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Scattering of helium atoms by liquid helium
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%e present results from a new He —liquid-He single-atom effective potential for scattering, ob-

tained from an integration, over the region occupied by the liquid, of a standard Lennard-Jones 6-12
pairwise potential combined with a simple model of the pair-correlation function. The new potential

is consistent with (a} the accepted internal energy (the negative of the latent heat) of liquid He, (b)

the accepted long-range ( —C3/z' van der %aals) atom-surface interaction potential, and (c) the

scattering (reflectivity) data of Edwards et a/. Production of excitons (ripplons) at the surface is not

necessary to interpret the data. The theory is unsymmetrized; that is, no account is taken of the fact
that scattering among identical particles is being considered.

The reflectivity R (which is the square of the absolute
value of the usual reflection coefficient) of He at a He-
liquid surface (referred to hereafter as He liquid) has been
studied extensively by Edwards et al. ' The values of R,
as a function of the normal component k, of the incident
wave vector k—:(K,k, ) of the He atom, are shown in Fig.
1. Two main properties of the data' are (i) R depends on
only k„and (ii) there is no measurable inelastic back-
scattering. Point (i) implies that the problem is essentially
one dimensional and, probably, that energy exchange with
the surface involving exchange of parallel wave vector

Q (K1 ——K;+Q) may be neglected. Thus, the reflectivity
may be a pure elastic quantum-mechanical mechanism,
which is also consistent with point (ii).

Theoretical attempts to explain the data have been
made. Etxenique and Pendry assumed that (a) the mul-

tiple production of ripplons together with (b) a dropping
of the liquid density p from its bulk value, po, to its vacu-
um value, 0, over a distance of about 5 A at the surface,
are the main mechanisms which are responsible for the
data, although their calculated reflectivities show devia-
tions of factors of about 3 from the experimental ones.
Usagawa did similar calculations, in the distorted-wave
Born approximation, with results quite different from
those of Ref. 3. He finds a dip in 8 (k, ), which he attri-
butes to his truncation of the asymptotic (z~ oo ) single-
atom (He-liquid) effective potential ( —C&/z ) at z =zo',
we show that this interpretation of the reason for the dip
is incorrect. Edwards and Fatouros constructed an
empirical effective potential (which we call the EF poten-
tial) for which the elastic values of R are in good agree-
ment with the data' (Fig. 1).

We assume that no account needs to be taken of the
fact that scattering among identical particles is being con-
sidered; that is, our theory is unsymmetrized. [EF (Ref.
4) found that symmetrization of their theory destroyed its
agreement with experiment. ) We have found a large num-
ber of He-liquid effective potentials V(z) which give good
fits to the data, with minima between —5 meV and
—50 peV, and with different asymptotic behaviors
—C3/z and —Cq/z". However, the effective potential
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FIG. 1. Reflectivities R as functions of the normal com-
ponent k, of the incident wave vector. The dotted curves

( ) give the approximate limits of the reflectivity data
shown in Fig. 2 of Ref. 2 (although there are no data with
R ~ -0.2). The solid curve ( ) gives results from our po-
tential V(z), and the dashed curve ( ———) gives results from
the EF potential.

is presumably unique and should be obtained from a He-
He pairwise potential and liquid-He properties, such as a
number density p(z) and a pair correlation function,
which we write as g(r) 1 in—the usual way (p. 448 of
Ref. 6), where g (r) is a radial distribution function.

We propose that the total average potential energy U(z)
for one atom interacting with liquid He [which, as we ex-
plain below, is not the same as the single-atom effective
potential for scattering, V(z)] be obtained by integrating a
pairwise He-He potential U(r) over space; that is, we de-
fine U(z) by

U(z) =f f fU(
i

r' —r
i

)p(z')g(
i

i' i
i

)d3r' . (1)

Our U(z) must give the correct asymptotic (z~oo)
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behavior far from the liquid,

limz U(z)= —C&, (2)

6CI Irpuc6 .——
As for g (r), we adopt the approximation

g (r) =H(r —s),

(8)

where H is the Heaviside step function and s is a length
parameter. Formula (9) says that, for a He atom in the
liquid, other He atoms are excluded from its spherical
neighborhood of radius s and are distributed uniformly
outside this neighborhood. Our g(r) is compared with a
g (r) based on experimental x-ray scattering data in Fig. 2,
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FIG. 2. Our radial distribution function { ) is compared
with one {———) based {Ref. 10) on experimental x-ray
scattering data taken at a temperature of' 2.06 K {see aIso Sec.
2.4 of Ref. 8). The experimental curve is not dra~ precisely.

where Cl is the usual (nonrelativistic) van der Wats
atom-surface coefflcient; at the salne time, the opposite
asynlptotlc (z~—ao ) bcllavlol' should glvc all cstlnlatc of
the potential energy ( —$Y) of bulk liquid He via the for-
mula

U( —oo )=4npo f r u(r)g (r)dr = —21V, (3)

where pc ——p( —oo) is the number density of the bulk
liquid. The zero-point (correlation) energy Z may then be
estimated using the result

(4)

where L is the latent heat (the negative of the internal en-

ergy) of liquid He, which is known from experiment.
Also, our function g (r) must obey the sum rule

4 p, f, r'[I —g(r)]dr=1. (5)

To model u(r) consistently with (2), we choose a
Lennard-Jones 6-12 potential

u(r) =4D f(cr/r)' —(o/r)6],

which gives

C, =4Dn' (7)

for the usual van der Wajlls atom-atom coefficient, Cs
and CI being related by the standard formula

and it is clear that (9) is a rather crude approximation to
reality. However, it has the advantage of leading to par-
ticularly simple versions of (3) and (5), particularly when
(6) and (7) are also used in (3); the results may be com-
bined and written as follows:

4'(p =3, (10)

68s /C6 3——(—tr/s)

As we have stated, me obtain our total average one-
atom potential energy U(z) from (1), and we must assume
a form p(z) for the dependence of the liquid density on z.
We assume for simplicity that p decreases linearly with z
from po to 0 over a distance 2q (Fig. 3). We do not
present the analytical result for U{z), as it is lengthy.

We now address the problem of obtaining a suitable ef-
fective scattering potential V(z). Outside the liquid, we
equate V(z) to U(z),

V(z) =U(z), outside liquid . (12a)

Inside the liquid, it is tempting to equate V(z) to —W,
which is given from {4) as ( —L —Z). However, the
correhtion energy Z should not be included in V, and
only the latent heat L should be included; that is, we write

V(z) =—L, inside liquid, (12b)

just as in the previous work. l s Accordingly, we have the
problem of how to make V(z) consistent with both (12a)
and (12b). We do not know how this should be done, but
it senns reasonable to assume that

V(z) =max( U(z), L);— (13)

0

FIG. 3. The assumed dependence of the liquid density p on z,
with po ——0.022 A and 2q =4.2 k

this assumption generates a discontinuity in V'(z) where
U(z) = L(Fig. 4), but (—as we check below) this discon-
tinuity has essentially no effect on the reflectivities.

Our procedure for fixing the several parameters is as
foHows. We first choose Cs ——872 meVA (Ref 7), .
pp ——0.022 A (Sec. 10.5 of Ref. 6), and L =0.62 meV
(Sec. 2.2 of Ref. 8). From (8) and (10) this choice gives
immediately s =2.21 A and CI ——10.0 meV A . If s is in-
terpreted as a pairwise effective-potential scattering length
for He, then our result agrees well with that (2.2 A)
quoted in Sec. 10.5 of Ref. 6. Our value of CI, which is
presuttlably correct, is very close to the "compromise"
value (10A meVA ) chosen by EF (Ref. 4). Finally, o.
and q are adjusted in order to give a good fit to the experi-
mental reflectivity data. Such a fit is obtained with
o =2.53 A and 2q =4.2 A. Our value of cr is close to the
literature value (2.56 A), and our value of 2q is in
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FIG. 4. Single-atom effective potentials for scattering. Our
potential V(z) is shown by the solid curve ( ), and our po-
tential v(z) by the dotted curve ( ~ ). The EF potential is
shown by the dashed curve ( ———). The potential v(z) joins
smoothly onto V(z) at z =q =2. 1 A. Usagawa's potential is
also shown by a dotted curve ( ~ ~ ). All four potentials are
asymptotic to —I.= —0.62 meV as z~ —00.

U(z), z)q,
E(z), z (q,

(14a)

(14b)

the actual form of E (z}being

E(z)=Ce" &"~ L, ,
-— (15)

with C=48}MeV, P=0.256 A. There is essentially no

reasonable agrement with the suggestion (-5 A) in Sec.
10.5 of Ref. 6 and in Ref. 3.

Although not needed explicitly, our derived values of
D, W, and Z are of interest. From (7), we get D =0.83
meV, reasonably close to the literature value (0.88 meV).
We should note, however, that the literature values of n
and D give, from (7), C& ——984 meVA, which is consid-
erably larger than the currently accepted value; thus, we
are sure to get a product Dcr smaller than the literature
product, and we are quite happy with our values of cr and
D From (4. ) and (11)we get W =0.93 meV and Z =0.31
meV, and both of these values are considerably smaller
than those quoted in Sec. 2.4 of Ref. 8. However, calcula-
tion of IV from (3), as is essentially done here, is notori-
ously unreliable because of the extreme sensitivity of the
integral in (3) to be the exact form assumed for U (r).

Our fit to the reflectivity data is shown in Fig. 1, to-
gether with the fit obtained with the EF potential. To
check whether the discontinuity in V'(z) affects the re-
flectivities, we formed another potential v(z) by joining
U(z) to Lby an expon—ential part E(z), fitted smoothly
to U(z) arbitrarily at z =q; that is,

difference between the values of R obtained with v(z) and
those obtained with V(z), implying that the smoothing
(14) is unnecessary. We have checked that similar state-
ments are true of Usagawa's potential. Our potentials
V(z) and v(z), as well as the EF potential and Usagawa's
potential, are shown for comparison in Fig. 4. It is clear
from Fig. 1 that the EF potential and our potential both
give good fits to the experimental data (the fit with the
EF potential was of course found in Ref. 2). Also, from
Fig. 4, we see that our potential, particularly the
smoothed from v(z), is surprisingly similar to the EF po-
tential (the fact that the EF potential lies below —I. in a
region close to the surface makes essentially no difference
to the reflectivities}. This point is made all the more valid
if it is realized that a shift of V(z) along the z axis makes
no difference to the reflectivities. That our potential must
differ from the EF potential (at least for the larger values
of z) is of course clear from the 4% difference in the
chosen values of C3. The physical reason that the results
from the EF and our potentials are so much better than
those from Usagawa's potential is that Usagawa's poten-
tial has far larger slopes V'(z) (Fig. 4). Essentially, our
integration (1) with p(z) as in Fig. 3 "widens" our result-
ing potential and gives naturally smaller slopes.

It is not necessary to assume loss of energy at the liquid
surface (by, for example, ripplons) to interpret the experi-
mental data. Once the slowly moving He atom enters the
hquid„ it propagates in its flat-bottomed effective poten-
tial and eventually equilibrates with the liquid, by creation
of multiple phonons or by some other processes, and the
experiments in question give no information on these pro-
cesses. That the surface does not exchange energy is con-
sistent with the negligible number of inelastically back-
scattered atoms. '

In conclusion, we have shown how a single-atom effec-
tive potential for He-liquid scattering V(z) may be ob-
tained, by using (13), from the total single-atom average
potential energy U(z) given by (1). We have further
shown that a self-consistent procedure, using this poten-
tial V(z) in conjunction with the pairwise He-He potential
(6) and the simple form (9) of the radial distribution func-
tion g (r},gives good agreement with the scattering data'
of Edwards' group, provided that the liquid-He density
profile p(z) is as suggested in Fig. 3. We can offer no
good explanation of why the unsymmetrized theory works
well, but can only repeat EF's suggestion that the impor-
tant effects take place in regions where symmetry is unim-
portant.
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