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%e investigate the accuracy of the usual relaxation-time approximations, involving the spin-

diffusion lifetime ~~, which are generally made in analyses of spin waves and the Leggett-Rice ef-

fect in Fermi liquids. Sy employing the variational methods of Ah-Sam, Hgjgaard-Jensen, and

Smith and of Egilsson and Pethick, we are able to determine upper and lower bounds on the effec-
tive diffusion coefficient resulting from spin-wave phenomena which are accurate in the whole
Fermi-liquid regime (T && Tp). Our results indicate that the usual approximations break down for
T & 7 mK in 'He, but are accurate to within -2% in 5% 'He- He mixtures. Our results are con-
sistent with values of Eol ——0.6 at 0 bar, = —0.4 at 27 bars in 3He, but these have considerable un-

certainties.

I. INTRODUCTION

The possible existence of propagating collective modes
af transverse spin polarization in Fermi liquids was first
pointed out by Silin. ' These were called "spin waves" in

analogy to the collective modes in ferromagnetic systems.
Silin considered a homogeneous, infinite system immersed
in a uniform, static magnetic field, and found the normal
modes af the system by considering small perturbations
from the equilibrium polarization. The frequencies of
these free oscillations were determined in part by the ef-
fect of the internal "molecular" field due to quasiparticle
interactions, since the local spin polarization would not
simply precess about the external field, but about the net
field which resulted from the internal and external fields
together. Silin found expressions for the eigenfrequencies
associated with distortions of the Ferini surface of all par-
tial waves 1. He pointed out that propagating wavelike
modes could exist which would have, in lowest order,
quadratic dependence on wavenumber q.

Later, Platzman and Wolff explicitly calculated the qi
dependence of the l=O Silin mode —i.e., the spin-wave
spectrum in the long-wavelength limit —by including the
effects of spatial inhomogeneities through the drift terms
in the kinetic equation. They also included the effects of
collisional damping af these waves by introducing a
relaxation-time approximation for the collision integral
(Silin had considered the collisionless case). The eigenfre-
quency of the 1=0 mode was shown by Silin to be equal
to the Larinor frequency coo—that is, it was unaffected by
the molecular field terms —and so the frequencies of this
branch of the spin-wave spectra are =too in the long-
wavelength regime.

Platzman and %'olff applied their result to the problem
of microwave transmission through a metal slab of thick-
ness L, by conduction-electron spin resonance, in which
standing spin-wave modes of wavelength nmlL, would be
created. They were able to calculate the transmitted sig-
nal as a function of applied magnetic field and therefore
of spin-wave frequency. Since the microwave energy is

transported through the slab in the form of a transverse
magnetization, the spectra af the collective modes of
transverse magnetization determine the shape of the ob-
served signal. These spin-wave modes were observed for
the first time in alkali metals by Schultz and Dunifer.

Platzman and Wolff presented their result in the form
of an expression for the transverse susceptibility,

( —m '/m)Xo[coo/(1+Fo)]
X(q, to) =

N —No+ ED

where m' is the effective mass, Xo is the static suscepti-
bility for a noninteracting Fermi gas, Fo is the usual Lan-
dau parameter, and D' is a complex diffusion coefficient.
For neutral systems, it is given by

D Q
(oF'/3)( 1+Fo )rp

1 + l copk, r D

where UF is the quasiparticle velocity at the Fermi surface,
is the spin-diffusian relaxation time, and

A, =(1+Fo )
' —(1+F'i/3) ' is a parameter which

characterizes the strength of quasiparticle interactions.
The poles of X(q, to) determine the coDective modes, so
(to too) = iD'—q . For —cook, rD « 1 (the high-
temperature regime, since rD —1/T ), D' is purely real,
and there is only diffusional broadening of the resonance
at the Larmor frequency too. Hawever, for totyt rD »1—
at very low temperature —D' is purely imaginary and
freely propagating collective modes with a q spectrum-
the spin wave=will be present.

Another analysis of the effects of quasiparticle interac-
tions in the precession-dominated regime was provided by
Leggett and Rice. They considered the case of a Fermi
liquid in a nonuniform external magnetic field in which
the net spin polarization had been tipped away from the
direction of the external field. The gradient in the mag-
netic field would cause the transverse component of the
spin polarizatian to precess at different rates depending
on its position. The resulting gradient in spin polariza-
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tion, they showed, would drive a (transverse) spin current
which would have a net precession about the internal
molecular field. Through the continuity equation relating
spin density and spin current, they obtained an expression
which related the time dependence of the transverse spin
density to the quasiparticle interaction (embodied in the
parameter A, ) which could then be observed in a spin-echo
experiment employing pulsed NMR.

For the case of small tipping angles, Leggett and Rice
showed that the effects of the quasiparticle molecular
field would be observable in the form of an effective dif-
fusion coefficient D,rt. This D,tt would cause an ex-
ponential decay in the amplitude A of successive spin
echoes according to

where y is the gyromagnetic ratio, G is the magnetic field
gradient, and to is the time between spin-echo signals.
The effective diffusion coefficient is given by

Do'
Deff = (1.4)

1+cop TD cos P

where (() is the tipping angle and D = [(UF/3)(1+F0)~n]
is the diffusion coefficient in the high-temperature re-
gime.

It turns out that this D,tt differs from the real part of
the D' derived by Platzman and Wolff for spin waves
only by an additional factor of cos P in the denominator.
This is perhaps not so surprising, since the same preces-
sional effects of the quasiparticle field are the key feature.
Indeed, as shown explicitly by Doniach, the magnetic
field gradient causes 1=0 spin-wave modes to be excited
for a whole range of wave numbers q in the long-
wavelength regime. Therefore, here, as before, we have
the case of propagating spin-wave modes with diffusional
damping.

The 1/T dependence of ~D causes a maximum to
occur in the temperature dependence of the effective dif-
fusion coefficient and this clear prediction was experimen-
tally confirmed by Corruccini, Osheroff, Lee, and
Richardson in both pure He and He-"He mixtures. In
this first observation of spin-wave phenomena in helium,
they used the Leggett-Rice expressions to obtain a value
for the Landau parameter Fi from their data.

Actual standing spin-wave modes, characterized by par-
ticular values for q, have been observed much more re-
cently. Observations by Owers-Bradley et al. in He- He
mixtures, and by Masuhara et al. in He have been re-
ported in the past two years. In addition, related observa-
tions of multiple spin echoes have recently been made by
Einzel e~ aI."

A common feature of all of the theoretical treatments
described above is the use of a relaxation-time approxima-
tion for the collision integral in the Landau kinetic equa-
tion, which employs the spin-diffusion relaxation time rD
to characterize the collisional damping of the spin waves.
In the high-temperature regime (co@~D &&1), in which
normal diffusion is the dominant process, this approxima-
tion should be adequate. However, for the very-low-
temperature regime in which spin waves propagate, this is
a much morc questionable assumption.

As T~O, DR, ~O (DR, —=real part of D',
Di —=imaginary part of D') and we have freely propaga-
ting, undamped spin waves. As T increases and collision-
al effects can no longer be neglected, diffusional damping
of the collective modes begins to become significant.
However, as discussed above, the physical process under-

lying the diffusion in the low-temperature regime is quite
different from that at high T W.hen the collisional relax-
ation time is much longer than the time required for the
spins to precess about the local effective (external plus
internal) magnetic field, the strong precessional effects on
the transverse spin current will be the determining influ-
ence on the nature of the spin diffusion. One would not
expect this different physical process to be characterized
by the same relaxation time as in ordinary diffusion.

This problem was recently examined by Pal and Bhatta-
charyya, "who analyzed the Leggett-Rice effect by using
an approximation for the form of the collision integral.
This was in effect an approximate interpolation between
an exact low-temperature expression and an approximate
high-temperature one, which they used to reanalyze the
data of the experiment of Corruccini et al.

Our approach here will be to use the variational
methods which have been applied to the study of the Lan-
dau kinetic equation to derive exact limiting expressions
for the effective diffusion coefficients which are associat-
ed with spin-wave phenomena in Fermi liquids. The limi-
tation will be that we are only able to obtain upper and
lower bounds, which however will be valid over the whole
Fermi-liquid regime ( T g~ TF ). The methods we use have
been developed and discussed in detail by H@jgaard-
Jensen, Smith, and Wilkins, ' Ah-Sam, H@jgaard-Jensen,
and Smith, ' and Egilsson and Pethick. ' In particular,
Egilsson and Pethick used these methods to treat the
closely analogous problem of the transition from zero
sound to first sound in Fermi liquids.

The rest of this paper is organized as follows. Section
II discusses the case of spin waves, and is analogous to the
treatment of Platzman and Wolff. We use the method of
Ah-Sam et al. to calculate bounds on the effective dif-
fusion coefficient in the long-wavelength limit, which
may then be compared to the results of Platzman and
Wolff. Section III discusses the Leggett-Rice effect in the
context of the spin-echo experiment performed by Corruc-
cini et al. We use the same method as before to calculate
the bounds on the real part of the effective diffusion coef-
ficient, which is measured in that experiment. These
bounds may then be compared to the expression of Leg-
gett and Rice. In Sec. IV we carry out the comparison of
our bounds to the results derived by Platzman and Wolff
and Leggett and Rice, and then reanalyze the available ex-
perimental data to make several tentative statements
about some of the parameters in normal He and He- He
mixtures. Section V is a short summary. Appendix A
outlines the reduction of the collision integral to a form
used in the method of Ah-Sam et al. , while Appendix 8
summarizes that method.

II. SPIN%AVES

We start from the kinetic equation for the spin density
in the case where the axis of net spin polarization is locat-
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aop a

asap

ahp

—
asap ahp

where

aCTp aCTp+
precession a collision

ed in an arbitrary direction. This may be written as'

(2.1)

—yA' de'
(2.2)

describes the local effective magnetic field, and includes
coupling to both the external field and the effective mag-
netic field produced by quasiparticle interactions. (Here,
y is the gyromagnetic ratio; the density of polarized spins
is considered to be a small fraction of the total density of
particles, so spin polarization effects on fpp are ignored. )

We want to focus on the behavior of small perturba-
tions of the spin polarization from an equilibrium polari-
zation op in the direction of the external field. We define
crp=crp+5cpp and Proceed to linearize the equation, droP-
ping higher-order terms, to obtain

I

a5o'p aicp yR— d P e

i
+"P' ' ' ae 2

+ (2W)' ~
aCTp +

precession

ao'p

collision
(2.3)

where (aiipp/amp) refers to the equilibrium functions. The
precessional term is given (before lincstrization) by

ao'p
opxhp

precession

4 d'p'
=ycr xH —— f~ (opxop ),

(2W)' "
(2.4}

since one must include precession about the local effective

field, as well as about the external field. The colhsion

tenn will be eqrrss& to I[crp], the collision integral, where

the overbar indicates the local equilibrium values.
We proceed to linearize the precession term, where we

make use of the fact that

0
(2.5}

ae, N(0) '

where cr is the total equilibrium magnetization and N(0)
is the density of states at the Fermi surface. We take the

transverse component of these equations in order to study

the behavior of the transverse spin polarization

5op—:(5crp) +i(5crp)„. (There is an analogous equation

for 5op. ) Then we define

(2.6)
aep

and we obtain

vp(r, t) = J diq dcpvp(q, co)e"q'

and we obtain (where we take 50~0, since we are look-
ing for the free oscillations of the system)

a 0 +
Ql —V 'q —Cpp+ fpCT Vp

—o +N(0)vp q
Q'

ppsVps =lI Vp4~ PP P

(2.8)

We then expand vp in a series of spherical harmonics, so

vp = g ~~ (&)I'nm (8 0) . (2.9)

We make the usual expansion of the Landau par~eters
and express it in terms of spherical harmonics

fpp
= gfi'I'i(&pp)= gfi'~i~(8 ct)~i' (8' 0')

21

(2.10)

where we use p(8,$)—=p(Q}, and p'(O', P')=—p'(Q'); here
the 0 axis is defined by the direction of the external mag-
netic field. Then we get

p N(0)
Bt

++p ~t Vp + —yA5H +2 f~ vp
+ dQ' +

PP P fpp'"p'= X
dQ' +
4~ ~ P

I 21+1

2 e Q + 2 Q dQ c+i clap
— fpovp + cr f'pp vp~

=I[vp+] . (2.7)

Ai Fi (8,$) .
2I+~ m m (2.11)

Here, f~ is evaluated at the Fermi surface.
We now write

Now the factor vp q will bring in another angle, and so
we may write the equation as follows:
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2 . , 2~o fi'
oi —a)o+ —focr — Ai Y( (8,$)2l+1

Fa
—(v.q}g 1+

2l +1

v~ = gA (e)Y (8,$)
5,$

F„'
1+ A (e) Y (8,$)

2n +1 (2.14)

= giI Y (8,$) . (2.12)
tl, S

Here we are defining

I[vp+]= gI [2 (~)]Y (8,P),
5,$

relates the "local equilibrium" spin density 5cr to the. spin
density 5'. Now, v~ q~uFq cos(8~ ) for excitations near
the Fermi surface. We expand this in spherical harmon-
ics, where the direction of the wave vector q is defined by

Q"=(8",P"). Then, after multiplying by
Yp' (8,$) and integrating with respect to Q, we obtain

Qf'A$'m'
4m

3 '
) 2/+1

u q Y;,(Q"')g 1+ A, fdQ Yi (Q)Yi' (Q)Yi i(Q)

pQ
+ Yio(Q") g 1+ Ai~ fdQ Yj~(Q)Y('~ (Q}Yiii(Q)

21 +1

pa
+ Yii(Q") g 1+ Ai~ fdQ Yi~(Q) Yi' (Q) Yii(Q) =iIi

2l +1 (2.15)

Here we have defined

2o' . fi'
oi —~o+ fo 2l'+1 (2.16)

3(2/ + 1)(2/~+ 1) 1 I I' 1 I' I'

0 0 0 m" m —m'4n

=0 if /+I'=even . (2.17)

UFQ'

(coo+ i 11D )
' (2.18)

where we have taken Ii~-( —Ai /wD). In the long-
wavelength limit, a&here UFq &&~0, A~ ~~A~ ~ and so
we may ignore coefficients of l )2. In this case, we wi11
then have only the following allowed terms in the sums:
(I',m') =(0,0)~(/, m) =(1,—1), (1,0), and (1,1); also
( I', m ') = ( l, l), (1,0), and (1,—1) all allow only
( I, m) =(0,0). These then lead to the following equations:

QoAoo= [3ioYio(Q") A ii Yi i(—Q")
4m.

i Yii(Q")], (2.19)

To estimate the relative sizes of the coefficients for dif-
ferent I, we first assume that Hi+i «Ai, and then
find that for /+0,

Qo~oo
QiA ii — Yii(Q")=iIii,

4m

Qo~oo
Q)A (0— Yio(Q"}=iI,o,

4m

Qo~oo
QiAi i

— Yi i(Q"}=iIi
4m

where we have defined

4m
UFQ 1+

(2.20)

(2.21)

(2.22}

(2.23)

—( I+ —,Fi )
Ii —— GA i (e),

2v
(2.24)

Here we have used the fact that Ii ——0 for /=0, since
quasiparticle spin is conserved in collisions. In Appendix
A we show that
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where G is the collision operator (not to be confused with

the s une symbol used before for the magnetic field gra-
dient), and obeys

Gf{h)=(&+h2)f(h) AD—f Ch' .
Re=

+ ~ —Kim(h)
Ch

cosh(h /2)
(2.29a)

Then, in analogy to the notation of Ref. 13 and using the
variable h =e/khl T, we will be able to find bounds on

(2.25)

Here, v=8m A /(m') {8')(AT) is the characteristic
quasiparticle relaxation time,

( } dQ 8'(8,4 )

4hh cos(8/2)
'

where 8'(8, tI}} is the spin-averaged scattering probability
as a function of the usual Abrikosov-Khalatnikov angles

(8,$), ' whose definition is discussed in Ref. 15 (they are
noh the same as those we have previously symbolized by
0}.A,23 is given by

&Im = + m K—R, (h)
dt,

cosh{h l2)
(2.29b)

A 1 1 (S')
R (e)—=

AOO(e) Fl 1

(2.30)

Then we may look for R =—R (s=ep} and we find that it
leads to the form of Eq. (2.29) as follows

where the real and imaginary parts are indicated. Now let
us write

CQ 8'„(1—cos8)(1—cog)
( W) 4n 2 cos(8/2)

(2.26)
1+F1 /3 14aa, = &u

~4m. 1+Fo uFqr

where again (8,4) have the meaning defined in Ref. 15,
and W« is the scattering probability for particles collid-

ing with oppositely aligned spin. The value of Au lies be-
tween —3 and 1.

Now if we define Q(e) =iK(e) where

A 1 1(e)
K(e)cosh

goo(e') Fl 1
a 2khh T

I

2~4m 1+F'ouFq~, K{e)cosh
1+Fi/3 8

(2.27)

(where formally we mean [1/Moo(e)]—:Aoo'(e), and we
have omitted the 0" argument of the spherical harmon-
ics) and write 01——I[—2r/(1+F1/3)]0, ), we obtain
from Eq. (2.20)

=4a Ag e
0—Bnz

de

+ 00

aRi (h)
00 cosh (h/2)

=O'Re (2.31)

We may repeat this procedure for Eqs. (2.21) and (2.22)
to get identical relations for the quantities
(Alo/AooF11)h and (Al 1/AooF1 1)i . We also ob-
tain corresponding relations for crt in terms of the real
parts of the expansion coefficients. Then, by using these
bounds in . (2.19), we Anally obtain upper and lower
bounds on [ 4m(Qo/Ql )(4a)(41r/3)] =—3 (co —hoo), where

2 = I
—6/[(urq)2r{1+Fo)] J .

(iQ'1+G)Q(e)=X = 1
(2.28) The method of Ah-Sam eh al. is summarized in Appen-

dix B. Taking the bounds found by them we finally have

1
(CO —COo)im 0'

1
(CO —Cdo)iI—

0(
(CO —COo)Re )

0)
(ol —~o)R &

A

(01) a3 {01)+{ 1b32 la3b12 }
2 7a 1 a 1 {01)+{a—lb32/a lb12)

(Q', ) a (0'1) +(a lb21/a3bol )

a 1 (01)'+[(a1+aoa3 2aoaia2)/(a lbol)]

(01) a2 (01) + [(aob22)/(a2bo2)]

ao ao (0'1)'+[{a-2b22)/{aobo2)] .
(01)' a2 (0'1) +[(allbll )/(a2b 11)]

ao (0', ) +[(ao+a la2 —a laoal )l(aob 11)]

(2.32)

(2.33)

(2.34)

(2.35)

Here, a„=(X,G"X) where (A,B)= f dh A(h)8(h) and

b„=a„+ a„—a„. The values of the matrix elements

u„are listed in Appendix B.
%e also need where

2 20
ol —ohio+ (fo —f 1 /3)]+I', /3

(2.36)
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cTP=5n, —5n, =[(yiri/2W(0)H]/(1+F'p)

=(4/2)N (0)coii/(1+ Fo ),

—
3 (1+Fo)(u~q)'

(co —cop)R, ( T~0)=
COpk

(2.40)

where N(0) is the density of states at the Fermi surface.
Then, since (co —coo) «coo, we get Qi 2——rcog, where

1 1

1+Fp 1+Fi/3
(2.37)

A (co —cop)im

These lead to

(Q'i)
+

al
+0((Q'i) ) . (2.39)

al

is the parameter which characterizes the strength of the

quasiparticle interaction.
In the low-temperature limit (this corresponds to

coprkpy1; , note that ~-1/T ), the upper and lower
bounds agree and we have

Q', (Qi) ap+, +0((Qi) '), (2 38)
A (co—cop)R, ao ao

(~—~o)i (T 0)

3 1
f/) +f

2ir (1—&D )
(2.42)

This is the same as the ~p„ found by Pal and Bhatta-
charyya in their analysis of the Leggett-Rice effect [note
that our ~ differs from their r(0) by a factor n /2].

The high-temperature (cooiA. «1} limit of the lower
bounds gives

—
3 (1+Fp)(u~q)'

[(2~ /3)(l —A, )] . (2.41)
NOR, g

The expression for (co —cop)R is identical to that of
Platzman and Wolff for T~O. The result for (co —cop}i
differs from Platzman and Wolff only in that wD is re-
placed by a different relaxation time, which is given by

(co —cop}R,(T~ ~ ) =(——, )(upq) (1+Fi'i)copAr a

(co —coo)im(T~ cc ) = [(—s )(uFq) ( I+Fo)&]
6 ir „ i 3 n (n+1) n(n+1) —2An

(2.43)

=( ——,
'

)(upq) (1+Fii)~D . (2.44)

(Note that, the high-temperature limit of the upper bounds
is, not expected to lead 'to the exact result due to the choice
of trial function. See Ref. 14.) The expression for
(co —coo)i agrees with that of Platzman and Wolff. The
expression for (co —coo)R„although in agreement to order
( T 2), is not -rz, as is the Platzman-Wolff (PW} expres-
sion, and the discrepancy depends strongly on the value of
AD. (This is analogous to the result of Egilsson and Peth
ick for the sound velocity. )

Our upper and lower bounds thus provide an interpola-
tion between the high- and low-temperature limits, which
is accurate and reliable for all temperatures in the Fermi-
liquid ( T« TF ) regime.

j;(r,t—)+ (II )k= c)Jo,c

. precession

In the long-wavelength limit,

collision

where 5o(r,t):cr(r, t) cr —(r, t), and—

2

(II~) k =5 k(1+Fi/3)(1+Fp) 5o(r, t),

(3.1)

(3.2)

III. LEGGETT-RICE EFFECT

(In this discussion of the Leggett-Rice effect, we will be
following the notation of Ref. 15 fairly closely. ) By start-
ing with the kinetic equation for the spin density, an
equation for the hnearized spin current may be found
which includes the effects of precession arising from the
molecular field due to quasiparticle interaction. This
equation for the spin current may then be related, through
the equation for spin conservation, to the transverse com-
ponent of the spin density. The time dependence of the
transverse spin density may then be found, and from this,
the amplitude of the echoes in a spin-echo experiment.

The equation for the spin current may be written in the
following form 5

yA' X(0)H( r, t)

1+Fp
(3.3)

is the local equilibrium magnetization that ~ould be pro-
duced by a static field of the same value as the instanta-
neous external field.

For the precession term, one obtains '
c)jn, c =yj; XH ——(fo —f i /3)(j, ; Xo ),

precession
(3.4)

where the cross products involve the spin components of
j . Instead of using a relaxation-time approximation for
the collision term, we write
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coHision

=( I+F1 /3)I [jrs r], (3.5)

where, as before, the (1+Fi/3) factor relates the i= 1

moments of the spin density and the local equilibrium
spin density (and so we leave off the overbar from the j
inside the I). This gives the following equation for the
spin current:

BI
—j~ (I,I)+ ( I +F', /3 )( I +Fo ) &r=yj ~; ( r, I)XH( r, I) ——(f0 —fI /3 )jre; (r, I ) XI ( r, I)+( 1 +F1 /3 )I[jre„]

3 ar,

(3.6}

j~—I(r, t) =yj ~ &(r, I) XH(r) . (3.7)

Using this in Eq. (3.6), we finally get

uF 8(1+Fi/3)(1+F0) 5o'
rr

+ (f0 f;/—3)j~;(—r, t) y Ir(r, t) =(1+F'I l3)I [j~ I] .

(3.8)

The spin polarization precesses with the local Larmor
frequency, and therefore, in the quasisteady state, the spin
current will also precess about H(r) with the local Larmor
frequency. That is, its explicit time dependence —apart
from the time dependence contributed by the precession
about the internal field, and by the collisional term: will
be given by

Using rr=rr +5o and then taking the transverse com-
ponent of this equation, we get

d5rr+ +i yH 5cr+ =D+V 5cr+, (3.16)

as those on (F00—co)l, except that Q contains an addi-
tional factor of cos P, and there is no factor q. Now we
show how the quantity D+ relates to the spin-echo exper-
iment.

When the kinetic equation for the spin density is
summed over momenta, the contribution of the internal
field term to the precession vanishes and the precession
term becomes simply yo(r, t) XH(r, t), i.e., precession only
about the external magnetic field. Then one obtains the
net spin conservation Iaw

BIr(r, t) 8+ j;(r,t) =ycr(r, i) XH(r, t) . (3.15)
t rr

=(1+F1 /3)I [jr+] (3.9)

(where we have ignored a component j —V&r„which is

very small since 5Ir, -const; see Leggett5).
Then, with Ifj+]=(—6/2r)j+, we get the equation

(6+iQ)Q(t)=X= 1

cosh I 2
(3.10)

Taking the transverse components of this equation, where
o+ =cr„+ioy, we get

(1+F'/3)(1+F:) 3' "(f'0—f—i/3)J'-e
3 rI 5m+(r, t) =A (I) exp[i6}(t)]exp[ —ig(r, t)],

where during any one free precession period,

(3.17)

g(r, r)=g(r, i;)+ H(r)(t I, ) . — (3.18)

Here, t; indicates the beginning of the period of free pre-
cession. Making this substitution and taking the real part
gives us

where we have used the definition of D+ (and the terms
in cr have dropped out). Now we follow Leggett in writ-
ing

where
BA = —Dae(VC) ~ (3.19)

D+ =(2uz/3)r(1+F0)Q cosh(t/2),

(f1 /3) -foQ= 0'g
1+F1 /3

and D+ is defined by

(3.11}

(3.12)

ln = —D~, f (Vg) (I')dt'.
A(I;)

(3.20)

where only linear gradients in the magnetic field are con-
sidered significant. Then we get

~+ 5 5cT
J = —D

Brr
(3.13}

In the spin-echo experiment, the spins are tipped at an
angle P from the external magnetic field and o, =cr ~,
wllllc Q=21Mocosr3(r. Thcll wc llavc virtually thc ldclltl-
cal problem as before, where we may find bounds on

+- Qa. 6DR.
cTae= dh =

61+F0)UF
Then the upper and lower bounds of D&+, will be the same

Vg=yG (I I ), — (3.21)

where 6=—
~
VH

~
is the standard notation for the gra-

dient of the external field (not to be confused with the
collision operator). We define II:—[A(Iz)/A(II)] as the
ratio of the amplitudes of the transverse magnetization at

We have removed Da+, from the integral on the right-
hand side of 3.20. More exactly, Da+, also depends on
3 (I), but in the limit of small tipping angle, this is a rela-
tlvcly 1nslglllflicaI1't tcH11 (scc Lcggctt s derivation). Now
we write with Leggett
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two different times. This will correspond to the ampli-
tude of the echoes in a spin-echo experiment. In this ex-

periment, the tipping pulse {of magnitude P) occurs at
t=0, the first 180' pulse takes place at r =to/2, and the
n = 1 echo occurs at t =to, where then to is the period be-

tween pulses and also between echoes. Then the magneti-
zation will undergo the same precession during two
periods: (i) the period between the first echo and the next
spin flip, and (ii) the period between that spin flip and the
next echo. Each period is of length to/2, and so we get

lnh = izDR y 6 to (3.22)

This is the equation for the decay of the echo amplitude
written down by Leggett and Rice in the regime of small

tipping angle. Here our DR+, corresponds to their D,rr, to
which it may therefore be compared.

Note that to get results for large tipping angles, we

would need to numerically integrate

dA

DR, A A
(3.23)

which we have not done.

IV. RESULTS AND COMPARISON
%ITH EXPERIMENT

The principle application of these results is in the two
Fermi liquids, pure 'He and dilute mixtures of 'He in He.
This discussion will be in the context of these systems.

There are only two experiments which are directly
relevant to these results, those of Corruccini et al. on
pure He and on He- He mixtures, and that of Owers-
Bradley et al. more recently on He- He mixtures. The
recent experiment of Masuhara et al. cannot be easily
compared, as will be discussed below. The experiment by
Einzel et al. on multiple spin echoes is also not immedi-

ately relevant.
There are a number of different parameters which enter

into our results. The Larmor frequency coo just depends
on the applied external field and the gyromagnetic ratio y.
The tipping angle P in the spin-echo experiments can be
considered to be well specified. The wave number q in the
spin-wave experiment, however, may be quite uncertain,
as will be discussed further.

The parameters U~ and Fo are accessible through other
experiments and may in principle be specified. There are
considerable discrepancies in different measurements,
however. Currently the most widely used values for He
seem to be those of Wheatley' and Greywall. '

The parameter I'i is not directly accessible from other
experiments and its value is quite uncertain. It has gen-
erally been considered the "target" parameter of the spin-
wave experiments, whose value will be determined in the
experiment.

The parameters ~ and X~ in our expressions replace the
spin-diffusion relaxation time iD which appears in the
previous derivations. There is a rigorous relation which
links the three parameters (this relation is 2'/~=a
where a i is defined in Appendix 8' ), but A.D is not it-
self directly accessible in experiments, apart from mea-
surements of the other two. In He, v. has been measured

experimentally; in He- He mixtures, it has not. The vari-
ous experimental determinations of rn and the related
spin-diffusion coefficient D differ significantly from
each other, and so it is not possible to consider this pa-
rameter as precisely determined.

Our first task is to compare our results with the usual
expression those derived by Platzman and Wolff and by
Leggett and Rice—for some self-consistent set of ap-
propriate parameters in the two systems, He and He- He
mixtures. The object here is to examine the validity, as a
function of temperature, of the relaxation-time approxi-
mation employing rn. Our expectation is that, while this
approximation should be increasingly adequate at higher
temperatures —the regime of normal diffusion —it may
not be accurate at low temperatures, where the precession-
al effects due to the quasiparticle interactions are dom-
inant.

The next goal is to directly compare our expressions
with the available experimental data to see whether any
new knowledge of the various parameters may be extract-
ed. There are very limited data in the low-temperature re-
gime, and the experimental uncertainties associated with
many of the parameters are considerable, so any con-
clusions we draw must be very tentative. (We point out
here that in this very-low-temperature regime, finite tem-
perature corrections should be quite insignificant. )

Another possible task, which we have not carried out
here, is to attempt to use our results in the large tipping-
angle regime of the Leggett-Rice effect, i.e., where the
echo amplitude attenuation is not a simple exponential de-
cay.

A. 'He

The quasiparticle lifetime at the Fermi surface, the pa-
rameter v, may be measured for pure He in experiments
on the superfluid phase. ' We have used the values of r at
0 and 27 bars interpolated from these experiments.
The values depend somewhat on which values are adopted
for the effective mass. (Note that Pal and Bhattacharyya
use a pressure-independent value for i, which appears to
differ by a factor -2 at 0 bar from the experimental
curve. )

When a value of rD is adopted, a value for the parame-
ter A,D may be extracted from the relation mentioned
above. The problem is that there is considerable uncer-
tainty in the value of ~D, since different experiments give
substantially different results for the spin-diffusion coeffi-
cient. Note that once a spin-diffusion coefficient is mea-
slll'ed, the vallle of rD depends on the values adopted for
UF and I'0, through the relation

D =(UF'/3}(&+F0}~g),

so these must form a consistent set.
First we compare our results to that of Leggett and

Rice. To do this we plot our equations and theirs, using
the same set of paraineters. The set we choose is simply
the set used by Corruccini et al. to flt their data for He;
therefore, we use the ~D measured by this experiment. In
addition, we use the recent values of r mentioned above,
in particular, that value consistent with the Wheatley
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values for vr and I'c, which are employed by Corruccini.
The results for 0 bar at a Larmor frequency of 23.5

MHz are shown in Figs. 1(a) and 1(b). A very similar fig-
ure results at 36.7 MHz, the other experimental frequen-

Cg.
At increasingly high temperatures, the use of rn is seen

to be correct, as our upper bound becomes essentially
identical to the Leggett-Rice expression {as discussed in
Sec. II for the analogous spin-wave expression). We see
that at temperatures below -7 mK (-9 mK at 36.7
MHz), the approximation using vn breaks down, as our
upper and lower bounds join above the Leggett-Rice plot.
Figure 1(b) shows that the discrepancy is —16% as
1~0. At 27 bars, using a frequency of 36.7 MHz, the

breakdown occurs at -6 mK and the discrepancy is
-19%.

The implication of these results is, that in the Leggett-
Rice expressions, rn should be replaced by a relaxation
time characteristic of the precessional regimed, esignated

by Pal and Bhattacharyya as r~„„where x~=0.86m at 0
bar and 0.84rD at 27 bars.

The magnitude of the discrepancy is most strongly
dependent on the ratio of the values of rn and r which are
used (which determine the value of the parameter A,n),
and is not particularly sensitive to the other parameters.
That is, a substantially smaller value for r (which implies

A,n~l) would decrease the discrepancy, while similar
changes in the other parameters would not. (The analo-
gous situation for sound attenuation is discussed by
Egilsson and Pethick. )

Note that the above discussion is not directed at a com-
parison with the actual data for the Leggett-Rice effect
measured by Corruccini et al., but just a comparison with
the theoretical expressions using some typical experimen-
tal parameters.

We have not made a similar comparison with the
Platzman-Wolff expressions for spin waves in He, since
the only available experimental parameters are for mea-
surements which are not directly related to our results. In
particular, the experiment by Masuhara et al. measured
only the imaginary part of the effective diffusion coeffi-
cient in the very-low-temperature regime, where the value
of the relaxation time used has essentially no effe:t [see
Eq. (2.40)]. Thar attempt to fit their data in this regime
with a relaxation time is not qesntitatively reliable (cf.
Masuhara 'b'). Note, that in any case, the results for the
real part of the effective diffusion coefficient [(coo—tu)i ]
are essentially the satne for both the spin-wave case and
the Leggett-Rice effect.

We have attempted to make an improved fit to the data
of Corruccini et al. by using the most recent values for
the various parameters (those of Greywall for vr and I"c,
and of Sachrajda et a/. for rn), while adjusting I"
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the best fit at low temperatures. Note that due to the

discrepancy in measurements of the diffusion coefficient
from that of Corruccini et al. , it is not possible to fit the
high-temperature part of the curve well for any choice of
the other parameters. Therefore, our "~t fit" is of ques-
tionable value. In addition, the data at low temperatures
are very limited indeed.

Keeping these qualifications in inind, we show in Fig.
2, fits to the data at 0 bar, where in Fig. 2(a), Fi ———0.4 is

used and in Fig. 2(b) FI ———0.6 is used. These give the
closest fits we were able to obtain. In Fig. 3, we plot re-
sults for He at 27 bars, where in Fig. 3(a) a fit with the
original parameters employed by Corruccini et al. is at-
tempted, while in Fig. 3(b) more recent measurements are
used and FI ——0.4—is assumed; other values for this pa-
rameter produced somewhat poorer fits. Precisely what
constitutes a best fit is somewhat subjective, but we may
say that our fits are consistent with values of EI ——0.6
at 0 bar and FI = —0.4 at 27 bars. These may be com-
pared to values found by other workers, which include
many different values in the range

~
FI

~
&1(see Refs. 22

and 23, and references therein). (It should be noted that
the values for FI extracted by Sachrajda et al. and
Masuhara et al. from the Corruccini data using the

Greywall parameters are simply a rescaling of g with
respect to rD and are not a refit of the data. )

B. He- He mixtures

In the He- He mixtures, the parameters ~ and A,D are
experimentally unknown, although a theoretical calcula-
tion of A,D by Fu and Pethick yielded a value of 0.81 for
a 5% solution. Since the validity of the approximation
employing rD is strongly dependent on the value of AD, as
discussed in the preceding section, it is not possible to
state an unambiguous result in this system while it was,
essentially, possible to do so in 3He.

For a value of A.n-0.8, the discrepancy between our re-
sults and the results of both Leggett and Rice and Platz-
man and Wolff for the real part of the effective diffusion
coefficient is &2%. For the imaginary part, the
discrepancy between the results of Platzman and Wolff
and ours is even smaller than that, by an order of magni-
tude. A typical plot is shown in Fig. 4. The other param-
eters we have used for these comparisons are those adopt-
ed by Corruccini et al. and Owers-Bradley et al. to ftt the
data in their respective experiments. These experiments
were at 6.4% concentration and 5% concentration,
respectively, both observed at 0 bar. We have also used
the value of q obtained by Owers-Bradley et al. as a fit to
their data. However, this may not be very reliable, see
below. (Note also that although the Owers-Bradley data
for the real part of the diffusion coefficient is well fit in
terms of the shape of the curve by Platzman and Wolff,
there is a large, systematic discrepancy in amplitude. )

If one does not use the above values of A,D for iHe-JHe
mixtures, but instead substitutes values which are typical
of those in the pure He system (i.e., ——1), the
discrepancy between our bounds and the Platzman-Wolff
results becomes very much larger, not surprisingly.
Indeed, the proportional discrepancy becomes roughly the
same as was found in pure He.

The discrepancy in the high-temperature limit of the
imaginary part of the diffusion constant, mentioned at the
end of Sec. II, varies from —10% for A,D= —1, to
-0.2%%uo for A,D

——0.8.
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FIG. 4. He- He, 5%, 0 bar: Fractional deviation of the vari-
ational bounds from the Platzmann-%olff expression for
(aro —u)i, for A,D

——0.8. Parameters used are those of Owers-
Bradley et al. UF =2 7X 10 cm/sec; Fo——Q.QS; I

&
——Q.34;

&D T =2.8 X 10 "sec K; q= 10.1 cm '; ago/2$'=0. 925 MHz.
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value of q used by Owers-Bradley et al. to fit their data is
not clearly related to their cell geometry and may be sub-
stantially inaccurate. Masuhara et al. do not use the
Platzman-Wolff results to analyze their data, but instead
have dcrlvcd dctailcd IiuIIicrlcal fits which 111corpora'tc 'tllc

effect of boundary conditions.
In view of this we cannot make any quantitatively reli-

able statement about ~. However, it is interesting to note
that the A,n value of Fu and Pethick would be consistent
with high reliability of the parameter values obtained
from fits to Platzman-Wolff expressions.

The value of F'0 used by both Corruccini et al. and
Owers-Bradley ct al. is 0.08. Reedit results suggest that
this should perhaps by replaced by values of 0.0 at 6A%
concentration and 0.3 for a 5%-concentration solution,

This can be understood from Fig. 5, where the devia-
tion of the variational bounds from the Platzman-Wolff
expressions will be inaccurate and the actual g (and thus
Iio and EI ) will differ from the value fit from the PW ex-
pression. In principle, one would have to fit the experi-
proach those of Platzman and Wolff. (This is analogous
to the results of Egilsson and Pethick for sound attenua-
t1011.}

Now, the data of Owers-Bradley et al. , which is fit by
the Platzman-Wolff expression, would imply a value for )I,

(the combination of I'0 and F1 ), if the values of q, era, vz,
and ~D are considered to be precisely known. Then this
value of A, will be accurate to the extent that A,D —1.

If, however, AD is far from 1, then the Platzman-Wolff
expressions will be inaccurate and the actual X (and thus

Fo and Fi) will differ from the value fit from the PW ex-
pression. In principle, one would have to fit the experi-
mental data from our expressions, leaving both A, and A,n
as free parameters. In effect, this would allow one to fit
the quasiparticle relaxation time r as we11, since this pa-
rameter follows directly from A,D.

If one simply fits the data to the PW expressions, then
different values of An —i.e., different Ys—will result in
much bigger disagreements between our expressions and
the data. This is illustrated in Fig. 6. Here it can be seen
that the agreement using AD =0.8 is an order of magni-
tude better than the agreement using A.~ ——0.5, and several
orders of magnitude better than with AD &0.

If one could somehow pin down the value of A, indepen-

dently (and the other relevant parameters mentioned
above were precisely known}, then one could, in principle,
extract ~. For instance, if in this case A, were equal to the
value of Owers-Bradley et al. with less than a 0.3% error,
it would imply a value of A,D-0.8. This would be con-
sistent with a value for ~T & 3 X 10 "sec K .

However, the recent work of Masuhara et al. casts
some doubt on a naive interpretation of the data of
Owers-Bradley et rrl. such as ours. This is because of
their determination that a correct treatment of cell

geometry and boun&ry conditions is extremely important
in a quantitative analysis of spin-wave modes, such as
those observed by Owers-Bradley ct al. In particular, the
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may be somewhat different than the
value used by these groups. These would then also re-

quire a rescaling of vD. However, in these cases the AD

parameter is still the determining unknown quantity, and
our discussion above regarding its value still is valid.

V. SUMMARY

We have calculated upper and lower bounds on the ef-
fective diffusion coefficient for spin-wave phenomena in
Fermi liquids, including those measured in a spin-echo
obiervation of the I.eggett-Rice effect at small tipping an-

gle. By treating the collision integral exactly, we avoid
the approximation made in using the spin-diffusion relax-
ation time rD in the low-temperature, precession-
dominated regime. Therefore, our bounds should hold
throughout the whole Fermi-liquid ( T «TF) regime (in
the long-wavelength limit).

Our results indicate that the relaxation-time approxi-
mation employing ~z is inaccurate at low temperatures,
and that as T~D the effective relaxation time approaches
a value of Ir(3/2n )[1—AD] '], where r is the charac-
teristic quasiparticle relaxation time and A,ti is a function

of the scattering amplitude.
In He we find that the approximation using ra breaks

down below -7 mK, and the error approaches 16—20%.
In 3He- He mixtures at concentrations of -5%, the error
due to the use of rt3 appears to be small ( & 2%).

Our results are consistent with values of I' i in 3He of
= —0.6 at 0 bar and = —0.4 at 27 bars. Experimental
difficulties make these values substantially uncertain.
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APPENDIX A

We sketch below the reduction of the collision integral.
Many details can be found in Ref. 15.

The linearized collision integral can be written as

I [op ]=
2 g g'nin2(1 n3}(1 n—4)—W(1,2;3,4)5p, +p, p, +p 5,+, ,+ 5(si+E2 E3 e'4)—(4'i—+~2 @3 @4),

B 2 3,4
(A 1)

where 4t —=5o;I( Bn; IBe—;) and W(1,2;3,4) is a transition probability for the scattering
~
pioi, p2o2) ~

~ pio3 pgo4}.
(Our notation I [cr& ] is unconventional. ) Then, in the method of Ref. 16, this becomes

I[o ]= fde2f de3f de4nin2(1 n3}(1—n—4)
—1 (m')

kit T (2mb)

2e 2e ~(e 4, )s)n8 d 2 @ i ++2 @3 C$4 ~ (A2}

After changing to the variables x; =e;/(ktt T) and defining the variable P(x;) by writing

v; Vp(r, t)—Q(e;),
where p,(r, t) is the chemical potential and r is the relaxation time defined in Sec. II, one obtains

00 00 00

I[tT ]= dx2 dx3 dx~ n in2n3n45(xi+x2 —x3 x4)[$(xi ) itic(x2)]
k TrB 00 00

(A3)

I[op]=
—l X)+&

2
n i(1 n i )f(xi )—

(x i+x2)n2
—(x&+x2) ~~h(x )

(A4)

When we expand the collision integral in a series of spher-
ical harmonics (by expanding the 5o& function contained
in it) and switch to the variable v~ we find from this
equation that the I= l moment gives

[In the above equations the local spin quantization axis
has been taken to be along the net spin polarization vector
&~(r, t). ] This becomes

r

Ii~ =(—1/2r)GA i~(e) .

Finally, Eq. (2.24) follows from the relation

5np ——5np — 5ep —5n — f fBnp Qnp d 3p r

(2W)3 ~
which defines the overbar notation, and which generates
the factor (1+I"i/3).

APPENDIX B

Here we summarize the variational method of Ah-Sam
et a/. ' This method is directed at solving the linear, in-
homogeneous integrodifferential equation

(Bl)
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where Q is an unknown function of the variable t, X is
the inhomogeneous term, and H is a linear integrodif-
ferential operator. The goal will be to find variational
bounds on a scalar product of Q and X, denoted by

lows them to obtain upper and lower bounds on the quan-
tities

oR,——(f,X)=(QR„X), oi ———(g,X)=—(Qi,X) .

T =(Q',X), (82) (811)

f= ,'(Q+Q'), g—=(1/2i)(Q—Q')

and obtain separate equations for f and g,

(6+iAG 'iA)f =X,
[iA +6(iA) '6]g =X,

(88)

(89)

(810)

where the existence of 6 ' and A ' is assumed. This al-

where

(O', V)= fdr U'(t)V(r) . (83)

It has long been known that if H is Hetvnitian, that is,
( O', HV) =(V',HU)' and is positive —i.e., only has non-
negative eigenvaluee then T may be bounded from below
according to

(,X)
[Re(O',X)]

(O', HU}

where U is an arbitrary trial function.
It was shown by Jensen et al. that if H can be separat-

ed into two positive Hermitian operators I and L„

(85)

then, if either J or L has an inverse, T may also have an
upper bound. If J ' exists, this upper bound is

(Q X) (X J—iX) tRe[U' (HJ ' —1)X]I'
[U', (HJ ' —1)HU]

(86)

Ah-Sam et al. consider the situation when H is non-
Hermitian. They write it as

(87)

where 6 is Hermitian, and A is anti-Hermitian. (We will
assume here that 6 and X are real. } They introduce the
functions

Using the trial functions U pX+c(1—p)GX, c =ac/ai
(for the lower bounds) and U pG 'X+c(1—p)GX,
c =ai/as (for the upper bounds), Ah-Sam et al. then
find the upper and lower bounds as a function of the ma-
trix elements

a„=(X,G"X)= f dsX(s}6"X(s) .

Ah-Sam et al. then apply this to obtain bounds related
to the equation (6+iQ}Q=X, where 6 is the collision
operator [Eq. (2.25)] and X is as defined in Eq. (2.28).
They also obtained the matrix elements, which are as fol-
lows (in terms of l(,n ):

4A,D
a 2

——m 2.847+2.250
(2—2Ap)

2AD 2AD

(2—2A,D) (12—2A, D }

4A.n
(2—2k D )(12—2AD )

4A,g)+0.057
(12—2A,n )

1 8 ~ 2n+1 1

3 sr „ i s n (n+1) n(n+1) —2An

ap ——4,
ai =H —,(1—AD),

a2 —n'„(1—A,D)—
as rr ~i&&s (1 AD) (8 6Ap)

a4 ——m' '„,' (1—A,D) (12—12K,o+4A,n),

as ——sr'e ~, (1—A,g) ) (480—456k,g) +200An —40k,g) ) .
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