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We examine systems where narrow-band electrons strongly couple to the lattice, resulting in the
formation of locally bound pairs of small polarons, so-called bipolarons. Such systems present a
hard-core charged Bose gas on a lattice. We study the strong dependence of the mass of these bo-

sons and the interaction among themselves as a function of the characteristic phonon frequency.
The conditions under which a phenomenological negative- U Hubbard model is applicable to such

systems are established. %'e derive the phase diagram and excitation spectrum, fully taking fluctua-

tions into account. It turns out that quantum fluctuations stabilize the homogeneous superconduct-

ing phase and suppress charge order. The specific heat in the superconducting phase shows a

power-law behavior: C, -T, with 2 &a &3, depending on the temperature. The specific heat in

the normal phase for such heavy bosons on a lattice shows linear T dependence at low temperature
and a T 2 behavior for high temperature. We demonstrate that the specific heats in the normal
state for narrow-band bosons and fermions on a lattice are practically identical. The spin suscepti-
bility of triplet-bipolarons shows Curie behavior at high temperature, but differs qualitatively from
the Pauli susceptibility of narrow-band electrons at low temperature. We examine the electro-

dynamics of the superconducting phase. The equivalent of the Ginzburg-Landau theory for the
narrow-band strong-coupling electron-lattice system is derived; this represents an equation of the or-
der parameters of the charged interacting Bose gas which determines the upper critical field and
coherence length, which are strongly dependent on the scattering mechanism for the bosons. In the
case of impurity scattering they show unusual temperature dependence: d'0, 2/dT & 0. The possi-
ble application of our picture of heavy bosons to the description of certain A 15 compounds, Chevrel

phases, heavy-fermion systems, and BaBi„Pbl „03is discussed.

I. INTRODUCTION 2zg co/D ~ 1 . (1.2)

Over the last twenty years a great number of strong-
coupling 1-and f-band superconducting compounds have
been discovered, ' in particular, 3 15, C15, Chevrel phases
and heavy-fermion superconductors. All of them have
narrow electron bands and large values of electron-phonon
interaction, which results in poor metallic properties in
the normal state but rather high values for the supercon-
ducting transition temperatures. Similar properties have
been observed in some semiconductors and semimetals
such as BaBi„Pb, „03,PbTe(T1), SrTi03, . . . which show
superconducting behaviors which are quite different from
those of standard BCS ones.

The strong-coupling narrow-band superconductivity is
a subject of great theoretical interest. As we have previ-
ously noted, the strong-coupling condition

A, = VN(0)) 1

is practically identical to the one for small polaron forma-
tion,

V=2zg co represents the phonon-mediated attraction and
N(0)-D ' is the density of states at the Fermi level. g
is a dimensionless constant representing the strength of
the electron-phonon interaction in the standard Frohlich
Hamiltonian. D denotes the bandwidth, co is the charac-
teristic phonon frequency in the system, and z is the num-
ber of nearest neighbors. It is well known ' that under
the condition of Eq. (1.2) a strong renormalization of the
electron spectrum occurs, which results in an exponential
reduction of the initial electronic bandwidth to an ex-
tremely narrow polaronic band with a half width:

W=(D/2)exp( —g ) .

In such a way the well-known Migdal theorem on which
the Eliashberg theory is based breaks down in narrow-
band superconductors. Here, one is in the so-called an-
tiadiabatic limit
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h&W. (1.6)

Alexandrov has shown that the small polarons form spa-
tially overlapping Cooper pairs with superconducting
properties similar to ordinary BCS superconductivity.
There are nevertheless differences in the gap equations as
well as in the expressions for the critical temperature T, .
Analogous conclusions were also obtained by
Robaszkiewicz, Micnas, and Chao and by Nozieres and
Schmitt-Rink, who considered the extended Hubbard
model in the case of weak interaction. The origin of these
differences between this polaronic superconductivity (PS)
and BCS lies in the violation of the adiabatic condition
Fq. (1.4) for the polaronic case. As a consequence, all the
electron states in the Fermi sea are strongly coupled to the
phonons, and not only those on the Fermi sphere, as in
BCS superconductors.

In the case of strong polaron-polaron coupling,

5)&W,

local small bipolarons occur. We must stress here what
we mean by bipolarons. They are bound states of two po-
larons which can exist either on single atomic sites, on
sites involving two adjacent metal atoms, or, more gen-
erally, sites describing clusters of a small number of metal
atoms. In each case the characteristic Coulomb repulsion
Vo has to be interpreted accordingly. While in general Vo

will be fairly large for bipolarons located on single atoms,
it will be considerably weaker for the case where bipola-
rons are located on adjacent metal ions or in atomic clus-
ters.

The so-called on-site bipolarons have previously been
proposed by Anderson in connection with the anomalous
behavior of amorphous semiconductors (see also Ref. 10).
The picture of mobile bipolarons" made Alexandrov and
Ranninger (AR) realize its similarity with liquid He,
whose superfluid properties had been studied previously
on the basis of a quantum lattice gas model by Matsubara
and Matsuda. ' The AR effective Hamiltonian which de-
scribes the tunneling and interaction between bipolarons is
equivalent to a pseudo-spin- —, anisotropic Heisenberg
Hamiltonian with a fix total magnetization. In that
sense the bipolaronic system is an even better candidate

where e~ is the characteristic kinetic electron energy.
An instability in the many-polaron system occurs if the

interaction between two polarons becomes attractive.
This happens if the attractive interaction due to the quasi-
static deformation which surrounds each polaron over-
compensates for the Coulomb repulsion acting between
them. This occurs for 2' ——2g co & Vo, where e~ denotes
the polaronic level shift and Vo the Coulomb repulsion.
This instability in the many-polaron system leads to pair-
ing between polarons and results in a condensate state at
low temperature. The properties of this condensate are
strongly dependent on the value of the bipolaron binding
energy:

2' —Vo .
If the polaron-polaron interaction is attractive but

small,

than He for such a lattice gas model.
As it turns out, at zero temperature, two coherent states

exist. At a low concentration of bipolarons (n «1), the
spatially homogeneous superconducting phase with off-
diagonal long-range order (ODLRO) exists and shows a
Meissner effect. ' At a high concentration (n —1), a
mixed phase occurs in which ODLRO coexists with diag-
onal long-range order (DLRO) characterizing a charge-
density wave.

Differing from BCS superconductors as well as from
PS (Ref. 7), bipolaronic superconductors have low-lying
excitations without a gap which are of a collective na-
ture. For short-range interaction they have a linear
dispersion law for long wavelength, similar to that of a
Bose liquid.

These excitations correspond to coherent fluctuations of
the phase of the local bipolaronic wave functions defined
on the different sites of the lattice. These phase fluctua-
tions couple to the charge fluctuations of such a bipola-
ronic system. Provided that the interaction between bipo-
larons is short ranged, the zero-sound-like character of
these charge fluctuations is responsible for producing the
linear spectrum in the collective excitation spectrum
which has coupled phase-density fluctuations. We want
simply to remark that in the case of long-range interac-
tion between bipolarons, charge-density fluctuations are
plasmonlike —but with a plasma frequency determined by
the very heavy mass m" of bipolarons. In that case the
collective excitation spectrum has a gap

co~I =[32ne n(1 —n)lm "]'~2

in the long-wavelength limit, at zero temperature. This
will modify the thermodynamic properties of the super-
conducting phase as compared to the short-range interact-
ing case. In real systems we generally have a mixture of
light electrons and bipolarons. Under these conditions the
light electrons will lead to a screened short-range
Coulomb interaction between bipolarons and hence in real
materials we shall expect the linear dispersion for the
fluctuations of the superconducting order parameter to
hold.

Results similar to those of Alexandrov and Ranninger
were obtained independently and at the same time by
Robaszkiewicz, Micnas, and Chao' starting from a
phenomenological "negative- U" extended Hubbard model
for the case of strong on-site attraction:

~
U~ &&D.

These authors derived the "T n" phase diagra-m. Using
RPA (random-phase approximations) for magnetic sys-
tems, they obtained the s me gapless, low-temperature ex-
citation spectrum, as AR. Moreover, these authors found
two high-temperature phases: one corresponding to
dynamically disordered bipolarons and the other to a
charge-ordered state.

Quite different results were obtained by Kulik and
Pedan' also using the negative- U Hubbard Hamiltonian
in the strong-coupling limit (

~
U

~
&&D). Using a mean-

field approximation (MFA), they found a gap in the exci-
tation spectrum of the ODI.RO phase and a gap over T,
ratio close to the BCS one.

Using the same MFA, Bulaevskii, Sobyanin, and
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Khomskii' derived the upper critical field H, z for local

pair superconductors. They obtained a surprisingly small
coherence length g-a (a denoting the interatomic dis-

tance) as well as extremely high values and unusual tem-

perature dependence of H, 2. As a result of their findings
these authors expressed the opinion "that none of the
compounds known at present is a superconductor of local
pair type. "

In this paper we derive the thermodynamics and mag-
netic properties of bipolaronic superconductors (BS) (by
which we mean a superconductor of local pairs of fer-
mionic carriers which are bound together by either a pola-
ronic mechanism or any other which could lead to such
bound states). We shall fully take into account quantum
as well as thermal fluctuations, within a RPA scheme,
and show that they are of qualitatiue importance
throughout the whole range of the BS phase.

In Sec. II we generalize the AR approach using the
Lang-Firsov technique' to obtain the bipolaronic Hamil-
tonian for all values of b, /co. We discuss the applicability
of the phenomenological negative- U Hubbard Hamiltoni-
an to strong narrow-band superconductors. In Sec. III we

discuss the T nphase -diagram and thermodynamics of
the BS on the basis of the RPA formulated for this prob-

lem by Robaskiewicz et a/. ' We show that the fluctua-
tions give a gapless spectrum of excitations and as a result
of power-law behavior for the specific heat at low tem-
perature. We also demonstrate the insufficiency of the
MFA, which is of a qualitative nature and which can lead
to physically erroneous results. ' The thermodynamics of
the bipolaronic system above the superconducting transi-
tion is studied in Sec. IV. There we show that the
narrow-band Bose gas on a lattice has the temperature
dependence of the specific heat in the normal state which
is extremely similar to the one for the electron gas in an
equally narrow band. On the contrary, the magnetic sus-
ceptibility of triplet bosons on a lattice (in the normal
phase) is qualitatively different from that for electrons at
low temperature. In Sec. V we consider the magnetic
properties of a BS based on the idea of Alexandrov and
Kagan' that they ought to be equivalent to the magnetic
properties of a charged Bose gas. We present unpublished
results by one of us, ' which show that the upper critical
field of a charged Bose gas (which is strictly zero in the
ideal charged Bose gas) is determined by either the in-
teraction of the bosons with impurities or among them-
selves. %e derive the coherence length which turns out to
be much greater than the interatomic distance and we
show the origin of the qualitative insufficiency of the

The comparison between BCS and BS and an analysis
of the anomalous properties of real 1- and f-band com-
pounds lead us to the conclusion that some of them could
possibly be examples of BS's. This will be the subject of
Sec. VI.

II. BIPOLARONIC HAMILTONIAN, MASS
OF THE SMALL BIPOLARON

0=
Qadi,

Cg Cg + g [U(q)Cg+q Ci, dq+H. c.]
k0 k, q0

+ g V(q)Ci+q C~-q Ci Ci +Hpi
k, k', q
a,o'

Hpi, = g coqdqdq .

(2.1)

Here, ek denotes the bare initial electron dispersion in a
rigid lattice, Ci,~ and dq are the electron and phonon
operators, r~p~tlvely, Nq represents the phonon disper-
sion, k, k', q the wave vectors, and o the spin of the elec-
trons.

In strong-coupling narrow-band superconductors the
second term in Eq. (2.1) is the dominant one due to the
condition given by Eq. (1.2). In this case, the site repre-
sentation is more convenient:

H = g 'r;; C; C; + g [U;(q)C; C;dq+H. c.]
l, i iq

+ g Vg'g' C(~Cg C(Cr+Hpi, (2.2)

A
Hp ——S )HS )

——Ho+H),

S
&
——exp g [cuq 'C; C;dqU;(q) —H.c.]

lq

(2.3)

with

Ho= $(Ta ep)Ci C~+—/vie Ci Ci'C'(C(+Hpi,

where

o;;C;C;,
ll

(m+n')

ep= gcoq ' U(q)
~

U;; = V —g coq
'

~
U(q)

~

e' '
q

(2.4)

(2.5)

ep measures the polaronic level shift and U;; represents the
polaron-polaron interaction which for superconductors
has to be attractive. The kinetic energy of the small pola-
ron H

&
is an operator in the phonon variables:

o. ;; =T~; exp gcoq 'Idq[U;(q) —U;(q)]] —H. c.

where T;; denotes the hopping integral, U;(q)
= U(q) exp(iq m), i —= (m, o ) where m labels the site. For
simplicity we restrict ourselves to direct Coulomb interac-
tions.

Using A,
' as a small parameter, one can treat the ki-

netic energy as a perturbation. The unperturbed Hamil-
tonian, including electron-phonon and Coulomb interac-
tions and the phonon Hamiltonian Hpi„ is diagonalized by
the familiar Lang-Firsov transformation S,,

' yielding
the following exact result:

%'e start with the ordinary one-band Hamiltonian, in-
cluding the Frohlich electron-phonon U and Coulomb V
interactions:

(2.6)

Averaging Eq. (2.5) with the equilibrium phonon density
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matrix

p= exp( —Hph /T)/[ Tr exp( H—~h /T)], (2.7)

yields a narrow small-polaron band: '

o';; = (cr,,') =Tz exp( —g ),2

(2.8)

g
—= gru coth

i U(q) i [1—cosq (m —m')] .

Usually, small-polaron theory '5 deals with one single
electron in the lattice. This is quite sufficient for semi-
conductors. In the case of narrow-band superconductors
the polaron-polaron attraction u;; is crucial and was first
considered by Alexandrov and Ranninger in the strong-
coupling limit,

~
u;;

~
&&rr;;, and by Alexandrov in the

opposite limit of weakly interacting polarons,
~

u;;
~

& 0; .
As long as the polaron bandwidth is small enough, Eq.
(2.8), the weak-couphng condition is satisfied in a small
region of parameters, where the Coulomb repulsion is
practically completely compensated for by the attraction
coming from the lattice distortion.

In this paper we concentrate on the properties of
strongly coupled bipolarons. Using o/

~
u

~
as a small pa-

rameter, we can treat H ~ as a perturbation. In the ground
state of Ho all the polarons are coupled into small bipola-
rons with atomiclike wave functions centered on effective
lattice sites discussed in detail in the Introduction.

Since we are only interested in bipolarons, with no sin-
gle polarons existing in our system, we shall eliminate the
latter ones by a second transformation S i (Ref. 3) which
eliminates Hi to first order yielding the following result
to second order:

H= exp(S2)H& exp{—S2),

Hff' Ef~ff' & X X
ii'(m+I') p
jj' (a+I')

&flSilp)= g &fl~Ir& Ci lp)(Ef —E, ) ',
ii'

(m~m')

&f I I C'«'
I p &&p I rrgi &g'CJ' If'&

(2.9)

~ f), ~
f'), and ~p) are eigenstates of Ho with energies

Ef, E/, and E~. At low enough temperature, T &&6„
only the subspace of Ho with either doubly occupied or
empty sites is of importance. In that case the intermedi-
ate states

~ p ) [appearing in Eq. (2.9)] refer to configura-
tions involving two polarons on adjacent sites. It is now
convenient to change the representation involving polaron
operators into one pertaining to bipolarons,

(2.10)

and average Eq. (2.9) with the phonon density matrix Eq.
(2.7).20 In that way we can take, in Eq. (2.9),

Ef Ep Ef Ep —b, + g (nfl —
n~s )coq, {2.1 1)

where nfl, n~z denote the occupation number of phonons of
wave vector q in the states

~ f) and ~p), respectively.
This leads finally to the following result for the electronic
part of the total Hamiltonian:

H= g [u b b~b b ~ —t(m —m')bmb ], (2.12)

where we have put the renormalized site energy equal to
zero:

eo

r(m —m')=2i d~e-" + '(o (~)o (0)) (213)

is the bipolaronic hopping integral and

u(m —m') =4u(m —m')
00

+» «e "+"(~-(~)& (0) )0

(2.14)

(oo )=cr', (2.16)

which is our previous result. As we shall see, this ap-
proximation is satisfied provided that the binding energy
for small bipolarons is sufficiently small (5 «co), where

ro=e'iI /g (2.17)

is the characteristic phonon frequency in our system.
Let us consider the general case where in the intermedi-

ate state phonon emission and absorption processes take
place. This wiO, in general, give rise to an effective bipo-
laronic mass m "—t ' as well as to an effective
bipolaron-bipolaron repulsion [second term in Eq. (2.14)].

Again, using the I ang-Firsov technique' we obtain

is the effective bipolaronic interaction; 5=+0. In Eqs.
{2.13) and (2.14) we introduced the time-dependent pho-
non operators

0'(1 )= exp(iHiIh'r)o exp( —iHuh'r) . (2.15)

If the tunneling of bipolarons happens without emission
or absorption of phonons in the intermediate states

~ p ),
we find

(o'I (&)o' (0) ) =T e 'exP — g [1—cosq{m —m')I U(q)l'
sinh(rIiIi/2T )

(2.18)
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t(m —m') =(2T ~ /6) exp( —4g ),
u(m —m') =4u(m —m'}+(2Tm ~ /b, ) .

(2.19)

and (cr (~)o ~ (0)) which is given by the expression,
Eq. (2.18), upon replacing the minus sign in the exponent,
given before the first bracket, by a plus sign. Substituting
these expressions into Eqs. (2.13) and (2.14), we hence ob-
tain in the limit 5 ~~co,

III. THERMODYNAMICS OF A BIPOLARONIC
SUPERCONDUCTOR

The Pauli commutation rules, Eq. (2.21), lead us to
adopt the following pseudospin language for the bipola-
ronic Hamiltonian, Eq. (2.12):

H = g S' p+ g u(m —m')S' ~I (I'~m)

In the opposite limit, T &b, « to, the calculation of the
integrals, Eqs. (2.13) and (2.14), with the expansion of the
exponents in Eq. (2.18) in a series of Bessel functions fi-
nally yields

m)(s s" +s»s'. ),
(I+I')

(3.1)

t(m —m')=(2T~ /b, ) exp( —2g ),

u (m —m') = 4u(m —m')+ (2T ~ /b ) exp( —2g ) .
(2.20)

One can see from a comparison of Eqs. (2.19}and (2.20)
that the effective bipolaronic mass and effective bipola-
ronic repulsion are strongly dependent on the ratio 5/co.
Both of them increase rapidly with increasing b, /to.

The approximate relation, Eq. (2.16), corresponds to bi-
polaron hopping via a virtual process involving incoherent
hopping of each of the two polarons which constitute the
bipolaron. This result is obtained therefore if one aver-
ages the polaronic Hamiltonian, Eq. (2.4), with the pho-
non density matrix, Eq. (2.7). In this case H» will be
equivalent to the negative-U Hubbard Hamiltonian but
with a temperature-dependent extremely narrow band W.
%e hence conclude that the phenomenological negative- U
Hubbard Hamiltonian is applicable to polaronic systems
only in the limit tu» U and with D being replaced by a
temperature-dependent W. In the limit to « 5 the bipola-
ronic Hamiltonian can be parametrized by an extended
negative- U Hubbard model in the strong-coupling limit.

Starting from the usual Frohlich interaction, we derived
in this section the effective Hamiltonian, Eq. (2.12),
describing mobile bipolarons which obey the mixed com-
mutation rules (Pauli statistics)

[b,b ]i=1, [b,b )=0 (m@m') . (2.21)

So far we assumed singlet bipolarons with spin s =0 [Eq.
(2.10)]. Triplet bipolarons can exist quite naturally in real
narrow-band d- and f-band materials due to the orbital
degeneracy of the effective bipolaronic sites which in gen-
eral may be considered as clusters of a small number of
metal ions surrounded by their hgand environment. In
the strong-coupling limit these triplet bipolarons again
form very narrow bands and can be described by the same
Hamiltonian [Eq. (2.12)] as for singlet bipolarons-
generahzed to three degenerate bands. This is possible
since due to the polaronic character of bipolarons the ex-
change interaction between triplet bipolarons with dif-
ferent values for s, will be negligible. We shall show in
the following section that in a dilute system with small
enough atomic concentrations of bipolarons (n &0.1),
their properties are equivalent to the free heavy-boson
liquid on a lattice.

—g(S* )= ,
' n. ——

m

(3.2)

X is the number of sites (in the larger sense as discussed
above) in a crystal volume Q, which is supposed to be
equal to unity, 0=1.

We use the RPA approach, formulated in terms of the
standard basis operators, ' developed for this problem
by Robaszkiewicz et a/. ' in their analysis of the elementa-
ry excitation spectrum. This treatment allows us to take
into account quantum as well as thermal fluctuations.

The Hamiltonian Eq. (3.1}has been investigated in de-
tail in the context of magnetic materials and quan-
tum solids. ' ' In those cases the magnetic field, or pres-
sure, is one of the independent thermodynamic variables
and the magnetization (or the molar volume) is deter-
mined such as to minimize the free energy. In our case,
on the contrary, the average electron density is fixed and
thus p is not an independent variable and has to be deter-
mined self-consistently via the constraint, Eq. (3.2).
Therefore, we are essentially dealing with a problem of an
antiferromagnet in a temperature-dependent magnetic
field.

Let us first of all briefly discuss the MFA results. The
MFA ground state was obtained in our previous work.
Below the critical concentration n„

n, = —,
'

I 1 —[(u —t)/u+t)]'~ j, (3.3}

where u=zu(m —m'), t=zt(m —m'), and nearest-neigh-
bor interaction is assumed (

~

m —m'
~

=a); the MFA
yields a homogeneous coherent phase BS with S"&0. For
—t ~ U ~ t, this phase is the ground state for a11 concentra-
tions. For U & —t, the system is unstab1e versus bipolaron
droplet formation (see Fig. 1).

In the high-concentration region n ~ n, the mixed
(ODLRO plus DLRO) phase (M) exists. The complete
MFA (T n) phase diagra-m of the Hamiltonian Eq. (3.1),

IB 2 Hl Bl

are the Pauli spin- —,
' matrices and p denotes the chemical

potential of the bipolarons.
In this section we discuss the phase diagram and derive

the thermodynamics of the low-temperature phase of this
anisotropic Heisenberg Hamiltonian with fixed total mag-
netization, which follows from the conservation of the
number of bipolarons:
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2

1.844
~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~

~ ~ N ~
m 0

0

H= —gS H (3.4)

where

Hm= —p —2 g [(Sm )u(m —m'}—t{m—m'}(Sm )],
g tn&

~&~&- BS-;
~ Oi

O.t 56 0 R

~ t O ~ ~
I I I

~ '~ ~ ~ ~ ~ R

0 5 10 g/t

FIG. 1. Ground-state phase diagram (T=0). RPA (solid
line), MFA (dotted line}. The ground state at @=0.5 is a
charge-ordered state mthout ODLRO.

(3.5)

one obtains a gap in the spectrum proportional to t, which
corresponds to local spin flips (S denotes the projection
of S onto the x-y plane). This is an artifact of the MFA
which leads to exponential dependence of the specific
heat. The true excitations af the spectrum are pseu-
domagnons with a gapless dispersion.

We shall now generalize the RPA resultsi' concerning
the excitation spectrum by taking into account quantum
fluctuations, and determine the thermodynamics of the
BS phase within this scheme. It turns out that this leads
to qualitative changes in the phase diagram as compared
to previous MFA results (see Figs. 1 and 2).

Using the RPA equations of motion far double time-
retarded Green's functions, one obtains the following
temperature-dependent excitation spectrum of the BS (see
Appendix A):

cuq=R [(t—tq cos28+u q sin28)(t —tq)]'~2, (3.6)

together with the condition Eq. (3.2), was obtained by
Robaszkiewicz et al. '" {Fig. 2). It shows two additional
nonsuperconducting phases, one of which is charge or-
dered (DLRO) (see also Ref. 26).

The excitation spectnnn of the Hamiltonian Eq. (3.1)
was found at T=0 (Refs. 3 and 13) as well as for finite T
(Refs. 14 and 26). It is magnonlike with a linear disper-
sion law in the long-wavelength limit both for the BS and
for the M phase. In the latter case, MFA-RPA gives
linear behavior'~2s for the entire temperature regime of
the M phase, except at T=0.3 However, it turns out that
if one takes into account quantum zero-point fluctuations,
one obtains a hnear dispersion for the excitation spectrum
of the M phase for T=0 also.

If one uses MFA to obtain the excitation spectrum'
with the classical pseudomagnetic field H~

where ts, us are the Fourier camponents of t{m} and
u(m), respectively, and R is the occupatian probability
which obeys the following equation:

j. 1
catll

R N ~ a)g 2T '

where

2~ =R [t—ti, cos~8 —,
'

(t& —u—~)sin~8]

(3.7)

(3.8)

cos8=(2tt —1)/R (3.9)

determine the angle between S and H . The supercon-

ducting order par~~eter is given by

S =(S &, S =-,'R 8=-,'[R' —(2 —1)']'". {310).
The quantity R is determined in such a way, Eq. (3.7),
that it includes quantum as well as thermal fluctuations.
Remember that MFA gives R =1 at T=O.

With nearest-neighbor interaction we obtain from Eq.
(3.6)

0.5
tu2q=(Rt)2 1 —ys cos28 sin28 —(1——yq) (3.11)

U

0
0 0.5 )2n-&f 1

ri)g~k+O(k ) (k~0), yg ——t(k)/t =— g el™,2 I

jmI =a

(3.12)

FIG. 2. MFA phase diagram (Ref. 14) for u jt =2 as a func-
tion of T and bipolaron concentration n.

where the "sound" velocity s is temperature dependent
(see also Ref. 13):
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s(T) =R(sin8)5[t(u+t }]'

1
X6z

I

(3.13)

The boundary line between the BS and the normal phase
determining T, (n ) is given by the condition

s(T, ) =0,
which is the same as

(3.14)

(3.15)

Q)q =0, (3.16)

The boundary with the mixed phase M is determined by
the condition of the instability of the spectrum, Eq. (3.11),
against doubling of the lattice periodicity, i.e.,

where 2Q is the smallest reciprocal-lattice vector.
Together with Eq. (3.11),Eq. (3.16) reduces to

R +(2n, —1)

R (—2n, —1)
(3.17)

where R ( T,n, u /t ) has to be determined from Eqs.
(3.7)—(3.9). We should mention that s becomes imaginary
for u ~ t, —which indicates that at u/t= —1 the system
becomes unstable versus a phases of bipolaron "droplets"
(see Fig. 1).

Let us first derive the critical concentration n, as a
function of u/t at T=O. Substituting

R (0)= ( 1+2') (3.18)

into Eq. (3.7), we obtain together with Eq. (3.9), the self-
consistent equation for the zero-point fiuctuation contri-
bution Pp

1 ——,
'

t I+[(2n —1) (I+2gp) (1+u/t) u/t)yg—I
2%p= —g —I.

& q ((I—yi, [(2n —I)'(I+2gp)'(I+u/t) —ult]I(1 —yi, ))'
(3.19)

2n g0. 156 (3.20)

The numerical solution of Eqs. (3.17)—(3.19) for a cubic
lattice is shown in Fig. 1. One can notice the qualitative
difference of the behavior of n, determined in this way as

compared to the MFA results. ' The quantum fiuctua-
tions extend the region of stability of the homogeneous BS
phase. In such a way, the BS phase exists even in the lim-
it u/t~ oo provided

temperature specific heat:

C, =d[t(t+u)S'(0)] (605 )

g [T'+27T'/S'(0)t (t +u)] . (3.24)

We should mention that the temperature range of validity
of Eq. (3.24} diminishes as n~O. At fixed n at high
enough temperature, the k2 term in Eq. (3.12) will be
dominant and wi11 give rise to

for a sc lattice, contrary to the MFA result, Eq. (3.3),
which gives n, =0 in this limit. The behavior of the order
parameter S"as a function of u/t, determined numerical-
ly from Eqs. (3.10), (3.18), and (3.19) is shown in Fig. 3.
One can see that the bipolaron interaction suppresses the
order parameter, contrary to MFA results in which the
order parameter is independent of u.

From Eq. (3.7} one obtains the following temperature
expansion for R(T):

R(T)= I4[S"(0)] +(2n —1)i)'~

T /6' (1+u/t—)' t [S'(0)] +0(T ) . (3.21)

Let us now consider the low-temperature behavior for the
internal energy and the specific heat C, . The internal en-

ergy within our RPA is determined at low temperature by

T3/2

2S (0)

0.5—

ewe g yI ~

gyes

~ ty~ ~y~0~
~y ~ y ~~O~

~~

(3.25)

Q)jE=Ep+ gcoi, exp —1
T (3.22)

where Eo is the ground-state energy. For sc lattices the
direct calculation of Eq. (3.22) yields

~Tg [1+1ST[S (0)t(t+u)] 'I
(323)

2405 S"(0)[t(t+u)]
In the derivation of Eq. (3.23} we used the expansio~ of
R, Eq. (3.21}. In such a way we obtain the power-law

0.5

FIG. 3. Concentration dependence of the order parameter of
BS at T=O for different values of u/t. For n «n„a mixed
phase with two order parameters exists.
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In concluding this section, we shall derive T, . Substi-

tuting Eq. (3.15) into Eqs. (3.7)—(3.9), we obtain

(2n —1) ' =—g coth (r —ti, )
1 (2n —1)

2T,
(3.26)

The numerical solution of Eq. (3.26) for sc lattices is plot-
ted in Fig. 4.

For a dilute system (n «1), we obtain from Eq. (3.26)
the following analytic expansion:

—3 3/2
T= '

(1 0—54.n ~)
C S (3.27}

t i (2n —1)
C

(3.29)

where c = 1.5164, 1.393, and 1.345 for sc, bcc, and fcc lat-
tices, respectively. One can see from Fig. 4 that the re-

gion 2n &0.2T, is practically the same as for the ideal
Bose gas. On the contrary, the MFA result's

T, =t(2n —1)/ln(n/1 —n),
as well as the cluster approximation, gives a qulhtative-

ly wrong concentration dependence of T, —[ln(1/n)]
for low densities and overestimates T, by a factor of
about 1.5 for 2n =1 (see Fig. 4). Moreover, in the cluster

(3.30}

where m" =3/ta is the bipolaronic effective mass for
the case of a sc lattice. In the high-density limit,

(3.28)

Equation (3.26}gives

approximation the T,(n) curve intersects the n axis not
at n =0, but at n = exp( —z). We want to point out that
this approach is questionable also for Zn —1 and U &t
This is connected with the well-known, inherent patho-
logies of the cluster approximation such as unphysical
anti-Neel and anti-Curie points.

We would like to stress that the RPA used in this paper
has proven to be an excellent approximation in problems
of magnetism. '2 In particular, it predicts the absence
of long-range order in one and two dimensions for short-
range interaction at finite temperature, in agreement with
exact theorems.

In this section we examined the thermodynamics of the
homogeneous BS phase. The thermodynamics of the M
phase as well as the charge-ordered (CO) phase will be ex-
amined in a separate publication.

IV. NORMAL-STATE PROPERTIES
OF SIPOLARONIC SYSTEMS

One of the most striking features of bipolaronic systems
is that above T, the normal phase is characterized by an
ensemble of bipolarons on a lattice, forming a very narrow
bipolaronic band. This is hence quite different from an
ordinary BCS superconductor which above T, goes into a
metallic state characterized by an ensemble of electrons on
a lattice, generally forming a fairly large electron band.

We shall in the following consider some of the normal-
state thermodynamic properties of such a bipolaronic sys-
tem. This can be done very easily if the concentration of
bipolarons is small. In this case, neither the hard core nor
the effective interaction between bipolarons on different
sites is important. Our initial Hamiltonian Eq. (2.12) thus
reduces to

H= —g t(m —m'}bmbm,

~ 5 %$0~ ~ ~ ~ + ~0.
'~ OO ~ g~ Oyg ~y~ ~ Oy

~g
~~ ~ ~e~ ~~

~g~e
C s+

where, moreover, the b's are simply boson operators This.
is due to the fact that within the physically relevant sub-
space of either singly occupied or empty sites, the b's
satisfy the commutation relation [Eq. (2.21)]

[bm, bm] =1 2n . —

0.5 )2n-1 [

FIG. 4. Critical temperature of a BS as a function of concen-
tration. RPA result —present work (solid line), MFA result
(Refs. 14 and 15) (dotted line), cluster approximation result (Ref.
27) for v/t =1 (dashed-dotted line). The T, for the ideal Bose
gas is indicated by the dashed line.

For small bipolaron concentration (n «1) the b's thus
are ordinary boson operators.

We shall show in the following that as far as the tem-
perature dependence of the specific heat is concerned,
such bosonlike bipolarons behave in practically the same
way as fermions (electrons) with a comparably narrow
half bandwidth t[ —=zt(m —m')]. This holds for the entire
temperature regime.

In the present discussion me shall include triplet bipola-
rons and evaluate the specific heat and magnetic suscepti-
bility for electrons (s = —,), singlet bipolarons (s=0), and
triplet bipolarons (s = 1) (s denoting the spin}.

The corresponding expressions for the specific heat and
the chemical potential which have to be evaluated self-
consistently are the following:
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c, ,= —z(*+((f ~~w. ey, ,(~(xaT the specific heat. In this temperature regime (Pn, P»1}
we obtain from Eq. (4.5)

p,
' =—P—exp( 2—n 'P), (4.8)

'2

(4.2)

which shows that the chemical potential at low tempera-
ture is locked near the bottom of the band (p= r)—and is
practically temperature independent. Substituting (4.8)
into Eq. (4.4), we thus obtain

n =(2s+ () J dEN(e)fg(e(, .
=(2s+1)I dg N(g+p}f(g),

fb, (») denote, respectively, the Bose and the Fermi distri-
bution function fb, (»)= I exp[(» —p, )/T]+1 I, and
N(»), the density of states of energy». p denotes the
chemical potential.

We are interested in the temperature dependence of the
thermodynamic quantities on a temperature scale which is
of the order of the bandwidth (a few meV in the systems
of interest). Moreover, we restrict ourselves to a discus-
sion of the normal-state properties, well above T, the-
transition temperature to the super-fiuid phase. Under
these conditions the fine structure of the density of states
of the low-energy states is of no importance. Hence, we
choose a square density of states

Ci, ——(2s+1)m /6P (P,Pn »1) . (4.9)

This result shows that bosons in narrow bands at low tem-
perature have a temperature-independent specific-heat
coefficient y =C/T, just as for electrons. The linear tem-
perature dependence in fermion as well as boson systems
is linked to the existence of a quasilocked chemical poten-
tial. For comparison we quote here the results for elec-
trons in the two extreme temperature regimes. Based on
the same square density of states as before [Eq. (4.3)], we
obtain '

C, n(1 n /2—)P /3 (P&1),
(4.10)

C, =m.2/3P (13,Pn &1) .

If n «1, an intermediary temperature region exists for
1/n »P & 1 in which the boson and fermion specific heat
shows logarithmic behavior,

N(g)=(2i) ', (4.3)
Cb, — 2n ln(n—P) . (4.11)

for which T, —=0 and which permits us to treat the normal
phase in a consistent fashion. In such a way we can com-
pare self-consistently the thermodynamical behavior of
electrons and bosons in the normal phase down to zero
temperature.

Introducing the dimensionless parameters 13=t/T and
p, '= p, /T, we obtain for bosons using Eqs. (4.2) and (4.3),

+' J' ",ex x'+x I' p"—
)& sinh

2
(4.4)

1 —exp( 2n 'P)—, n

expP —exp( —2n '+ l)P» + 1

In the high-temperature limit (P &1), we find from Eq.
(4.5)

p'=inn'/(n'+1) —P —,'(1+2n') .

Substituting Eq. (4.6) into Eq. (4.4},we obtain

Cs-n [1+n /(» + 1)]P /3, P ( 1 .

(4.6)

(4.7)

The coefficient in the T term in expression (4.7) is
physically quite understandable. Specific heat is connect-
ed with the probability of the absorption of thermal ener-

gy, which is proportional to the numbers of occupied ini-
tial states (n') times (n'+1) coming from the final states
and reflecting the two contributions characteristic for
Bose systems, i.e., processes connected with spontaneous
as well as induced emission.

Let us next consider the low-temperature behavior of

In such a way bosons and electrons in narrow-band sys-
tems have extremely similar temperature dependences of
their specific heat in the normal phase [see Figs. 5(a) and
5(b}] with the following ratio of y at low temperature

yb /y, =s+ —,'. lt is necessary to point out that the tem-

perature region in which we expect the linear behavior of
the specific heat can be very small if n « 1. In this case,
we find for y a fairly sharp rise as one approaches T=0
which will abruptly turn over into a constant for extreme-
ly small temperature (T&nt). For real systems which
show a transition to a superconducting phase, the region
for the linear temperature behavior of C can practically
disappear if the critical temperature is high enough. In
particular, for ideal bosons we have' T, -n ~ itiwith

n &~1. In this case, the low-temperature behavior will be
given by Eq. (4.11) down to T, .

The T law for the speciflc heat at high temperature,
common to both fermions and bosons originates from the
finite value of the band for these particles, which is a
direct consequence of the discreteness of the lattice. The
classical value for the specific heat is only obtained for
continuous media which have infinite bandwidth. Let us
now briefly discuss the magnetic susceptibility for bipola-
rons in the normal phase. For singlet bipolarons evidently
the spin susceptibility is zero due to the fairly large bind-
ing energy of those bipolarons (typically, b, -0.1—1 eV).
For triplet bipolarons, however, the magnetic field couples
to the spin of those bosons and the magnetic susceptibility
is determined from the linear term of the induced magnet-
ization

M(H) =2pa I «N(»)[fb(» I aIf) f~(»+I sH—}l—
(4.12)
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FIG. 6. Temperature dependence of the inverse magnetic sus-
ceptibility for electrons (dashed line) and for triplet bosons (solid
line).

l

0,5
I
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I
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0 v/t
FIG. 5. (a) Temperature dependence of the specific-heat coef-

ficient y =CP for electrons (dashed line) and for singlet bosons
(solid line). (b) Ratio of the triplet (s =1) and singlet (s =0) bo-
son specific heat to the electron one as a function of temperature
(n =0.25).

X, =(4pz /r ) exp( —', n p)- exp(2nt /3T ),
7, =p,z /r - const .= 2

(4.16)

In such a way, we have shown that while the specific heat
for narrow-band systems is extremely similar for bosons
and fermions; this is not true as far as the susceptibility is
concerned. See for comparison Figs. 5(b) and 6.

where H denotes the applied magnetic field and ps, the
Bohr magneton. We thus obtain

V. ELECTRODYNAMICS AND MAGNETIC
PROPERTIES OF SIPOLARONIC

SUPERCONDUCTOR 8

(4.13)

4P si (e2nPI3 1 )(e2@ e
—2sP/3)

(e ~—1)
(4.14)

At high temperatures (n P,P ( 1) we obtain from
Eq. (4.14) a Curie behavior (just as for narrow-band elec-
trons 3'given below for comparison):

7,=(gag /3T)n(1+n /3),
(4.15)

(ps /T)n(1 n/2) . —
At low temperatures (Pn, P»1) the behavior of the sus-
ceptibility of triplet bosons differs significantly from that
of electrons (see Fig. 6):

which, together with the corresponding expression for the
chemical potential of triplet bipolarons [Eq. (4.5)], finally
g1Ues us

(eH) ' »a (5.1)

This condition allows us to calculate the electronic hop-
ping T in the presence of the magnetic field as follows:33

T(m, m') =T(m —m') exp[ —ie A(m) ~ (m —m')] . (5.2)

In such a way, the bipolaron Hamiltonian 8 in the mag-
netic field can be derived from the expression, Eq. (2.12),
on substituting t -t with

We have shown above that in the dilute system
(n (0.1) the thermodynamical properties of bipolarons
are identical to the ones for bosons on a narrow band. In
this section we derive the electrodynamic equations for
such a system followin the ideas initially proposed by
Alexandrov and Kagan' and some unpublished results by
Alexandrov' concerning the determination of the upper
critical field of a charged Bose gas.

As usually assumed, we take the magnetic field H
with a vector potential A(r) to be small compared to the
atomic field
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t(m, m')=t(m —m') exp[ —2ieA(m) ~ (m —m')] . (5.3} rnor+n r =n. (5.12)

The magnetic field breaks the translational symmetry, so
that the real-space representation of H is more adequately
described by the field operators g(r) and P (r) defined by

b = f dr/(r}5(r —m),
(5.4)

b = f dr P (r)5(r —m) .

Substituting Eqs. (5.3) and (5.4) into Eq. (2.12) we obtain,
using the well-known Luttinger method (see Appendix
B),

H= f drat(r)Ie[ iV —2ieA—(r)] pIQ—(r)

r r'v r—r' ~r r ~r' r' . 5.5

Here,

e(k) = —g t(m)e'™ (5.6)

denotes the dispersion law of the bipolaronic band and

u(r) = g u(m}5(r —m) (5.7)

[P(r},P (r'}] =5(r—r'}[1—2n(r)], (5.8)

where n(r}= g b~b~5(r —m) is the bipolaron concen-
tration operator which in the dilute system will have van-

ishingly small expectation values, and hence we can treat

f and Pt as simple Bose operators. They obey the follow-
ing equation of motion:

represents the real-space potential for bipolaron-bipolaron
interaction.

The field operators, Eq. (5.4), obey the following com-
mutation rules:

Throughout Sec. V we denote by n the density of bipola-
rons. Equation (5.10) is a direct generalization of the
Ginzburg-Pitaevskii equation for a neutral Bose gas.
One can see that in the strong-coupling narrow-band su-
perconductors the time-dependent Ginzburg-Landau (GL)
theory exists [Eq. (5.10}]. In the case of BCS supercon-
ductors one can obtain a simple generalization of the
GL equations only if the excitation spectrum is gapless
(magnetic impurities}. In our BS system the excitation
spectrum is gapless (see Sec. III), which permits us to
derive the electrodynamics of strong-coupling supercon-
ductors starting from Eq. (5.10).

Up to now there have been very few results on the elec-
tromagnetic properties of the charged interacting Bose
gas, which moreover have led to a rather confused picture
on this subject. Contrary to the Fermi gas in a Bose con-
densed system, long-wavelength collective excitations are
predominant. They are, however, strongly influenced by
scattering processes. Moreover, the interaction can be
long range, being of a Coulomb origin. These two facts
render the problem of the charged Bose gas a rather intri-
cate one.

In this section we restrict ourselves to the calculation of
the upper critical field H, 2 of a char ed Bose gas, taking
into account scattering by impurities. We show that the
value of the coherence length g is strongly dependent on
the scattering of Bose particles and differs significantly
from the interparticle distance -n '/' as well as from
the interatomic one. In such a way, the intuitive estima-
tion of g(g-n '

) as well as the MFA result of Bu-
laevskii et ttl. 's (g-a ) are qualitatively wrong.

As usual36 we determine H, z as the field in which the
first nonzero solutions of Eqs. (5.10) and (5.12) for $0 ap-
pear. Approximating Eq. (5.10} to lowest order in $0, one
obtains

+2 r'v r—r' r' r (5.9) pro(r}=[( iV 2ie A—)i/2—m" + U~ u(r)]$0(r), (5.13)

In the coherent superfluid phase (BS), the condensate
wave function $0 is a c number. Putting P(r)=$0(r)
+g(r), where f(r} represents the excited states, we obtain
from Eq. (5.9}

Bgo(r)
i =[e( i V 2i—e A) —p, ]$0(r—)

+2 f dr'u(r —r')
I /0(r)[no(r*)+n(r')]

where p=p+t —, 4un. In deriving Eq. (5.13} we restrict
ourselves to short-range particle-particle interaction

u(r —r') =u5(r —r') (5.14)

and use the effective-mass Eq. (3.28).
We introduce the random impurity potential U; ~(r)

describing the scattering of bosons. The effective-mass
approximation [e(k)= t+k /2—m "] is valid provided
that H, i is smaller than the atomic field, Eq. (5.1).
Therefore, only low-energy states of the band (e~&~')
are relevant:

+$0(r')(f (r')P(r) }I,
(5.10}

2eH, 2
&~t . (5.15)

where the condensate density and the concentration of ex-
citations

no(r) =
~
$0(r) ~, n(r) = (P (r)f(r) } (5.11}

have to obey Eq. (3.3) requiring that the total number of
bipolarons be fixed:

The chemical potential p can be obtained from Eq. (5.12),
which to lowest order in $0 is given by

f deN(e, H, 2)/[exp(e p, )/T 1]=n, — (5.16—)

where N(e, H, z) is the field-dependent one-particle density
of states. It is, however, more convenient to derive p
directly from Eq. (5.13) and put it into Eq. (5.16). In such
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a way we obtain at H=H, 2,

W =eo(H. 2) (5.17)

NP=
2

(5.19}

Substituting Eqs. (5.18) and (5.19) into Eq. (5.16), we ob-
tain

V2( m") / T
d6 e'

4m n
(5.20)

in such a way that the upper critical field of an ideal
charged Bose gas

(5.21)

This result was obtained a long time ago by Schafroth, 38

who first showed that the charged ideal Bose gas does not
condense in a homogeneous magnetic field similar to a
one-dimensional neutral Bose gas. We shall now show
why a simple MFA (Ref. 16) for this problem leads to er-

where eo(H, 2) is the lowest eigenvalue of the Schrodinger
equation, Eq. (5.13).

Let us first consider the ideal charged Bose gas without
scattering, U~~ —=0. In this case,

3/2 0 w

%~0

{5.18)

roneous results, predicting enormously high values for
8,2.

If one substitutes the MFA chemical potential (see Sec.
III) into Eq. (5.19), one obtains for n « I and

~
T T,—

~
&&T, the results of Bulaevskii eral.

p MF~
——2tv,

(5.22)

(5.23)

as is usually in the case of BCS superconductors 2 one
can use the analytical "ladder" approximation for deter-
mining N(e, H), which has been derived for semiconduct-
ors in a magnetic field. ' For low energies it has the
form~

H, 2 Q——y./a n, .

where r= 1 T/T—, " and Po denotes the flux quantum.
From this it is clear that the origin of the qualitatively
wrong result, Eq. (5.22), is due to the choice of the chemi-
cal potential determined within the MFA.

In order to obtain a finite value for H, 2, one has to take
into account the scattering of bosons due to particle-
particle as well as particle impurity interaction, both of
which destroy the one-dimensional character of low-

energy excitations in a magnetic field and smear out the
one-dimensional singularities of the ideal density of states,
Eq. (5.18). For sufficiently "dirty" dilute Bose systems,
one can neglect particle-particle scattering as compared to
particle impurity scattering. Moreover, if the mean free
path / is large enough,

1/2 ' 1/3

X-H =~6 "'" ' " "'+ "+'"
8ir21-3/2 27 2 4 27

0
~3

27+ 2

' 1/2 1/3 '

16 -3I 3

(5.24)

where e=e o3'/2, I—o (n; ~8——mf eH) /2m ', n; ~ is
the impurity concentration, f is the scattering amplitude,
and

' 1/4

g{T)=K — 1—I Tc

tf T

3/2. —3/4

(5.28}

I4=eo ———3I o/2 / +o3'/2 . (5.25)

Let us consider the rather large temperature region:
ro' « T & T, . In this case two contributions in the in-
tegral Eq. (5.16) are important. The first one arises from
the low-energy regime e & co described by the expression,
Eq. (5.24); the second one arises from the high-energy re-
gime, oi' & e & T, which is described by the classical densi-
ty of states:

N, i(e)=(m' )3/ ~e/~2m (5.26)

Dividing the interval of integration in Eq. (5.16) into a
low-energy part with a density of states Eq. (5.24), and
into a high-energy part, described by N,i(e},Eq. (5.26), we
finally obtain

%=0.8, 1=(4nn g ) ', and T, =3.31n / /m" .

We notice from Eq. (5.28) that the value of g(T) is
much higher than the interatomic distance and that its
temperature dependence is different from the usual BCS
expression. In particular, H, 2(T) of a charged Bose gas
has a positive second derivative

d H, 2

dT
&0 (5.29}

is the coherence length

g4/3 ' x
I [x3+2+2(1+ 3)1/2]1/3

28/3d

—[X3+2—2(1+x3)1/2]1/3
I

1/2

H.2=go /2~g2(T)

where

(5.27)
and nonlinear behavior near T, {see Fig. 7). It is interest-
ing to note that the interparticle distance ( n'/ ) of-a
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FIG. 7. Temperature dependence of the upper critical field of
a charged Bose gas (BS), Ho /on

'~/—2—ml'/iEi. H, 2 for a BCS
type-II superconductor with H, 2(0) =Ho is shown for compar-
ison. We also show the artifact of the MFA in which below

T=0.88T, the magnetic field would be unable to destroy super-
conductivity (Ref. 16).

AH ——(m "/16rrne )'/ (5.32)

which exceeds considerably the ordinary London penetra-
tion depth AL, by a factor (m "/m )'/ . We are now in a
position to estimate the GL parameter a for a charged
Bose gas

(In i/3}—i/4( stR/ 2 i/3)]/21

4 1/2 (5.33)

which is much greater than unity (~ &&1) for all realistic
values of n and l.

%e conclude that a charged Bose gas is a type-II super-
conductor. For T~0, Eq. (5.27) gives formally H, 2 oo. ——
However, for very low temperature, Tv&1 (r denoting
the scattering time) the localization of bosons by random
potential must be taken into account and this restricts the
value for H, z to a finite number. The ladder approxima-
tion giving rise to Eqs. (5.24) and (5.27) are not applicable
in this region.

charged Bose gas represents the direct analogue of the
coherence length go of BCS:

(5.30)
C

if one takes for V, =2(T, /m")'/ instead of the Fermi
velocity. In the case of weak scattering [Eq. (5.23)], the

physical coherence length g, Eq. (5.28), is greater than go
of Eq. (530}:

I i /4gs/4 & (5.31)

In a previous work's we have derived the Meissner ef-
fect of a BS and obtained a penetration depth

VI. DISCUSSION

The phenomenon of superconductivity in metallic com-
pounds is based on the existence of Bose-like carriers
which are able to form a condensate state. The usually
considered mechanism to form such boson-like states of
two fermions (electrons) is a phonon-mediated coupling
between two electrons.

If this coupling is weak the pairing of two electrons will
be in the form of resonant states. For wide bands there is
a thin layer near the Fermi surface in which a comprom-
ise is reached between gaining maximal energy by involv-
ing as many pairs as possible within this layer without,
however, violating the Pauli principle due to the overlap
of these pairs. This leads to the well-known BCS
ground-state wave function.

This situation changes qualitatively if the electron-
lattice coupling increases to such an extent that it leads to
instabilities (which may be local or of long range due to
cooperative effects) in the many-electron-lattice system.
The result is the formation of quasi-self-trapped
electrons —so-called small polarons with extremely narrow
bands as compared to the ones in which the lattice is
treated as rigid. This reduction in bandwidth is typically
of the order 10 —10

Such systems are hence comprised of very heavy elec-
trons which moreover are capable of forming boson-like
states due to the overlap of the local lattice deformations
that surround each one of them which leads to an attrac-
tion between them. Two situations are possible.

(i} These boson-like states are resonant states involving
two small polarons. Contrary to the BCS picture, howev-
er, these resonant states will not only form within a thin
layer near the Fermi surface but will cover the whole
volume of the Fermi sea. A theory developed along these
lines by Alexandrov shows superconducting behavior
which is formally very reminiscent of BCS, except that
the characteristic frequency determining T, is no longer
the characteristic phonon frequency but rather the Fermi
energy.

(ii) These boson-like states are real bound states involv-
ing two small polarons. These bound pairs —so-called
bipolarons —behave like hard-core bosons on a lattice and
hence lead to a superconductivity which is much more
reminiscent of superfluid Hen than BCS as far as its
thermodynamics is concerned.

It was the purpose of this present work to investigate in
some detail the thermodynamic as well as the electro-
dynamic properties of such bipolaronic systems in the su-

perconducting as we11 as in the normal phase. %'e sum-

marize first of all our main theoretical predictions for
such systems and at the end discuss possible candidates in
which bipolarons might determine their superconducting
as well as normal-state properties.

A. Main characteristics of strong-coupling
electron-lattice systems

The following are the main characteristics of strong-
coupling electron-lattice systems.

(i) Narrow-band electrons (d- and f-band materials)
strongly and locally coupled to lattice deformations form
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bipolarons which behave like hard-core bosons on a rigid
lattice.

(ii) The heavy bosons have a carrier charge 2e and be-
cause of their heavy mass m" —100—1000m are in gen-
eral poor conductors. Moreover, they will show a huge
specific-heat coefficient y(T) and high Curie-like spin
susceptibility for triplet bipolarons or diamagnetism for
singlet ones in the normal state (Sec. IV).

(ii) The strong-coupling narrow-band superconductivity
resulting from these local hard-core boson-like bipolarons
(if the right conditions are met, see Sec. II) differs qualita-
tively from BCS. The main differences are the following.

(a) A gapless excitation spectrum (in the case of short-
range interaction between the bipolarons} which has Bose
statistics contrary to the single-particle Fermi-like excita-
tions in BCS, which in general have a gap in their disper-
sion.

(b} A power-law behavior of the specific heat for singlet
as well as triplet pairs with C, -T ( —,

' &a(3), a de-

pending on the temperature regime. Near the transition
temperature we expect a k-like behavior similar to HeII.

(c) A large penetration depth AH -(m "/m )'/zAi .'3
(d) Nonlinear behavior of H, 2( T) near T, with

d H, 2/dT &0 (Sec. V).
(e} The upper critical field of a charged Bose gap exists

which strongly depends on the scattering of the hard-core
bosons by impurities's (Sec. V).

(f) T, varies like ni/ (n denotes the bipolaron concen-
tration) for small concentrations, n &0.1. For higher
values, T, increases slower than the n law on increas-
ing n.

8. Application to real systems

Let us now discuss the possible application of the bipo-
laronic picture to real materials. Small polarons as well as
small bipolarons have been seen in a great variety of sub-
stances; mostly, however, where they are in the form of
localized states. For our picture to hold, coherent polaron
and bipolaronic band states, respectively, are required.
The question, whether what is observed experimentally-
by, for instance, photoemission spectra —is indeed pola-
rons or bipolarons, is difficult to answer. What favors a
polaronic picture is the fact, that in the materials under
consideration, band-structure calculations which do not
take into account the coupling of electrons with the lat-
tice, are in total disagreement with the experimentally
produced extremely narrow bandwidth. Moreover, all the
standard classic interpretations of explaining lattice insta-
bilities, as well as high-y values on the basis of peaks in
the fine structure of the density of states, cannot avoid the
inevitable problem of having to fix the Fermi level to
within a few degrees K near such a peak in the density of
states, with an overall energy width which is typically
1000—10000 K. That such a coincidence would occur in
such a large number of physical systems is totally un-
believable.

In this context the polaronic picture for 315 com-
pounds ' is a highly attractive and simple idea which au-
tomatically fixes the Fermi level near a peak in the densi-
ty of states, which due to the polaronic bandwidth nar-

rowing, generally shrinks the entire band into a single
very narrow peak structure. In this way the polaronic pic-
ture can interpret most of the anomalous properties in the
normal as well as the superconducting phase of those ma-
terials. We shall only mention the following: the
anomalous T dependence of the magnetic susceptibility,
the structural transition, the T law for the low-
temperature resistivity, ' the nonlinear electronic specific
heat, as well as the violation of the Anderson theorem
for irradiated samples which show a drastic change of
T, .43 %e b lieve that this p laronic picture applies to a
variety of 215 compounds such as NbiSn, ViGa, and
ViSi, and possibly to some Chevrel phases, in particular
PbMo688.

As far as bipolarons are concerned, the situation is as
follows. After the initially discovered cases of Ti407
and Na, V205, a large number of other compounds joined
their rank. All of those materials for which direct un-
questionable proof exists (as concerns their bipolaronic na-
ture) have not shown superconductivity. The reason for
that is known and is either related to the fact that they
form half-filled bipolaronic bands and hence show a
charge-ordered ground state (Ti407, Na, V205) as predict-
ed by theory ', or are low dimensionality systems like
polypyrol, polythiophen (Ref. 45), and KCP (Ref. 46), or
else are structurally disordered or non stoichiometric sys-
tems like WO& „. On the other hand, indirect experi-
mental evidence strongly favors the bipolaronic picture
for such systems as two of the 315 compounds NbiGe
and NbsA1 (Refs. 1 and 31) which have estimated A, values
above 1.5 and BaBi Pb, ,03 with an estimated A, -2.
Similar to this last compound are PbTe(T1) (Refs. 49 and
2) and Lii,Tii, 04 (Ref. 50), a class of materials in
which bipolarons exist as mixed valence states Bi +
—Bi +, Ti'+ —Ti +, and Tiz+ —Ti + located on
single cation sites.

Among those, BaPbi, Oi is perhaps one of the most
experimentally studied candidates and was initially sug-
gested by Rice and Sneddon~' to be of a bipolaronic na-
ture in the insulating region. The superconducting prop-
erties of this material for 0.2 &x & 0.3 pose some very in-
triguing problems, such as (i) anomalously high T, ( & 10
K) at low electron concentration (n —10 ' cm ), (ii) a
very insignificant jump in the specific heat at the super-
conducting transition, (iii) nonhnear behavior of H, 2

with d2H, 2/dT &0, (iv) very high values for AH & 10
A (Ref. 55) and high values for H, 2(4.2 K)=53 kOe (Ref.
54), and (v) a strong dependence of electrophysical proper-
ties and T, on nonstoichiometry due to the lack of oxy-
gen, which leads to a weakening of bipolaron formation.

Our picture of small bipolarons is able to explain at
least qualitatively the anomalous behavior described
above. Let us fit the experimental values of T, —10 K
and n = 10 ' cm using Eq. (3.27} and we find
m -300m for the heavy carriers in this system. With
this value of m" and the same concentrations as before,
we obtain from the expression, Eq. (5.32), A,H) 10 A.
There is no specific-heat jump, compatible with the pic-
ture for an ideal Bose gas, which ought to be a fairly good
description for such a low carrier concentration. The
nonlinear behavior of H, 2 near T, with d H, 2/dT & 0 is
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similar to the one obtained in Sec. V (see Fig. 7). More-
over, recent Mossbauer and positron annihilation data
could be interpreted on the basis of mobile bipolarons in
BaPb, ,Bi,Oq for 0.2~x ~0.3. A determination as to
whether finally BaPbi „Bi„Oi really is a bipolaronic su-

perconductor will need further refined experimental as
well as theoretical work in order to furnish the proof. As
has been argued by Rice, the observed 26/T, =3.5 (tun-
neling experiments by Batlogg et al. ) seems to favor a
BCS rather than a bipolaronic superconductor. In this
connection we think it would be fair to point out also that
the same tunneling experiment gives a A, -1.5 which is
largely sufficient to form sinall bipolarons, Eq. (1.2).
Moreover, the MFA calculations for the tunneling charac-
teristics of a BS (Ref. 15) show the pseudogap (propor-
tional to the bipolaronic bandwidth) and whence a value
b/T„which again is close to the BCS one. However, we
do not think that the results on bipolaronic Josephson
tunneling are sufficiently developed and we think that
once more the MFA for this problem' might perhaps not
be correct. We shall conclude this discussion with a
speculation that some of the "heavy-fermion" systems
such as CeAlq, CeCu6, CeCuzSiz, UBe», UPti, and oth-
ers, might be bipolaronic in origin.

It remains an extremely controversial issue, how the
Fermi-liquid nature arises from the bare f electrons and
which mechanism could possibly lead to the drastic reduc-
tion of these bandwidths (down to about 0.001 eV} in or-
der to explain the unusual properties observed in those
materials. Possibly the answer to this problem could be in
a rather strong electron-phonon interaction in those ma-
terials which could lead to Bose-like bipolarons that tun-
nel in very narrow bands. Let us for that purpose make
some quantitative assessment of this situation. Let us
take, for the initial bandwidth of f states in the rigid lat-
tice, D &0. 1 eV and assume that the bipolaronic binding
energy b, is of the same order of magnitude. In that case
we obtain the experimentally expected value for t &0 001.
eV for a reasonable value of g =2. Within our picture of
a heavy Bose liquid on a lattice —developed in this
work —we obtain quite naturally the main anomalous
properties of the specific heat and spin susceptibility (Sec.
IV) in the normal phase, as well as the power-law
behavior of C, observed in the heavy-fermion supercon-
ductors, the fairly high value of H, z (T=O), and a
dzH, z ldT ~0. In that sense it might not be too un
reasonable to imagine that the heavy carriers in those ma-
terials are "heavy bosons". So far none of the existing ex-
periments is direct enough to rule out this possibility.
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APPENDIX A

We define the standard basis operators as

L ~ = ~ma)(ma'~,

where
~
ma) are the eigenstates of site m derived from

the MFA. For the BS phase these states are given by'

~
m+ ) = cos —

~

m —, )+ sin —
~

m ——,),8 ) . 8

(A2)

~
m —) = —sin —

~

m —, )+ cos —
~

m ——,),8 8
2 ' 2

with the eigenenergies
'2

(A3)

8 is the angle between the pseudospin magnetization and
its z component,

~

m —, ) and
~

m ——, ) are the two spin

eigenstaies, and

tanh8=
t(S' )

—u(S' &

(A4)

1 +O' P-
D+ — g 5 (A5)

where (PP') =(+—) or ( —+ ), D~ =D~ D~, and—
2

„-(S ) +t2(Sx)i
2

——,
'
D+ [t~(1+ cos 8)—ui, sinz8], (A6)

Bt,——,' D+ (ti, +ui, }sin—8.

The relationship between the occupation probability and
the ensemble average of the pseudospin is obtained as

(S")= —,'D+ sin8,

( Sm ) = ,' D+ cos8= —,
'

( 1 —2n), —
(A7a)

(A7b)

the second equality in (A7b) follows from the condition
(32).

The evolution of Eq. (A5) determines the excitation spec-
trum of the BS phase

2 2 267)(=Ay —8g . (AS)

The energies of the excitations are temperature dependent

The ensemble average DN = (L ~ ) measures the proba-
bility that the state

~

ma) is occupied and satisfies the
normalization condition Q, DN =1, where p is the
number of states.

The equation of motion for the double-time retarded
Green's function

6 pg ——((L (t);Lpp (t') )),
derived within the RPA [see Eqs. (4.8) and (4.10) of Ref.
14] yield for the BS phase, the following result:

E—Ai, Bt, G+ —
pp (kE)

+Bi, E+Ai, G +pp (k,E)
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via D+ =R and 8.
The occupation probabihties Dtt —(—I ~att) =(LI7tt)

can be calculated from (A5) by use of the spectral
theorem. '* The result is

r

AI cog
coth —1

Q)g

y, ((mm, )6'6 = I dr f dr'g((r)((r, r lg('r )'

t(r, r') = +5(r' —r+n)t(n)e

(A9) One cm ~ that the following relation holds

t(r, r')g(r') = t—(r, r')e~'~ 'P(r)
D+ ——1 —D

From Eq. (A4) one has

~=(t+v)(S') .
2

Taking into account the relation

R =a+ —D =1—2D

g gr( r+n)t(n)ei( —i&—s('&~r~)nii(r)(A10)

(A 1 1)

and Eqs. (A7) and (A10), one obtains from Eqs. (AS) and
(A9) Eqs. (3.6) and (3.7).

The characteristic length
~
r r'—

~

is of the order of the
coherence length g, which is much greater than the intera-
tomic distance a. Using alp as a small parameter and
the definition of e(k), Eq. (5.6), one obtains

APPENDIX 8

Substituting Eqs. (5.3) and (5.4) into Eq. (2.12), we ob-
tain for the bipolaronic kinetic energy

t(r, r')f(r')= —5(r' —r)e[ i V—2e —A(r)]P(r) . (84)

Substituting Eq. (84) into Eq. (81), one obtains the first
term of Eq. (5.5).
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