

graphite of 0.115 A (L=3.17 A) and for He on gra-

phite of 0.108 A (L=3.27 A). These values are close

to neutron diffraction data: L=3.21 A for 4He at 1.2 K
(Ref. 19) and L=3.275 A for 3He at 1.06 K (Ref. 50}.

The difference between the Jastrow and Hartree ap-
proximations to the enthalpy, shown in Fig. 2, mostly
amounts to an offset of 2% to 3% in the length scale
(0.05 to 0.1 A in L) in the range of strong compression.
Novaco's work' provides a guide to the magnitude of the
changes when the motion perpendicular to the graphite is
included; there is about a 1% shift in L for enthalpies
near the monolayer limit.

The limit on monolayer compression set by the 3D bulk
condensation, Eq. (3.4}, is listed for He and boson He in
Table IV. The information ' on e», summarized in Sec.
IIA2 and used with Eq. (3.5}, leads to limits set by bi-
layer condensation of L=3.17 A for He on graphite and
3.26 A for He on graphite. The differences from
Novaco's work' are primarily consequences of the
change' in the value for the adatom-substrate binding en-

ergy.
Goodstein and co-workers ' s constructed the chemical

potential of the compressed He on graphite monolayer
from vapor-pressure and specific-heat data. Their low-
temperature data and the results of the 2D Hartree and
Jastrow calculations are shown in Fig. 3. The results of
the Jastrow theory for 2D Lennard-Jones helium, using
the one-atom holding energy on graphite taken from
scattering data, ' are in remarkably good agreement with
the experimental data for the chemical potential of the
compressed monolayers of He on graphite. This supports
the neglect of fermion exchange processes in the approxi-
mation for the dense 2D He solid.

The calculated monolayer limit for He/Ag(110}, as-
suming an intrinsic 20 triangular lattice, is included in

Gr.
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FIG. 2. Reduced lateral enthalpy as a function of the reduced

lattice constant', for Lennard-Jones helium. Identifications are
as in Fig. 1. Data for the holding potentials are taken from Ref.
1 for graphite and from Ref. 3 for Ag(110). The fermion ex-
change effects for 3He are omitted and the Jastrow energies,
Table III, of the 3D liquid are used for the 3D cohesive energy.

TABLE V. Freezing parameters at zero temperature of a 2D
LJ(12,6) boson fluid. Scaled variables defined in Eqs. (2.2) and
(2.4).

-i50
9

I

'l3

yea
4b

4c

Ied

2.67
0.14
0.39
0.37
0.44

'Spreading pressure.
Chemical potential (enthalpy).

'Density of fluid at coexistence.
Density of solid at coexistence.

3.08
0.31
1.06
0.35
0.43

FIG. 3. Chemical potential p {in K) as a function of area A

per particle (in A ) for monolayer He on graphite and He on
graphite. The data for He (O ) are the values for zero tempera-
ture listed by Taborek and Goodstein, Ref. 47; for 'He {0),they
are values for T~1 K from the tabulation of Greif, Ref. 48.
The calculated values, denoted (6 ) for He and (Q') for He, are
the zero-temperature 2D Jastrow results for triangular lattices,
shown in Fig. 2, with the single-adatom ground-state energies,
from Ref. 1, added.
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Table IV, to show the effect of the weaker
adatom/substrate binding relative to graphite. The limit
on the nearest-neighbor spacing set by 3D condensation is
10% larger than for graphite, but it is still 7% smaller
than that in the 3D solid at the melting curve at zero tem-
perature.

We also extended calculations' of the freezing transi-
tion of a 2D boson fluid. The parameters for the freezing
transitions of LJ(12,6) He and boson He are listed, in the
scaled variables of Eq. (2.4), in Table V. The He results
differ slightly from those of Liu et al. ; the changes arise
in the Jastrow energy of the solid near the melting densi-
ty. Note' ' that the corresponding calculation ' for He
in three dimensions leads to a small melting pressure and
to an increase in chemical potential from fiuid condensa-
tion to freezing of by' =0.3, which is much smaller than
the experimental value hp' =0.75.

F. V 3-registry lattices on graphite

The low-temperature monolayer condensations of D2,
Hi, He, and He on the basal plane surface of graphite
are all ' into v 3R30' lattices stabilized by laterally
periodic components of the adatom-substrate interac-
tion. The theory of the stability of these registry lattices
relative to intrinsic incommensurate lattices is complicat-
ed by the limited knowledge of the amplitudes Vs of the
periodic components of the holding potential and by the
large zero-point motions of the atoms and molecules in
quantum monolayer solids.

Here we summarize calculations performed with values
for the leading Fourier amplitude Vs on graphite

0 8p

(go ——2.95 A ) of —6.4 K for Hi and Dz and —3.3 K
for' 3He and He. The registry energy, Eq. (2.10), is in-
cluded in the Hartree calculations with Eqs. (2.8) and
(2.11). In the Jastrow calculations, we evaluate the expec-
tation value of the registry energy in the trial function
with parameters optimized first at the v 3 density with no
registry potential; this amounts to using first-order pertur-
bation theory for the contribution of the registry poten-
tial. As noted in the discussion later in this section, the
perturbation calculation of the registry potential with this
Jastrow trial function leads to a small net expectation
value, because of the large zero-point motions. We believe
that the expectation value would be larger for a calcula-
tion in which the registry energy is included in the optimi-
zation of the Jastrow parameters. However, except for
some exploratory calculations for H2 on graphite, to test
this idea, we do not perform this reoptimization. When
the registry potential is included in the Jastrow variational
calculation the advantages of the McMillan scaling pro-
cedure are mostly lost, and the calculations should then be
performed with snore realistic pair-potential models.

The root-mean-square displacements and the expecta-
tion values of the registry potential for the v 3 lattices,
calculated with the Hartree and Jastrow perturbation ap-
proximations, are listed in Table VI. In all the cases the
root-mean-square displacernents are larger in the Jastrow
approximation than in the Hartree approximation. For
I.ennard-Jones He in three dimensions, the nominally
exact root-mean-square displacements calculated by

TABLE VI. Properties of v 3 adlayer lattice on graphite.
Calculations for LJ(12,6) models of Table I. The root-mean-
square displacement is given in units of the nearest-neighbor dis-
tance (L=4.26 A) and the expectation value (in K) of the regis-
try potential uses V~ = —6.4 K for H2 and 02, Ref. 52, and

V ———3.3 K for He, Ref. 1.

(&~'))'"/L
H' Jb

(V,(r)) (K)
Ha yb

02
H2

4He
'He

0.12
0.13
0.15
0.16

0.19
0.20
0.26
0.27

—20.2
—18.4
—6.7

{j,4

—7.5
—1.3
—1.2

'Hartree (boson) wave function, including the registry potential
in the determination of the one-body wave function.
Jastrow trial function with parameters to minimize the energy

of V 3 lattice without registry potential.

Whitlock et al. are up to 10% larger than those calcu-
lated with the Jastrow approximation by Hansen and
Levesque ' (after correction ).

For Hz on graphite, the difference in 2D energy be-
tween the unmodulated minimum energy lattice and the
v 3 lattice density is only 0.6 K/molecule, as noted in Sec.
III D. The energy lowering by the periodic potential term,
Table VI, reatly exceeds this and should suffice to stabi-
lize the 3 lattice. There are also calculations by %ang
er al. for H2 on graphite at the V3-lattice density.
Their models differ from ours, so that detailed compar-
isons are not possible, but they seem to obtain about 6 K
more cohesive energy for the hquid and solid phases than
we do (allowing for the difference in values of Vz and us-

8p

ing the Hartree expectation value of the registry energy).
For Di on graphite, the 2D Jastrow energy of the

minimum-energy solid, Table IV, is 9 K/molecule lower
than at the v 3 density. The additional registry energy in
the Hartree approximation, for Vs

——6A K, is —20
K/molecule and outweighs this difference; however, the
corresponding energy from the Jastrow perturbation cal-
culation is —8.8 K. It is likely that the results of a reop-
timized Jastrow calculation would be that the v 3 lattice
is also the ground state for the LJ(12,6) model of D2 on
graphite.

We estimate the Einstein excitation energy ' of the
v 3 lattices of Dz on graphite and H2 on graphite with the
approximation of Eq. (2.11). The neglect of relaxation
and of correlated displacements are likely to be better ap-
proximations for D2 than for Hz. The effect of the
periodic potential in the calculation is small: The excita-
tion energy for D2 on graphite is 46 K for Vs

——6.4 K
and 39 K for Vs

——0; for Hz on graphite the values are 77
K for Vs = —6.4 K and 70 K for Vs ——0. The D2 on

graphite estimate is in good agreement with a value 47 K
from neutron scattering experiments, while the Hz on
graphite estimate is substantially larger than the value 57
K from neutron scattering and values near 55 K from
specific-heat measurements. ' The excitation energy to
the first excited state of single-molecule motion perpen-
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dicular to the substrate is 175 K for H2 on graphite and
105 K for Hz/Ag(111). ' A gap remains between such
states and 2D excited states of the monolayer.

For He on graphite the amplitude V
———3.3 K de-

rived from atom-surface scattering experiments is twice
the value used in early calculations ' on the stability of
the v 3R30' lattice. The Hartree-values in Table VI for
the lowering of the 2D energy per atom of the v 3 lattice
with amplitude Vs, =—3.3 K are about —,

' of the classical

value of —19.8 K. The net Hartree energies are still posi-
tive, but if the Hartree expectation values are combined
with the 2D Jastrow solid energies at the ~3 density, 0.65
K/atom for He and 3.3 K/atom for He, the v 3 lattices
have lower energies than the unmodulated fluid phases.
This would not be the case for He with the value

Vs, ———1.56 K used in earlier work. ' However, the

Jastrow perturbation calculation of the expectation value
gives much smaller values, Table VI, then the Hartree cal-
culation so that the stability of the v 3 lattices of He on
graphite has not been established. The root-mean-square
vibrations of helium atoms in the v 3 lattice, Table VI,
are large: If the atoms were uniformly distributed over a
disk of radius I./2, the root-mean-square displacement
would be 0.354J .

Einstein excitation energies for the 2D model of the W3
lattice, calculated with Vg

———3.3 K and Eq. (2.11), are

28 K for He on graphite and 35 K for iHe on graphite
(24 and 31 K with Vs, ——0). As for H2 on graphite, the

neglect of relaxation and correlation may cause these
values to be significantly larger than those which would
result from a more complete theory Even. so, they are
much less than the excitation energy of motion perpendic-
ular to the substrate, ' 66 K for ~He on graphite and 72 K
for He on graphite, and a sizable gap remains between
the energy of 2D motion and of perpendicular motion.
The gap would be smaller for He/Ag(110) and He/Cu
where the excitation energy for perpendicular motion is3'

about 25 K. Decoupling perpendicular and parallel
motions would be a particularly severe approximation for
adsorption on hydrogen films where the ground-state en-

ergy in the holding potential is calculated to be smaller
than 20 K.

IV. CONCLUDING REMARKS

Although there were several previous treatments of the
quantum mechanics of monolayer helium, our work still
has the character of exploratory calculations. The simpli-
fied interaction models and idealized (2D) geometry lead,
nevertheless, to nearly quantitative accounts of the limit-
ing compressed monolayer states of helium and of hydro-
gen, before further condensations. The advances in
knowledge of atom-surface and molecular-surface interac-
tions provide a much improved basis for understanding
the structures at monolayer condensation and at mono-
layer completion for light adsorbates with large quantum
effects. The quantum monolayers arise in the study of
spin-polarized 3D He as well as directly in the extension
of physisorption studies; they have a role in the theory of
layer-growth phenomena. Their structures may be acces-

sible with extensions of methods used to probe more clas-
sical monolayers.
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Then expand in powers of the displacements, retaining
terms up to the sixth order in products of u; and u&. The
expansion greatly simplifies when circular (spherical for
three dimensions) averages over orientations of the dis-
placement vectors are performed; this corresponds to us-

ing the symmetry assumed for the Hartree trial function
and to the averaging performed on the cell potential of the
quantum-cell model, e.g., Eq. (2.12).

The Hartree energy E~ and the quantum-cell energy

Eqc are then give in terms of expansion coefficients:

40 ———,
' gp(RJ),

A = —,
' gV p(RJ),

J

B = —,', gV V $(RJ),
J

C= 7' gV V V p(Rj)

and averages of the displacements u with normalized
single-particle wave functions P(u),

&i "&=J«Iul "I 0(» I' (A3)

(A4)

Eqc/N =40+ fdu
i VP i

+t(~/D)& "&++& "&+c«"&~ (A5)

APPENDIX A: PERTURBATION-VARIATION
APPROXIMATION TO THE HARTREE

AND QUANTUM-CELL THEORIES

We outline a near-harmonic approximation to the
ground state of the Hamiltonian of Eq. (2.5) which has
good accuracy, compared to the detailed solution of the
Hartree theory, for Ne and for compressed lattices of Dz.

For this purpose, rewrite the potential-energy term of
Eq. (2.5) using the displacements u; from lattice sites R;
(R,J ——R; —Rg ):

4= gP( (RJ+u; —ui ~) . (A 1)
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a = m coz /fi, (AS)

co@——2A /(mD), (A9)

where a and b are variational coefficients, N, is a normal-

e =(38/D2)(u } +(15Cf/D)(u }(u } . (A6)

The numerical factors f and g in D dimensions are f= —',

and g= —
„

for D=2 and f= —,
' and g= —,

' for D=3.
This completes the statement of the perturbation portion
of the perturbation-variation theory.

For the variation portion use a trial function of the
orm

1{,=N, exp( —au /2)[1+a (au 2)+b (aui)2), (A7)

with

ization factor, and coE is the Einstein oscillator frequency
for uncorrelated small-amplitude vibrations in the lattice.
The trial function incorporates the ground-state wave
function of the Einstein oscillator and terms reflecting the
first and second excited states of the Einstein oscillator.
With the trial function, Eq. {A7), the expix:tation values in
Eqs. (A5) and (A6) reduce to Gaussian integrals and the
energies EH and EQc are ratios of polynomials in the
coefficients a and b. To find the minimum of the
variation-perturbation energies EH(JPU) and EQc(pv) is a
rapid computation.

When the expansion of the potential energy is truncated
at quadratic terms the result is equivalent to the harmonic
Einstein oscillator approximation to the ground-state en-

ergy, as noted by Nosanow and Shaw. ' A direct pertur-
bation treatment equivalent to the expansions used in ar-
riving at Eq. (A5) leads to a ground-state energy

EQC(pert) in the quantum-cell approximation,

@0+iii &+[2(&f/a')+6(Cg/a')] —9[(af/a')'/~, ], D =2
(A10)

with a and coE given by Eqs. {AS) and (A9).
For the Ne LJ(12,6) model, Table I, the values of

E~(pu) are very close to Ez, the numerical solution of the
Hartree equation, Sec. III. The ground-state parameters
differ by only 0.008 in E/e and 0.002 in 1./Ro for both
D=2 and D=3. The scaled enthalpy obtained from
EH(pu) differs from that for the detailed numerical solu-
tion by about 0.01 at lattice constants l. /Ro in the range
of monolayer completion; this has negligible effect in es-
timating the limiting value of the monolayer lattice con-
stant L. The difference EQc(pu) —E~(pv },for lattice con-
stants near the ground state, is about O. 1 le (4 K) for D= 2
and about 0.15' (5.5 K}for D=3.

For the Di LJ(12,6) model, Table I, the D= 3 E~(pu)/F.
value differs from E~/e by 0.05 for I./Ro 1.075, near-—
the calculated minimum-energy Hartree state; the accura-
cy is better for more compressed lattices. For the D=2
cases, the difference [EH(pu) EH ]/e is —1.2 at
I./Ro 1.10 and——is smaller than 0.1 at l./Ro ——1.06;
again the accuracy is better for the compressed lattice.
The perturbation theory value, Eq. (A10), is very different
from EH in magnitude and in variation with lattice con-
stant for values of L /Ro where E~(pu} is close to E&.

The trial function Eq. (A7) can be generalized to in-
clude the scale a of the Gaussian as a variational parame-
ter, rather than specifying it by Eqs. (AS} and (A9). How-
ever, when the generalized EH(pv) is compared to EH,
there are only small changes for Ne (less than 0.00le).
For Dz, there are sizable changes, but no definite improve-
ment in the approximation for the enthalpy of the dilated
lattice.

APPENDIX 8: QUASIHARMONIC THEORY
OF THE BILAYER CONDENSATION

OF D2 ON GRAPHITE

In this appendix we summarize an application of the
quasiharmonic theory of multilayer condensation to the
bilayer condensation of Dz on graphite. The quasihar-
monic approximation has instabilities at high levels of
thermal excitation and when the interplanar spacings of
bilayers and trilayers become large. This has prevented
application to the Hi on graphite bilayer condensation and
to the question of a trilayer condensation for Dq on gra-
phite. For a D2 on graphite bilayer composed of triangu-
lar lattice layers, we are able to find local free-energy
minima as a function of the interlayer spacing.

We use the LJ(12,6) potential of Table I, supplemented
by the following parameters for the Dz on graphite in-
teraction: The reference plane for the polarization poten-
tial is chosen so that the minimum of the one-molecule
holding potential is at a distance 1.45 A from the "sur-
face;" the polarization potential coefficient has a value of
C3 —0.12 1 a.u. ; the holding potential minimum has a
depth of 51.54 meV and curvature of 216 meV/A .

The calculated zero-temperature coexistence of the tri-
angular monolayer and bilayer is at chemical potential
—237 K and spreading pressure 32.6 K/A with lateral
nearest-neighbor spacing 3.359 A in the monolayer and
3.440 A in the bilayer. The bilayer has interplanar spac-
ing 2.839 A and first overlayer distance 1.42S A. The re-
duced lateral energy contribution to the enthalpy, Eq.
(3.5), is h~„/@=3.07, while the bound from Eq. (3.4) us-
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ing the experimental data of Tables II and 111 is

h 1„/e(5.91.
We also considered a possible coexistence of triangular

monolayer and oblique lattice bilayer, because of propo-
sals that a reorganization of the close-packed bilayer into
a looser oblique structure might occur for light adsor-

bates. ' However, the search for local free-energy minima
in the quasiharmonic approximation led to lattices with
unstable harmonic phonons. The possibility that zero-
point energy and anisotropic components of the inter-
molecular forces may stabilize an oblique bilayer lattice of
Dq remains an open question.
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