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The antiferromagnetic planar (XY) model on a triangular lattice is investigated using group-
theoretical symmetry arguments combined with extensive Monte Carlo simulations and a detailed
finite-size-scaling analysis. This approach allows for a systematic exploration of all possible

symmetry-breaking transitions and their associated critical behavior. The entire magnetic-

field —versus —temperature phase diagram is deduced. A rich class of possible new critical phenome-

na is obtained, including the introduction of a new multicritical point describing the confluence of
the Ising and Kosterlitz-Thouless universality classes. The existence of the critical point is associat-
ed with a domain-wall-induced vortex-antivortex —unbinding transition.

I. INTRODUCTION

Frustrated two-dimensional spin systems exhibit
exceedingly rich phase structure and critical phenomena,
an example of which we study in this work by a combina-
tion of analytical analysis and numerical Monte Carlo cal-
culations. Qne of the simplest of such frustrated systems
is the antiferromagnetic planar (XF) model on a triangu-
lar lattice. From a theoretical perspective, this work is a
natural step in the ongoing quest to understand the role of
symmetry breaking and how rich structure arises from ex-

tremely simple fundamental interactions.
As a prelude to the new developments presented in this

work, it is useful to briefly review the salient features of
our prior understanding of the two-dimensional XY'

model. In 1966, the theorem of Mermin and Wagner' es-
tablished that the continuous (global spin rotation) sym-
metry of the ferromagnetic planar, Heisenberg, and XF
models in two dimensions (2D) could not be spontaneous-
ly broken at finite temperature. Here, there is no possibil-
ity of conventional long-range order at nonzero tempera-
ture, and any conventional order-disorder phase transition
is thereby excluded.

Nevertheless, evidence accumulated suggesting some al-
ternative form of phase transition. Results of high-
temperature-series expansions indicated that the fluc-
tuations of the magnetization were diverging at a nonzero
temperature. Moreover, low-temperature spin-wave calcu-
lations ' yielded an algebraically decaying spin-spin
correlation function and indicated the necessity of a phase
transition from this behavior to the high-temperature re-
gime where the correlations ought to decay exponentially.

The nature of this novel hase transition was explained
by Kosterlitz and Thouless with the introduction of the
vortex and antivortex as the missing elementary excita-
tions. At low temperature, the vortex and antivortex form
bound pairs. These bound vortex pairs, together with the
spin waves, destroy the spin long-range order, producing

Atj —— I Adl. (2)

According to the results of Teitel and Jayaprakash, ' for
gz A,I n(where the —s—um is over all links in an elemen-

tary plaquette) there exists a temperature T, at which the
spin-wave —stiffness constant (which measures the stiff-
ness of a system against a twisting of boundary spins) ex-
hibits an apparent discontinuity larger than the Nelson-
Kosterhtz value (2/ir)T, . Moreover, the specific heat
diverges at a temperature very close by. These two singu-

an algebraically decaying spin-spin correlation function.
The transition occurs when the vortex pairs unbind. In
the high-temperature phase, the spin-spin correlation de-
cays exponentially with a correlation length defined by the
mean distance between free vortices.

The Mermin-Wagner theorem, however, does not rule
out the possibility of discrete symmetry breaking. This
possibility wM explore by Viil~n, ' Stein md Cross, 9

Bak, ' Alexander and Pincus, " and Nattermann'2 for a
variety of systems described by Hamiltonians with con-
tinuous symmetry. Theoretical investigations of the na-
ture of the phase transitions for such systems have not
been carried out until very recently. ' ' Teitel and
Jayaprakash' studied the phase transitions of the 2D uni-
formly frustrated antiferromagnetic planar model by
Monte Carlo simulation. 'this Hamiltonian, which
models the Josephson coupling between superconducting
islands in a square-lattice array in the presence of a trans-
verse magnetic field, is given by

8=J $ cos(8; —8;—A;J),
&Ij)

where 8; is the phase angle of the condensate wave func-
tion on the ith island. The constants A,J introducing the
frustration are physically determined by the line integral
of the vector potential across the nearest-neighbor junc-
tion (ij),
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larities were then identified with Kosterlitz-
Thouless —type and Ising-type transitions, respectively. It
was not clear from the simulations, however, whether or
not these two transitions occur at different temperatures.

In a recent letter' the present authors used symmetry
analyses and Monte Carlo simulations to describe the
salient features of the phase diagram of the antiferromag-
netic planar (AFP) model on a triangular lattice. In the
case of zero field it was shown that, as a consequence of
the breaking of a discrete symmetry, the system exhibits
an additianal discrete order parameter, the staggered heli-
city, and additional elementary excitations, the damain
walls. A new spin disordering mechanism was proposed
in which the interaction betwo:n the domain walls and the
vortices causes the system to lose the quasi-long-range or-
der (i.e., algebraically decaying correlation function) in the
spin-spin correlation and long-range order in the stag-
gered helicity correlation simultaneously at one transition
temperature. At nonzero field, it was shown that the in-
herent frustration of the triangular lattice leads to a rich
variety of phases and phase transitions. Independently,
Miyashita and Shiba, ' concentrating on the zero-field
behavior of essentially the same model, have also pointed
out the existence of discrete symmetry breaking and the
existence of a discrete order parameter. Based on their
simulation results, they find distinct Ising and Kosterlitz-
Thouless transition temperatures that are within 2% of
each other and argue that it is likely there is an intermedi-
ate phase between them.

In this paper we present a thorough discussion of the
nature of critical phenomena of the AFP (XY) model on a
triangular lattice using further symmetry analyses and ad-
ditional Monte Carlo simulations. The format of the pa-
per is as follows. In Sec. II we present a heuristic theory
for the system in zero field. This simple theory estab-
lishes the framework within which the numerical results
associated with the zero-field phase transition will be un-
derstood. In Sec. HI we perform the symmetry analysis
which enables us ta understand the phase diagram and the
phase transitions at nonzero field. In Sec. IV we present
the Monte Carlo simulation results and analyze them in
terms of the theories presented in Secs. II and III. Final-
ly, Sec. V contains a summary and conclusions.

II. A HEURISTIC THEORY FOR ZERO FIELD

A =J g SR SR ——J g cos(8; —8 ),
(RR') &~i &

(3)

where 8; is the angle of a planar spin SR at site i, (ij )
denotes nearest-neighbor pairs, and J & O. The ground
states of (3) on a triangular lattice consist of spins ordered
on three interpenetrating sublattices separated by lattice
vectors of length ~3o (where a is the lattice constant)
with spins on different sublattices oriented +120' with
respect to each other. Typical graund-state v 3X v 3 pat-
terns are shown in Fig. 1.

A. Ground state properties

The AFP model is specified by the following Hamil-
tonian:

(o)

(b)
FIG. 1. Typical ground-state patterns for the triangular lat-

tice at H=O. The plus or minus signs indicate the helicity of
each triangle. The pattern shown in (b) cannot be obtained from
(a) by a global spin rotation.

That these configurations are ground states can be easi-
ly proven using the following argument. Following Wan-
nier, ' consider the ground-state energy of any single ele-
mentary triangle of the lattice. By minimizing the energy
with respect to two of the spin angles we obtain ground
states for the triangle in which the spins form +120' an-
gles with each other. It then follows that the v 3Xv 3
pattern is a ground state of the triangular lattice since
each elemental triangle realizes its minimum-energy spin
configuration. Finally, the +120' an le constraints force
the ground state to have only v 3 X 3 periodicity.

Unlike the ferromagnetic planar model, where the
ground state only breaks global-spin-rotation symmetry,
in the AFP model on a triangular lattice the ground state
breaks an additional discrete symmetry. By comparing
the ground-state patterns in Fig. 1, we note that there ex-
ist two topologically distinct classes of patterns character-
ized by different "helicity. " To each triangle, we assign a
helicity of + 1, —1, or 0 defined as g(68/2m), where
68 is the smallest clockwise change in angle when the tri-
angle is traversed in a clockwise direction. ' Physically,
the spins are rotated clockwise or counterclockwise for +
and —helicity, respectively, as the triangle is traversed.
Since global spin rotation conserves helicity, Fig. 1(b) can-
not be obtained from Fig. 1(a) by pure rotation; it can
only be obtained by including some other symmetry
operation such as a lattice reflection. Although the spin
patterns shown in Figs. 1(a) and 1(b) have similar orienta-
tional order, their helicity patterns are exactly out of
phase. The staggered helicity i1„defined as the staggered
sum of the triangle helicities, therefore assumes the oppo-
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site sign for these two patterns. The staggered helicity
and the ~3X~3 staggered magnetization serve as the
two order paraineters describing the system in zero field.

The existence of this extra discrete degeneracy is cru-
cial, since it allows the system to support a third type of
elementary excitation. In addition to spin waves and vor-
tices, we have elementary excitations associated with
domain-wall formation. Domain walls separating regions
of opposite staggered helicity are shown in Fig. 2 where
the interface is indicated by the dashed line. As a result
of the opposite staggered helicity between the right and
left domains, all the triangles cut by the interface have
zero helicity.

Clearly, domain-wail excitations can destroy staggered
helicity order. As we shall see later, vortices can alter the
sign of the staggered helieity only locally so that they are
much less effective in destroying staggered helicity order.
Spin waves and vortices, on the other hand, are primarily
responsible for destroying orientational spin order

The thermodynamics of the AFP model on a triangular
lattice will be determined by the interplay of these three
types of elementary excitations. The ease of creating these
excitations and their stability is of paramount importance
in this regard. In Secs. II 8 and II C we shall consider the
nature, energies and thermodynamic stability of domain-
wall and vortex excitations. We will use this information
in Sec. II D to estimate transition temperatures and
develop a simple physical picture of the nature of the
phase transitions in zero field.

{a)
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daries between the states. The objective is to find the
lowest-energy configurations corresponding to well-

localized domain walls, determine the allowed orientations
and stable shapes for the walls, evaluate the surface and
corner energies, and thus obtain a description of the ther-
modynamics of low-lying helicity excitations.

Consider first the simplest case of a single straight
boundary separating two domains of opposite staggered
helicity. It is characterized by two distinct degrees of
freedom: the orientation of the boundary on the lattice
and the relative angle of rotation of the spins in these two
domains. The minimum-energy configuration, with
respect to boundary orientation and spin rotation, has
been determined from a combination of analytical and nu-

merical techniques. From this configuration, both the de-

gree to which the spin disturbance is localized near the
boundary and the surface energy have been determined.

A preliminary search for the optimal boundary orienta-
tion and relative spin rotation may be performed analyti-
cally by exploring a variety of natural boundary orienta-
tions, such as along lattice vectors or reciprocal-lattice
vectors, and treating a single row of spins along the

B. Domain-wall excitations

- {b)

Having recognized the existence of two topologically
inequivalent ground states characterized by opposite stag-
gered helicity, we now consider the nature of the boun-
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FIG. 2. Examples of domain walls separating regions of op-
posite staggered helicity. Triangles of spins with zero helicity
form along the borders of the interfaces (dashed lines).

FIG. 3. Energies and spin configurations for a domain wall
oriented parallel to a primitive reciprocal-lattice vector. (a) An-
gles of spins for a boundary oriented at 60 relative to the verti-
cal axis. The angle g specifies the relative orientation of spins in
the two staggered-helicity states. For fixed g the angle 8 is al-
lowed to minimize the energy: (b) Minimized domain-eall ener-

gy (for a segment of length a V 3) in units of J as a function of
angle g. (c) Spin configuration for /=0. (d) Spin configuration
for minimum-energy geometry g= n/3.
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boundary variationally. To determine, however, whether
extended boundaries or alternative orientations yield lo~er
energies, these studies have been complemented by numer-
ical solutions on a large lattice. The spins at the upper
and lower borders were set to positive and negative helici-
ty states with a specified rotation angle, and periodic
boundary conditions were applied on the left and right
borders, displaced by an integral multiple of three lattice
sites. The minimum-energy configuration was found by
the method of simulated annealing: spin configurations
were generated according to the distribution e ~ using
the Metropolis algorithm and P was gradually increased
to isolate the ground state. Uniqueness was verified by re-

peated heating and cooling.
In this way the optimal boundary orientation was found

to be parallel to the reciprocal lattice vectors. Figure 3(a)
shows a boundary oriented at 60' relative to the vertical
axis with the angle g specifying the relative orientation of
spins in the two helicity states.

The surface energy associated with the boundary seg-
ment of level ~3a is given by the difference in energy of
the seven nearest-neighbor bonds indicated by the dashed
lines and seven bonds in the ground state. Minimization
of E with respect to the variational parameter 8 yields
O=n/3+a/. 2, and the minimum energy, measured in
units of the coupling constant J, is given by

E(g) =+2W3 cos(g/2)+cosg+ —', .

This is plotted in Fig. 3(b).
The spin configuration for (=0, with E=1.036, is

shown in Fig. 3(c). When all the spins are allowed to re-

lax in a numerical solution with (=0, E is lowered to
1.019 with the first, second, and third neighbors to site 8
relaxing by 4.6', l.2', and 0.4', respectively.

As suggested by the graph in Fig. 3(b), the minimum
energy occurs for g=n./3, with the configuration shown
in Fig. 3(d). In contrast to the case of /=0, numerical
calculations yield no relaxation. Hence, the optimal con-
figuration has E= 1 for a surface length of V 3a and spin
precisely antialigned along the boundary.

l. Domain wall configur-ations

The three equivalent minimum-energy orientations for
domain walls are shown in Fig. 2. Note that by the
~3)&W3 symmetry each boundary may be displaced by
three lattice sites. The helicities for each plaquette are
also shown, and using the definition in Sec. IIA, the an-
tialigned spins along the domain wall yield helicity zero
for each plaquette touching the wall. Numerical calcula-
tions on a large lattice confirm that the angle and the
domain-wall orientations in Fig. 2 are optimal. Whenever
any other orientation is imposed by the boundary condi-
tion, the domain wall develops kinks as necessary in order
to orient each segment along the directions shown in Fig.
2.

To complete the specification of domain-wall configu-
rations, we now consider the possible stable kinks. In
principle, according to Fig. 2, the lattice can support 60
and 120' intersections. An example of a 120' corner, com-
posed of the upper two boundaries of Fig. 2, is shown in

/ g/
I&

c.-

FIG. 4. Example of a domain wall with stable 120' corner in
unrelaxed (top) and relaxed (bottom) configurations.

the top of Fig. 4 and has a corner energy (in excess of the
surface energy) of 0.5J. When a large lattice with
boundary conditions to produce this corner is solved nu-

merically, the spina relax to the configuration shown in
the lower portion of Fig. 4, with a corner energy of
0.205J. Note that the principal relaxation arises from the
two spins nearest the corner rotating by approximately 19'
to become nearly antiparallel. The distortion falls off rap-
idly with distance from the corner, with second- and
third-nearest neighbors being rotated by the order of 9'

and 4', respectively. A similar calculation for a sharp 60'
corner shows that it is unstable. Two walls intersecting in

a single 60' corner will relax to a configuration with three
straight walls and two stable 120' corners. The energy
concentrated in the V -shape interface is too high, and it
is energetically favorable to rotate the spins in the tip of
the V and create an additional straight wall.

The optimal set of domain-wall configurations arising
from this analysis is, thus, very simple and is summarized
in Fig. 5. The set of optimal domain-wall orientations

FIG. 5. Optimal domain-wall configurations on the triangu-
lar lattice. The walls can lie on a Kagome lattice as denoted by
the thin solid lines but only 120 corners are stable. A typical
configuration used to calculate the transition temperature is
shown by the heavy solid line.
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yields the Kagoine lattice denoted by the light solid
lines. Stable walls correspond to all possible configura-
tions having 120' kinks, and a typical example is shown

by the heavy solid hne. The surface energy of the wall is
J/~3a per unit length and the corner energy is 0.205J.

V~ VH,

H~VVH .
(6)

2. Estimate of the transition temperatttre

for domain toalls

The estimate of the critical temperature T for domain
walls on a Kagome lattice will be based on three simplify-
ing approximations. The first approximation, following
Muller-Hartmann and Zittarz, is to ignore closed
domain walls and consider only boundaries such as that
shown in Fig. 5. The second approximation is to leave
one end of the boundary constrained and calculate the en-

tropy for all possible boundaries whose horizontal dis-
tance from the left edge is nondecreasing. We note that
the validity of these approximations is not established in
general. However, for Ising models we have checked that
they yield the exact T for transitions on square and tri-
angular lattices. The final approximation is to treat the
corner energy perturbatively, which has also been verified
to be accurate on a square lattice.

As a prelude to the more complicated case of a Kagome
lattice, consider enumerating the unconstrained boun-
daries on a square lattice having nondecreasing horizontal
distance. The most general boundary may be constructed
by joining, head to tail with overlaps prohibited, horizon-
tal vectors H pointing to the right, and vertical vectors V
pointing up and down. We wish to count Tt, the number
of branches of length L, obtained by connecting Vs and
H's in all possible ways. I.et HL and VL denote the num-
ber of branches terminating in horizontal or vertical vec-
tors, respectively. Then,

TJ ——HL + VL,

Since each vertical vector (up or down) may connect to ei-
ther a horizontal vector or vertical vector (up or down)
and each horizontal vector may connect to upward verti-
cal, downward vertical, and horizontal vectors, the possi-
ble connections are

LE,~=ktt T„ln(Tt, ) =kit T~L Ink+,

yielding the familiar result

kit T~ = 2J
ln(1+ 2)

(12)

(13)

The fundamental elements from which an uncon-
strained boundary may be built on a Kagome lattice with
nondecreasing horizontal distance and 120' corners are
shown in Fig. 6. In contrast to the square lattice with
only two classes of vectors, H and V, the boundary is con-
structed from a sequence of oriented vectors classified A,
8, C, and D. Note that, in determining allowed paths,
one must distinguish the upper and lower and left and
right sides of each hexagon of the Kagome lattice. The
four generic connections for elements A Dshown —at the
right generate all possible paths.

The number of distinct domain-wall boundaries is
counted by enumerating all possible branches of length L
constructed from the connections shown in Fig. 6. Let
AL, , . . . , Dt. denote the number of branches of length L
terminating with elements A, . . . , D, and let TL denote
the total number of branches of length L Since ea.ch C
can connect to two D's,

DI. =2CL-i .

Similarly, since both D and B connect to AC,

A.L CL ~L —1+DL —1 ~

and since A must connect to B,

BI. ~L —1

(14)

Combining these relations with the expression for the to-
tal number of branches,

C~OD

The largest eigenvalue of the matrix in (10), A, + ——1+@ 2,
dominates the number of branches for large L, so that

TL „-(A+)
The critical temperature is given by the temperature at
which the surface energy equals kit T times the entropy, so
that using the surface energy E,~=2Jper unit length for
the Ising model, we obtain

Thus, since a V or H connects to a single H,

HI. Tl. —1 ~

and similarly

VL, TL —1+HL —1

Combining expressions (5), (7), and (8) yields the recursion
relation

TL —2 TI. 2TI. —1

0~AC

8~AC

A~B

2 1

1 0 TI (10)

FIG. 6. The fundamental elements from which a domain
wall may be built on a Kagome lattice with nondecreasing hor-
izontal distance and 120' corners. The wall is constructed from
a sequence of oriented vectors designated A, 8, C, and D. The
allowed choices of paths are shown.
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TI ——AL +BI.+CL, +Dl. ,

yields the recursion relation

TL. +1 3TL, —1 ~

0 3 Tl.

1 0 TI

(17)

(18)

(19)

0 =B

~P

~p

In contrast to the case of the square lattice, both eigen-
values of the matrix in (19), A, =+~3, have the same mag-
nitude. Note that the length of an element of the Kagome
lattice is

FIG. 7. The generation pattern used to calculate the corner
probability as described in the text. The number of corners gen-
erated in each connection is denoted by D or 1.

L=
2

so that the surface energy per length L is

(20)

a&3
(21)

Hence, ignoring the corner energy, (12) yields the transi-
tion temperature for domain walls,

cursion relation {18). The number of corners generated in
each connection is denoted by 0 or 1 in the figure. The
corner probability Pl. 2 is then obtained by observing that
the six distinct branches of Fig. 7 result in a total of five
corners for 12 segments of length L so that P2 ———,', .
Similarly, writing a recursion relation for further genera-
tions using Fig. 7 results in PI &t satisfying

PL +2(L +2}=PI.L + —, . (27)
Esu~ J

ks T„=
ink, ln3

(22) For large L we obtain simply

PL+iTL+i(L +1)

=2PI TgL +PL i TL i(L —1)+4TL

For large L, PL ~P . Solving for P„„andusing {9)
gives

(24)

Hence, the transition temperature, corrected to first order
in E

„

for the square lattice, is given by

L (E,~+P~m„E~~„)=k~ T~L ink, + {25)

AT = Es~+Elmer li/2/(1+ v»1
ln(1+v 2)

in agreement with an exact Miiller-Hartmann Zittartz
calculation taken to first order in E,~/E~„.

For the Kagome lattice, we can perform a similar cal-
culation for P „using the generation pattern shown in
Fig. 7. We note that the set (AC} always produces three
sets of ( AC} two generations later, consistent with the re-

Finally, we consider the effect of corner energy on T .
For E „/E,~ & 1, we would expect to be able to esti-
mate T perturbatively by simply replacing E,~ in (12)
by E,~+P~~,E „,where P~m„ is the probability of
a branch having a corner in a unit length in the limit of
large L. For the case of a square lattice, we define PL as
the probability of having a corner in a unit length given a
branch of length L. Then, by enumerating the corners
added in each generation, it is straightforward to derive
the recursion relation

7
~corner = is (28)

Hence, the final estimate for the transition temperature
for domain walls, T, including the corner energy to first
order, is

7
Esurf+ is Ecorner

AT =
ln( 3)

+ is X0.205J
=1.055J .

ln 3

(29)

A = J did [V8(r)]',
2

(30)

C. Vortex excitations and their stability

Vortices are elementary excitations associated with the
orientation of the spins. Consequently, in this section we
shall concentrate on the properties of the orientational or-
der parameter only. In zero field, there are many possible
definitions of the orientational order parameter which are
physically equivalent, and we will subsequently discuss
two particular choices. The essential requirements of any
definition of the orientational order parameter f is that it
be a maximum for the ground state, and when each spin is
rotated by an angle 8 then the angle 8 between f and a
reference axis is also increased by 5.

Since we are considering phenomena for which the
length scale of the critical fluctuations becomes arbitrarily
large relative to the lattice spacing, it is sufficient to con-
sider the coarse-grained action A (f). For an action in-
variant under global rotations, the low-lying excitations
correspond to fluctuations in angle. Thus, we need con-
sider the 8-dependent part of the action only. Moreover,
global rotation symmetry restricts the action to be only a
function of the derivatives of 8, and only derivatives con-
sistent with spatial isotropy are to be included. Hence, the
dominant term in the long-wavelength limit is given by
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where the coefficient y is called the spin-wave —stiffness
constant or spin-helicity modulus. The probability den-

sity for a particular I8J is
T

e s =exp — I d2r [V8(r)] /kgT
2

(31)

8(„)(r)=+tan
3' —3'0

0 X —Xp
(32)

A spin orientation for a vortex-antivortex pair is illustrat-
ed in Fig. 8(a).

The cost in action to create a vortex is given by

b, A =+ I d x(V8„)=try»
2 0

(33)

Here, R specifies the size of the system and a is a
renormalization-group cutoff defining both the length
scale above which fiuctuations are considered and the
value of the renormalized coupling constant y. Since the
center of the vortex core can be placed at any position,
there is a large degeneracy factor associated with a single
free-vortex configuration. For a two-dimensional system
the degeneracy is roughly (R/a) . The total free energy
for a single vortex is, therefore,

hF =myln ——2k' Tln R
(34)

Here 2k& ln(R/a) is the entropy associated with this con-
figurational degeneracy. According to (34), when the
temperature is raised above the critical temperature for
vortices,

kg T„=—y,
2

(35)

Let us assume that y is known and proceed to determine
the stability of a free vortex or antivortex. The vortex and
antivortex are local minima of (30). A vortex (or antivor-
tex) with its center located at (xo,yo) is described by the
spin field

where y)t is the renormalized spin-wave —stiffness con-
stant obtained in the limit as the lower cutoff a ~ ao.

At a fixed temperature, the spin-wave —stiffness con-
stant y of a systein on a discrete lattice can be determined
by the following procedure. I.et us consider a system
composed of N XN planar spins (N spins in each basis
vector direction). I.et us impose the following two types
of boundary condition: boundary condition (a),

8(r+Nei) =8(r), 8(r+Nez) =8(r)

and boundary condition (b),

8(r+Ne&) =8(r) Nh, 8(r+—Ne2) =8(r) .

(37)

(38)

Here e~ and e2 are the two basis vectors. The spin-
wave —stiffness constant is then given by

y= lim 2, (Fb Fo)—2p

b N
(39)

where F„Fqare the free energies of the system under

boundary conditions (a) and (b), respectively, and p is the
areal density of the spins. It is shown in Appendix A that
for the triangular lattice (39) leads to

the system will spontaneously generate free vortices. At
this temperature the system undergoes a phase transition.

In the above discussion we have neglected an important
contribution to the free energy of a free vortex. This is
the screening produced by bound vortex-antivortex pairs.
Kosterlitz took this into account by summing up the
bound-pair contribution at all length scales. He showed
that the contribution to the free energy from all bound

pairs with vortex-antivortex separation less than a given
length amounted to a renormalization of the spin-
wave —stiffness constant and the chemical potential of the
vortex core. In the renormalized theory, the transition
thus occurs at

kg T„=—yg,
2

(36)

r r r i i / f'

] ] j r r & r j j f
j

j ] ~ — — r j j
/ W X 4 / t t

i t x i I i i x i i

FKJ. 8. Illustration of a simple vortex-antivortex excitation built on a v 3x v 3 ground state in the (a) I g(R) ) and (b) I S(R) j iep-
resentations as described in the text.
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y= — (u )—,g sin(6};—Hj )e;,"ei1 2J
3 3TX ks ( i)

Here ( ) denotes a thermal average under the periodic
condition (a), (u ) is the averaged energy per spin, J is
the spin constant in the Hamiltonian, and e,j is the unit
vector pointing from site j to site i A. t zero temperature
(40) gives a spin-wave —stiffness constant

(41)

Therefore, the unrenormalized theory will predict a
Kosterlitz- Thouless transition at

ks T„=— =1.36J .m ~3
2 2

(42)

g(R) =S(R)——,
' S(R+ei) ——,

' S(R+e2) . (44)

This definition arises naturally as one component of the
order parameter obtained by the subsequent syminetry
analysis in Sec. III B, and will be used to study the critical
behavior associated with orientational order in numerical
calculations.

D. Physical estimates of transitions

The most straightforward interpretation of the results
obtained in Secs. IIB and IIC suggests that there exist
two transitions. One, at a lower temperature kz T —1.1J,
is associated with the destruction of the staggered helicity
long-range order, and the other, at a higher temperature
ks T„—1.4J, is associated with the destruction of the spin
quasi-long-range order. However, in these calculations we
have neglected fiuctuations like spin waves, higher-energy
domain walls, bound vortex pairs, and most importantly

Finally, we conclude by presenting two specific defini-

tions of the orientational order parameter f(R) on a tri-
angular lattice. The first definition is

Sit, I RI in sublattice 1

1(+(R)= SF+-Sit IRI in sublattice 2 (43)

St+Sit IRI in sublattice 3

where 9P+ denotes a rotation of +(2n /3) and 1, 3, and 3
refer to the three sublattices defining the v 3X V 3 sym-
metry. The definitions of P+(R) and P (r) map the anti-
ferromagnetic ground states (of opposite staggered helici-
ty) onto the ferromagnetic ground state. The advantage
of these definitions is that they reveal the topological
structure of excitations which are built on one of these
ground states. As an illustration, in Fig. 8 we show how a
simple vortex-antivortex excitation built on a W3Xv 3
ground state appears in the I S(R) ) and If(R) I represen-
tations. Unfortunately, this order parameter is not partic-
ularly illuminating in the presence of domains of opposite
staggered helicity, since excitations in only half of the
domains are intelligibly "decoded. "

The second orientational order parameter is defined on
the sites R of a ~3X W3 sublattice as follows:

the interaction between the domain walls and vortices.
The contribution of higher-energy domain walls and spin
waves to the surface free energy will shift the value of T~
to T' and the contribution of spin waves and bound vor-

tex pairs to the vortex free energy will shift T„and T„'.
However, given the separation of T~ and T„and the
physical foundation of our estimate, we believe that T'
could be below T„'.

In addition to these quantitative shifts in T and T„,
the interaction between domain walls and vortices can
produce a qualitative change in the physics above T .
The domain wall can act like a grain boundary and release
the strain produced by the dislocations (vortices). Above
T, the proliferation of domain walls could thus induce
pair unbinding and thereby drive the Kosterlitz-Thouless
transition. This, in fact, is what we believe is happening
in the AFP model on the triangular lattice. (Halsey' has
recently reached a similar conclusion in studying the
phase transition for the fully frustrated antiferromagnetic
planar model on a square lattice. ) It should be noted that
a domain-wall —induced pair-unbinding mechanism is
fundamentally different from the pure pair unbinding in

the Kosterlitz-Thouless theory.

III. THEORETICAL ANALYSIS
FOR NONZERO FIELD

m, +m2+m& ——H/3J . (46)

Geometrically, this means that the sublattice magnetiza-
tions m~, m2, m3 must lie on two unit circles separated by
H/3J. ' Two typical solutions are illustrated in Fig. 9(a)
for a field H &3J. The middle vector is accentuated in
the diagram since its position uniquely determines the
direction of the other two vectors. Note that a refiection
about the direction of the external field changes the sign
of the helicity of the triad. A set of continuously connect-
ed solutions is defined by the configurations accessible by
sliding the middle vector with its end constrained on the
two circles. Such a set is illustrated by the orientations la-
beled 1—6 in the first diagram in Fig. 9(b).

There are two critical fields associated with (45). The
first is given by H =3J. For H & 3J any triad configura-
tion has a specific helicity state that is maintained as the
vectors slide around. Above H =3J, ho~ever, starting
with any triad configuration one can generate its mirror
image through continuous sliding. The value H =3J
therefore represents the transition at which the additional
discrete degeneracy associated with the helicity ordering
disappears. The other singular point is given by H =9J.

A. Ground-state properties

The Hamiltonian in the presence of an in-plane magnet-
ic field H is given by

JaR'SR Sa' gH SR '

(RR') R

As in the case of zero field, it is shown in Appendix 8
that the ground states preserve the three-sublattice struc-
ture with V3X~3 periodicity and that the sublattice
magnetizations mi, m2, m& satisfy the following equation:
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+qo ——(+4m/3a, 0) located at the Brillouin-zone corners as
shown in Fig. 10(b). Thus, a natural choice for an order
parameter that will measure this periodicity is given by

(47)

(a)

H

3J

(b)

FIG. 9. (a) Typical ground-state pattern for the AFP model

on a triangular lattice in the presence of a uniform magnetic

field (pointing up). The three sublattice magnetizations are con-

strained such that the ends of the middle vector are confined to
the two circles. The middle vector is accentuated since its posi-

tion uniquely determines the direction of the other two vectors.

An infinite degeneracy for the ground state is possible. (b) Sets

of degenerate solutions (labeled 1—6) obtained by sliding the

middle vector for various values of the magnetic field. Two
critical fields at H =3J and H =9J can be identified. (c) Typi-
cal ground-state patterns for the AFP model on a square lattice

in the presence of a field. The arrows represent the two sublat-

tice magnetizations and are constrained to lie at the intersections

of the two circles as shown. Only twofold degeneracy is possi-

ble.

II+l II

CTi+ i' (48)

PJ

where the parallel and perpendicular components are tak-

An additional motivation for this choice is the behavior of
the Fourier transform of the coupling matrix JRR, shown

in Fig. 10(c), which attains its minimum value at qo. If
one expresses the partition function for the antiferromag-
net as a functional integral over an auxiliary field using
the Hubbard-Stratonovich transformation, it is straight-
forward to see that the first component of the quadratic
form to become critical as the temperature is increased is
the Fourier component corresponding to the most nega-
tive value of the coupling matrix. Note also, from a pure-

ly symmetry point of view, qo and —qo form a star which
satisfies the Lifshitz condition and are therefore con-
sistent with the assumed commensurate transition.

The order parameter f constructed in this way is a
two-component complex vector with f+ f' +——since the

spin field is real. For convenience, let us further define
r

At this value of the field, the distance between the center
of the circles is 3 times the radius. The only solution is
Ini —mz —m3 ——H/9J, and H =9J thus represents a tran-
sition at which the system becomes paramagnetic.

Unlike the case of the AFP model on a square lattice
[Fig. 9(c)], where the external field immediately removes
the continuous degeneracy, the triangular-lattice ground
states remain continuously degenerate even in the presence
of an external field. However, it is important to note that
this degeneracy is not dictated by a symmetry on the
Hamiltonian, so that there are no associated Goldstone
modes which destroy spin long-range order. Because
there is no symmetry in the Hamiltonian, this degeneracy
will not appear in the free energy even at the lowest tem-
perature.

B. Order parameter

We have seen that the ground state of the AFP model
maintains a v 3 X~3 periodicity [Fig. 10(a)] in the pres-
ence of a uniform magnetic field. In reciprocal space, the
k points consistent with this periodicity are

(a)

(c)

I K M

FIG. 10. (a) Illustrations of the three sublattices (labeled A,
8, and C) and the unit cell of the triangular lattice having
V 3XV 3 periodicity. (b) Brillouin zone for the triangular lat-

tice. The points +qo represent primitive reciprocal-lattice vec-

tors with V3X~3 periodicity. (c) Fourier transform of cou-

pling constant JRR along symmetry directions of the Brillouin

zone.
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en with respect to the direction of the external field.
If we denote by S'" the average of the spins on the sub-

lattice containing the origin of R in the sum in (47) and
by S' ' and S' ' the average of the spins on the other two
sublattices, then from (47) and (48) it follows that

g(].) & g(2] & g(3}+
I

II I I I I
I

7
I

II
I

I
I II I

s

~3 g(2) ~3 g(&)
+I I I I

~
I

II I I
II

I

(49) FIG. 11. The projection of cr and ~ on three sublattices as
discussed in the text.

These relative weightings of the sublattices in 0 and ~ are
depicted schematically in Fig. 11. Note, for future refer-
ence, that defining the origin in the sum over 8 on any
sublattice is physically equivalent, so that an equivalent
order parameter is obtained by cyclic permutations of the
sublattices in (49) or, equivalently, by multiplying the
column vector (, ) by a rotation matrix for + 120'.

The helicity order parameter defined earlier can be ex-
pressed in momentum space as follows:

C. Symmetry analysis

In the presence of the field, the symmetry group of the
Hamiltonian (45) is

where T is the translation group of the triangular lattice
[Fig. 12(a}],

where

= g S(q) Im((((q((gq'),
q

S(q) =2 sin —,q, + q„(23

+sin —,
' q„—3

q~ (2 —sin(q a) .

Iq.a tq' (R+e))

R q q

iq (R+e) ) iq' (R+e&)+ qe q~8

(50)

(51)

T= I mei+ne2, ' m, n =integerj . (53)

Cs„is the point group of the triangular lattice [Fig. 12(b)],

C6„——
I E,2C6, 2C2, C2, 3cr„,3og ], (54)

and C,' '"' is a group associated with the spins containing
the identity and a refiection of a spin about the direction
of the magnetic field [Fig. 12(c)],

c,'&'")= Iz,~] . (55)

The order parameter defined in (47} forms a basis for
representation of the Hamiltonian symmetry group.
Under translation, the translated order parameter is the
Fourier transform of the translated spin pattern. There-
fore,

When the spin configuration manifests v 3&C v 3 symme-
try; it follows that Im(gq, f+) measures the helicity.

fq =T 4qe= g~ SR—=e itiq
R

In terms of (7's and r's, (56}reads

(56)

cos(qo.a) sin(qo a)
—sin(qo a) cos(qo.a)

0 0

0 0

cos(qo a) sin(qo a) (T)

—sin(qo a) cos(qo. a)

Because qo is the reciprocal lattice vector of the v 3 Xv 3 lattice, the only distinct matrices obtained from (57}are

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

—~3n
v 3' 0

—~3m

v 3r2

—~3n
l

2

0 ~3/2

—~312 (58)
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—CJv
v 3yz

—v"3yz 1

2

—v 3/2

v3n

(b)

1 0
0 —1

1

2
—~rrz

1

2 v3n
v 3xz

(63)

{c)

FIG. 12. Illustration of {a) translation group, (1) point group,
and (c) spin-reAection group of the triangular lattice as
described in the text.

It is straightforward to prove that these matrices are iso-

morphic to the point group Cz„,where

Ci„——t E,zest, 3o„I .

The representation based on (oi, rj ), however, is com-
posed of twelve matrices:

Similarly, under an operation 9P of the point group, the
new order parameter is the Fourier transform of the spin
pattern produced by 9I' (note that 9P only operates on the
lattice leaving the spins fixed). Therefore,

S~- R=&~- ~.
R

1 0
0 1

1 0
0 —1

—v 3gz

1

2

-v3n
—v3rz

1

2

1

2

—v 3/2

v 3yz

v3n
1

2

Since E, 2Cq, and 3cr„transform qo into itself or points
equivalent by translation by a reciprocal-lattice vector in
the basis e~~, ~~~, o'j, and ri they are represented by

—1 0
0 —1

1

2
v 3yz

1

2

1

2

v3n
-v3n

1

2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(60)

1

2

v 312

2

—~~12

-v3n
1

2

(65)

The group elements C2, 2C6, and 3od, however, map qo
into points equivalent to —qo and are therefore represent-
ed by

1 0 0 0
0 —1 0 0
0 0 1 0
0 0 0 —1

(61)

Finally, under spin refiection f~~~tp~~ and pi~ —1(i, so
the spin-reflection group is represented by

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 00010 '"d 00-1 0
0 0 0 1 0 0 0 —1

(62)

The final representation of the entire group is given by
multiplying the 4 X4 matrices given in (58), (60)—(62). Of
these, twelve are distinct. Because all the matrices are in
block-diagonal form, the representation can immediately
be reduced into two representations of dimension 2. The
corresponding bases are simply (cr~ ~, ~~

~

) and (0i, ri ),
respectively. There are only six distinct matrices con-
tained in the representation based on (a~~, ~~~) and are given
by

and is isomorphic to the group C6„.
We are now in a position to consider a variety of possi-

ble transitions that may occur for this system. Rather
than analyze the full range of cases, including all possible
first-order phase transitions, guided by the numerical re-
sults in the next section we shall limit the range of possi-
bilities to those that include all possible continuous transi-
tions. Our analysis is based on the first Landau rule,
which states that for a continuous transition, the symme-
try group of the lower-symmetry phase must be a sub-
group of the symmetry group of the higher-symmetry
phase. In Table I we list all possible sub roups of (52) as-
suming the largest periodicity is v 3X 3. The represen-
tations based on (n~~, ~~~) and (ai, ~j ) for these groups are
listed in the fourth column of this table. For convenience,
these representations are designated in terms of the groups
to which they are isomorphic. From here on we will also
denote the subgroups in terms of their representation
designation. The spatial symmetries of the six groups
given in Table I are illustrated in Fig. 13.

In Fig. 14 we show all the possible continuous transi-
tions (indicated by numbered arrows) between the various
subgroups. Our objective in the rest of this section is to
identify the form of the order parameter for each sub-

group and to analyze each transition in detail, including
construction of the invariant elements of the action and
identification of the universality class whenever possible.

To isolate components of the order parameter which
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(Cq„,Cs„)
(Cp„,Cy„)

FIG. 13. Illustration of translational and point-group sym-
metries of the six subgroups listed in Table I. (a) (1X1) transla-
tional and C6„point-group symmetry: (b) (V 3X't/3) transla-
tional and C6„point-group symmetry. (c) (+3X1 3) transla-
tional and Cq„point-group symmetry.

~as .~ex

~so ~so

{S)

C, C

(S,T)

(O,,&,C

C4 ~ CI

(T, P)

&&II&,&7/

CI, CI

(S,T, P)

II ' II ' L ' L

FIG. 14. All possible continuous transitions (indicated by
numbered arrows) between the various subgroups given in Table
I. The notation S, T, and P corresponds to the breaking of
spin-group, (1X 1)-translation-group, and point-group sym-
metries, respectively. The components of the order parameter
that remain unconstrained from group-theoretical arguments
are also given for each subgroup.
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may have a finite expectation value in phases character-
ized by each of the symmetry groups in Table I, it is con-
venient to use projection operators constructed from the
matrices (63) and (65). For the order parameter to be in-
variant under each group operation, it must be the identi-
ty representation of the group. From an arbitrary func-
tion, the component corresponding to the identity repre-
sentation may be projected out by evaluating the sum ob-
tained by letting each group element act separately on the
function. Thus, for an order parameter of the form (I,& ),
where for the moment (o ) and (~) represent the thermal
average of either the parallel or perpendicular component,
we may project out the identity representation as follows:

(~)
(66)

where

Po ———g 1(R),1

RCG
(67)

)'i is the order of the group, and I (R) is given by one of
the matrices in (63) or (65) representing the operation of
the group element R on (I,&

). If

0 0
PG 0 0

then (48) has no component corresponding to the identity
representation and thus (o ) =0 and (r) =0.

For each of the groups C6„,Ci„,Cz„,and C;, the sum
over representation matrices yields

0 0
I'G ——

so that the order parameter vanishes. The group C, con-
tains

1 0 1 0
0 1

and 0

so that (66) implies (r) =0 and (cr) may be anything.
Note, as discussed in connection with (49), that a different
choice of the sublattice with respect to which fq, is de-

fined would transform the order parameter into a solution
rotated by +120',

+v 3/2

01

2

(68)

For terseness in the subsequent discussion, we will always
assume we have selected the sublattice for which (~) =0,
but it is clear that in numerical studies, all three cases
must be considered. Finally, the group C& contains only
the identity, so there are no restrictions on (r) or (cr).
The constraints on (P) posed by these symmetry con-
siderations are summarized for future reference in Table
II.

Whereas, the preceding symmetry arguments specify
components of the order parameter which must vanish,

TABLE II. Constraints on the order parameter for each
phase arising from invariance with respect to the point-group
operation.

Symmetry
of phase

Constraint
on (p&

C6„
C3„
C2„
C;
C,
C,

&a&=O,
(0&=O,
(0 &=0,
&o &=0,

(~&=o
&~&=o
(~&=0
&~&=o
(~&=o

further physical information or assumptions are required
to specify which of the unconstrained components are
nonzero. Hence, we will assume for the present, as borne
out for certain cases by the numerical results in the next
section, that each symmetry-breaking transition is charac-
terized by the emergence of a new nonvanishing com-
ponent of the order parameter.

Once the components of the order parameter which be-
come critical at a transition are determined, it is possible
to construct the action describing that transition. One
simply expands the action in terms of all possible prod-
ucts of the critical components of the order parameter
which are invariant under all operations of the higher-
symmetry group involved in the transition. Unfortunate-
ly, in two dimensions all symmetry-breaking terms are
relevant so that this expansion cannot be truncated at any
finite order. Nevertheless, it is possible to determine a set
of basic building-block elements from which any allowed
term in the expansion may be constructed.

If the higher-symmetry phase in a given transition is
translationally invariant on the original 1&(1 lattice, i.e.,
(1X1) translationally invariant, then a necessary condi-
tion on a term in the action is that it be composed of
products of the invariant elements g g~ and/or P /pe„,
where a,P,y=~~, &. The corresponding building-block
elements and their parities under point-group operations
and spin refiections are summarized in Table III. To con-
struct the invariants under any specific group one needs
only to multiply these basic elements together so that the
net parity is even.

Finally, if the higher-symmetry phase in a given transi-
tion is (V 3 X v 3) translationally invariant, then a neces-
sary condition of the action is that it be composed of
products of o and/or rIi The basic .building-block ele-
ments and their parities for this case are summarized in
Table IV.

We will now proceed to apply all of the symmetry con-
siderations discussed above to the parallel and perpendicu-
lar components of the order parameter for each transition
in Fig. 14. %e consider each transition in Fig. 14 in turn,
in the order indicated in the figure.

&. «3"C6»~«s" C3. ~

As seen in Table I and Fig. 14, this transition is associ-
ated with the breaking of spin-refiection symmetry.
Since, as discussed above, both C6„and C3„have vanish-
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TABLE III. The basic building-block elements used to con-

struct invariants for the action for a {1x 1) translationally in-

variant phase and their parities under point-group operations

and spin reflection.

Element

{l X 1)
translation

Point-group

operation

Spin

reflection

Re( t{((Pi )

1m{@((@,')

Re{pi)

Im{ tg )

Re{{{(({{'l)

Im(g((gg )

Re{y((y,')
Im( {{'((t{IB

ing order parameters, both (f(() and (gi ) vanish before
and after the transition, and the transition is not refiected
in the order parameter. Physically, it is clear that the or-
der parameter defined in (47) for ~3X ~3 symmetry will
not manifest a transition preserving 1 X 1 symmetry. Case
1 is the only transition for which our order parameter is
irrelevant.

{Csu.Cs. ) ~(&s C~. )

This transition is associated with the breaking of (1 X 1)
translational symmetries. From Table II, all components
of ( cr ) and (~) are constrained to be 0 except for (0 (() in
the symmetry-breaking phase. In order for (C„C2„)to
have a lower symmetry, we must also require that

(o(()&0. Thus, in terms of the four-component spinor

(oi)
(~i )

the transition is characterized by

(0(() '()
'

@0
o o

(cry) 0 0

(g) 0 0

(69)

Since there are three different sublattice choices (68) for
breaking the (1X1) translational symmetry, three dif-
ferent combinations of (cr(() and (r(() may become criti-
cal. Thus, in constructing the action describing this tran-
sition, one needs to write all possible products of g(( under
the constraint that they are invariant under all operations
of the higher-symmetry group, in this case C». Since Cz„
is (1X I) translationally invariant, we conclude from
Table III that the action is constructed froin invariant
products of 1, P((t{((,Re{1{((),aild Im(tt I().

Furthermore, we note that the number of components
in the order parameter and the symmetry which dictates
this expansion are the same as that of the three-state-Potts
model. 9 Thus, we conclude that this transition should be
in the same universality class as the three-state-Potts
model in two dimensions. This inerely refiects the fact
that there are three possible ways of breaking the spatial
symmetry from that shown in Fig. 13(a) to that shown in

Fig. 13(b).

3. (Cg„,Cg„)—+(C„C,)

This transition is also associated with the reduction of
translational symmetry. Now, both the

~~
and J. com-

ponents undergo the transition C3„~C,ana1yzed in case
2, so that both (0(() and (oi) are unconstrained. In or-
der for (C„C,) to have lower symmetry than both
( C3 C3 ) and ( C„C2„),we must require ( (ri )+0 in the
lower-symmetry phase, while (o(() can have any value.
Thus„ the transition can be represented as follows:

(0(() '{)' '

p

(~) o ~0 (70)

Recalling again that there are three sublattice choices, all
the components of the order parameter may become criti-
cal. Thus, this transition is described by a four-
component order parameter, and the action is constructed
from products of all the elements in Table III which are
invariant under the point operation.

Spin
reflection

Point-group
operation

+Il

CTy

VJ

TABLE IV. The basic building-block elements used to con-
struct invariants for the action for a {V 3 X V 3) translationally
invariant phase and their parities under point-group operations
and spin reflection.

{~3xv 3)
translation

4. {C„Cg„)~{C„C,)

This transition is associated with the breaking of spin-
reflection symmetry. From Table II we find that (ri)
and (r(() are constrained to be zero. As noted above, for
(C„C,) to have a lower symmetry, (ni)&0 in the
symmetry-breaking phase. Thus,

~0 'p

( ) o go (71)

(~i)
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We note that although (o~~) may be nonzero before and
after the transition, it can still change its value. At this
transition both oi~ and 0.

& can become critical. Since e,
„

is V3Xv 3 translationally invariant one must use Table
IV to construct the invariant products of cr~~ and oi in the
expansion of the action. The inuariant building-block ele-

ments are then given by a~~ and cri. The symmetry of this
action is the same as that of an Ashkin-Teller model in
an external magnetic field.

5. (C„Cg„)—+(Cg, C; )

This transition is associated with the breaking of a
point-group —operation symmetry. From Table II (cri)
and (ri) are both constrained to be zero, whereas (o~~)
and (r~~) are both unconstrained in the lower-symmetry
phase. However, if ( Ci, C; } is to have a lower symmetry,
we must require (~~~)&0 in the lower-symmetry phase,
while (o

~~
) unconstrained. Thus, this transition is

represented as

(~)~) '~0' '

P

'

(~) o o
o o

(72}

In this case, both o~~ and ~~~ can become critical. From
Table IV we note that the invariant building-block ele-
ments for the action are simply 0~~ and r~~. This action
has again the same symmetry as that of an Ashkin-
Teller 0 model in an external field.

1

6. (C„C,)~(Cg, Cg )

This transition is associated with the breaking of a
point-group —operation symmetry. In the (C„Ci}phase
all the components of the order parameter remain uncon
strained from Table II. In order for (Ci,Ci} to have
lower symmetry than all the other subgroups, it is evident
from the last four columns of Table I that there are tiao
possible conditions on the order parameter. The first is
that (~i)&0. The second is that (ri) =0, (oi)&0, and
(r~~)+0. Thus, this transition can proceed along two
main channels with

7. (Cg, C; )—+(Cg, Cg )

This transition is associated with the breaking of spin-
reflection symmetry. It corresponds to a transition from
the final state in case 5 to the final state in case 6. Thus,
we may represent it as

p' 'p' p'
~0 P

o
(74}

0 ~0

~0
or

0

Here all the components can become critical, and from
Table IV we note that the invariant building-block ele-

ments of the action are a
~~, ~~~, oi, ri, and cr&ri. The sym-

metry of the action is the same as that of case 6.

8. (Cg„,C6„)~(C„C,)
From Table I we note that this transition is associated

with the simultaneous breaking of spin reflection and

(1X1}translational symmetries. This is a transition from
the initial state of cases 1 and 2 to the final state of cases
3 and4. Thus, wehave

0 p

0 0

(
(75}

(ri) 0 0

Allowing again all possible sublattice choices, all com-
ponents of the order parameter can become critical. Thus,
to construct the action all the elements in Table III must
be considered. The action is then constructed out of all

possible products of these elements which are invariant
under both the point-group operations and spin reflection.
The symmetry of this four-component model cannot be
easily described, but it is expected to support a rich class
of critical phenomena.

9 (Cjy, C6„)~(Cs, C

This transition results from the simultaneous breaking
of point-group symmetry and (1X1} transitional symme-
try. %'e note there are six possible ways to break the sym-
metry as shown by considering Figs. 13(a}and 13(c}. The
transition is from the initial state of cases 1 and 2 to the
final state of case 5. Thus, we have
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(ai)'
(~i)

~0 ?
0 ?
0 ?
0 ~0

?

~0
or

0

(77)

Here all the components of the order parameter can be-
come critical. Since the high-symmetry phase is ~3 X v 3
translationally invariant, we must use Table IV to con-
struct the action. We note that this action must be invari-
ant under both spin-reflection and point-group operations.
Thus, the invariant building-block elements are rr~~, ~~~, o'i,
rj, ri, and ~~~cri~i Th. e symmetry of this action is tlie
same as that of an n =4(xyzw) model with the x com-
ponent coupled to an external field H, and a distorted-
tetrahedron corner anisotropy in the yzw space. The dis-
tortion is such that the tetrahedron fits perfectly into an
orthorhombic cell.

11. (Ci„Cg„)~{Ci, Ci )

This transition is associated with the simultaneous
breaking of spin-reflection, point-group, and (1 X 1)
translational symmetries. The transition may be
represented as

'Q
'

(r(() 0
(rr, )' 0

&0

?

~0
or

0

(78)

Again, all components of the order parameter can be-
come critical. The action for this transition is the same as
in case 8 for (Ci„,C6„)~(C„C,). The only distinction
lies in the different symmetries of the final states.

Finally, a complete analysis of all possible continuous
transitions should also include transitions when no sym-
metry is broken. This can occur, in principle, for all the
subgroups mentioned above which are characterized by an
order parameter whose expectation value has at least one
nonzero component. This usually will occur only at
specific points in the phase diagram for continuous transi-
tions, although it can occur along lines for first-order
transitions.

This concludes the symmetry analysis for the case of
nonzero external field. The results of this section will be
used to analyze the numerical Monte Carlo results of the
next section. Our approach will be to identify the sym-
metries of the higher- and lower-symmetry phases and
then compare the results of critical exponents with the
values predicted from the analysis in this section.

10. (C„Cg„}~(C),Cg }

This transition arises from a simultaneous breaking of
spin-reflection and point-group symmetries. The transi-
tion is from the initial state of cases 4 and 5 to the final
state of cases 6 and 7. Thus, we may represent it as

IV. MONTE CARLO SIMULATIONS

A. Monte Carlo method

m =L ~~ f(x),
X=L "~"g(x),

C —Cv ——L "h (x),

(79)

(80)

where Cv is the nondivergent background contribution to
the specific heat. Furthermore, near the infinite-lattice
T, the scaling expressions (79)—(81) must yield the usual
power-law singularities as L~00. Thus, the limiting
forms as L~ co are given by

f(x)~x~,

g (x)~x
h (x)~x

(83)

(84)

Therefore, a log-log plot of mL~~" versus x should have
all data collapsing onto a single curve, if the values of P,
v, and T, are correct, with asymptotic slope P. Analo-
gous plots can be made for the other properties.

In the case of exponential singularities, the finite-
size—scaling analysis can still be applied but in modified
form. For example, using the Kosterlitz-Thouless form
with a correlation length g' which diverges as

g =gv exp(ai '~),
we can rewrite the scaling expression, {80),as

(85)

%e have used the standard Metropolis algorithm with
each spin being updated once in each sequential sweep
through the lattice. %'e have studied the AFP model on
I.&(1. triangular lattices with periodic boundary condi-
tions for L=12, 18, 24, 36, 48, and 72. Single-spin orien-
tations were changed with probability

min(1, exp( ~~—/ks T)),
where b,E is the energy involved in the spin reorientation.
Between 2000 MCS (Monte Carlo steps per site) and
10000 MCS were discarded to allow the system to equili-
briate and then 12000—20000 MCS were retained for
computing averages. (General features of the behavior
were sometimes explored using 2000—6000 MCS.) Each
data point was repeated at least once using a different
random-number sequence and/or a different initial spin
configuration. 3'

B. Finite-size scaling

The effect of finite lattice size on a phase transition is
to smear out the behavior of the system near T, . The
properties of finite systems near the critical temperature
of the corresponding infinite system can be analyzed using
finite-size —scaling theory. ' When the infinite system
has the usual power-law singularities with critical ex-
ponents a, p, y, v, etc., the behavior of an L XL system
can be described in terms of a reduced variable x = tL '/",
where t =

~

1 —T/T, ~. Close to the infinite lattice T,
the order parameter m, the susceptibility X, and the
specific heat C are given by
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X=L.'ger. -'exp(ar '")] . (86) (a) H &1.5 J
The order parameter m goes to zero for T & T, as L
with rl varying with temperature. (Since the specific heat
does not diverge in the Kosterlitz-Thouless description,
there is no equivalent scaling form. }

Finally, we should like to end this section by noting
that it has proved to be convenient, for technical
reasons, to use t'=

~

1 —T, /T
~

rather than t as the
scaling field for T & T, . It has been observed in series-
expansion work that for Ising-type systems (and possibly
for other systems as well) one gets scaling without correc-
tion terms over a wider range by using t' instead of t
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0.2—

0'

0
0

0

4

0.2 0.4

Ls24 d 4
L&56 o ~
L*48 o ~

04
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C. General features of the phase diagram

From the behavior of the bulk properties we have been
able to formulate a very rich phase diagram, which is
shown in Fig. 1S. Each phase is labeled by the behavior
of the order parameters g~~, t)'ji which were defined in Sec.
IIIB. From this diagram we see that for H&0 there are
four different phase boundaries separating states of dif-
ferent order, as well as a multicritical point, labeled A. In
zero field there is a line of transitions terminating in a
multicritical point where two of the finite-field phase
boundaries meet. The zero-temperature transitions are
known from the analysis presented in Sec. IIIA, and we
see now that the transition for H =3J, T=O is a mul-
ticritical point formed by the confiuence of two finite-
temperature phase boundaries.

The variation of the order parameters with field and
temperature is shown in Fig. 16. The data in Fig. 16(a)
clearly show that for H =1.5J, (Pi ) goes to zero at a
lower temperature than (g~~). (The high-temperature
"tails" are purely a consequence of finite lattice size. ) For
H =5.0J both (fi) and (P~~) are nonzero at low tem-
perature as shown in Fig. 16(b), and they both go to zero
at the same temperature, albeit in a different fashion. In
Fig. 16(c) we show the behavior of the order parameters as
the field is swept at kqT=0. 4J. All three order-order
and order-disorder transitions are clearly evident.
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FIG. 16. Parallel and perpendicular components of the order
parameter as a function of temperature and field for (a}
H =1.5J, (b} H =5.0J, and (c} k&T =0.4J.
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H/J

0.2 0.4 0.6
FIG. 15. Phase diagram for AFP model on a triangular lat-

tice. Four phases can be identified and are labeled by the
behavior of the order parameters i(I~~ and g, . The manner in
which the three phase boundaries merge at A is not determined
precisely in this work.

D. Phase transitions in zero field

%'e have studied the phase transition in zero magnetic
field in great detail using Monte Carlo data. Typical spin
patterns for three different temperatures are shown in Fig.
17. At quite low temperatures the system is ordered in a
state of almost perfect staggered helicity. As the tempera-
ture is increased, elementary triangles with no helicity are
increasingly abundant; however, the major change which
occurs is that domains with opposite staggered helicity
develop. The quantitative behavior of the staggered heli-
city and the corresponding susceptibility are shown in Fig.
18. A finite-size —scaling analysis of these data shows
that the staggered helicity goes to zero at the same tem-
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FIG. 17. Typical spin patterns for helicities for each triangle

for three different temperatures as obtained from Monte Carlo
simulations. Note the dramatic change in staggered helicity

from k~T =0.4J to k~T=0.6J.

perature, k~T, =(0.510+0.005)J, at which the staggered
helicity susceptibility diverges and that the behavior of
both are described we11 by two-dimensional Ising ex-
ponents. This estimate for T, is higher than that which
we had obtained from our preliminary results. '5 We now
have improved data, particularly for the larger lattice
sizes, and the finite-size —scaling analysis leaves no doubt
that our earlier estimate was too low.

In addition to the formation of domains, we find direct
evidence for the formation of bound vortex pairs. In Fig.
19(a) we show a spin configuration obtained from Monte
Carlo simulations at k&T=0.4J. In Fig. 19(b) we show
the corresponding pattern in the orientational order pa-
rameter defined in (43}. In the mapped configuration we
see features reminiscent of a bound vortex-antivortex pair
in addition to spin-wave excitations. These excitations
destroy any low-temperature long-range spin order. We
find, however, that the high-temperature orientational or-
der susceptibility diverges exponentially fast as T, is ap-
proached from above. A finite-size —scaling analysis,
shown in Fig. 20, confirms the behavior described by (86)
with k&T, =(0.505+0.005)J, which is the same (within
our error bars} as that obtained from the analysis of the
staggered helicity.

Data for the specific heat are presented in Fig. 21.
Only a single peak is seen, and the peak grows and
sharpens substantially as the lattice size increases. In Fig.
22 we plot the maximum value of the specific heat C
versus lnL. The data are consistent with a linear increase
with lnL and, hence, with a logarithmic divergence of the
specific heat for the infinite lattice. (It is worth noting
that Miyashita and Shiba' found a logarithmic diver-
gence of C,„with L for the 36-state clock model, but
their values are systematically higher than ours for
L) 18.)

Lastly, we have determined the behavior of the spin-
wave —stiffness constant which was defined in Eqs. (39)
and (40). Our results, which are shown in Fig. 23, show
substantial finite-size effects in the region near and above
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FIG. 19. (a) Spin configuration obtained from Monte Carlo simulations at k~T =0.4J and H=0. (b) Corresponding pattern in the

arientatianal order parameter defined in Eq. (43) in the text. Nate the presence of a bound vartex-antivartex pair in addition ta spin-

wave excitations.

lim [y(T)lkttT]=2' .
T~ Tc

(87}

Our results, thus, suggest that there is a single phase tran-
sition which has both Ising and xy character as far as the
critical behavior of different bulk properties is concerned.

E. Phase transitions in nonzero field

As we have already shown in Fig. 15, the applicatian of
a uniform magnetic field produces a very rich phase dia-
gram. In order to clearly identify the nature of the vari-
ous phase boundaries and their relationship to the transi-
tions permitted by symmetry (see Fig. 14), we first exam-

T, . Using the range of values of k&T, =(0.505—0.510}J
determined previously, we conclude that the value of the
spin-wave —stiffness constant at T, is consistent with the
universal jump

ine the behavior of the order parameters cr, r which were
defined in Eqs. (48) and (49). Note that in spite of the
threefold ambiguity in sublattice choice refiected in (68),
one can uniquely distinguish between (r) =0, (o )~0 and
(&)%0, (o) =0. In Figs. 24(a) and 24(b) we show the
magnetic field dependence of the order-parameter com-
ponents as a function of temperature. At small fields
(H =1.5J) and low temperature the system is ardered in a
state with (o~~)+0 and (ri)+0. From Table I we see
then that the low-teinperature, low-field state has the
symmetry (Ci,Ci ). As the temperature is increased, the
(ri ) component goes to zero (near ka T =0.4J) but (o )
remains nonzero. From Table I and Fig. 14 we deduce
that the symmetry of this new phase is (C„Ci„).As the
temperature is increased further, (o~~) also disappears,
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FIG. 20. Scaling analysis for orientational order susceptibili-

ty with a=0.50 and c=1.70 at zero magnetic field.
FIG. 21. Specific heat as a function of temperature for zero

magnetic field.
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signaling a transition to a state with no order. (The high-
temperature tails are purely a finite-size effect. ) From
Table I and Fig. 14, we find that this transition corre-
sponds to (C„Cz„)~(C3„,Cq„). At high field (e.g.,
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FIG. 23. Spin-eave —stiffness constant as a function of tem-
perature. The solid line represents the function 2k' T/n J.
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H =5.0J), as shown in Fig. 24(b), there is a low-

temperature ordered phase with (o~~)&0, (oi)&0. From
Table I we conclude that this phase is ( C„C,). All these
results are summarized in Fig. 25. %e have also obtained
data for k+T 0.—3J as a function of field. From Fig. 25
we see that such a sweep should cut through all three or-
dered phases. The data, shown in Fig. 24(c), clearly shows
the transitions which we have just described. (The effects
of finite lattice size are quite small on the components
which are clearly nonzero. ) Where the finite-size effects
are important they strongly suggest that the components
in question extrapolate to zero for L ~ ao.

The qualitative behavior of the order-parameter com-
ponents together with the invariant subgroup flow-chart
enable us to conclude what the nature of the transitions
should be. %e have also studied the critical behavior
along each phase boundary and can compare our observa-
tions with the theoretical predictions. In Fig. 26 we show
finite-size —scaling plots for H =2.QJ and H =3.0J show-

ing the (C3„,C6„}~(C„C2„}transition. These plots have
been made using exponents for the three-state-Potts
modelz9 and show excellent scaling properties: p= —,,
y= —', , v= —, . This transition is predicted to be in the
same universality class as the three-state-Potts model and
our data confirm this. As shown in Fig. 27, the specific-
heat maxima increase with lattice size as L ~", with
a= —,', v= —,', as expected for the three-state-Potts model.

The character of the high-field transition
( C3 C6 )~(C„C,) is completely different. Finite-
size —scaling plots, see Fig. 28, show that the critical
behavior is nonuniUersaL Setting v= 1 we deduce that at
H =4.GJ, P=O 20 an. d y=1.55, while at kqT=0. 3J,
P=0.28 and y = 1.45. The specific heat shows clear peaks
ai the transition. However, according to the dependence

FIG. 25. Identification of the symmetries of the four phases
obtained in Fig. 1S.

of the specific-heat maxima on L, shown in Fig. 29, the
specific-heat peak does not diverge as L~ ao. This indi-
cates that a g0.

In Fig. 30 we show results at constant temperature as
the field is swept through the (Ci, Ci )~(C„Cz„)transi-
tion. Here, too, the phase boundary is nonuniversal. The
scaling analysis indicates P=0.22 at kz T=0.3J and
P=0.14 at k&T=0.4J. The specific heat also shows
peaks, but these clearly do not diverge as L~ ao.

Data for fixed temperature with the field swept through
the (C„C2„)~(C„C,) transition are shown in Fig. 31.
%e see that this boundary is also nonuniversal. The
finite-size —scaling analysis gives P=0.21 k~ T=0.3J and
P=0.14 at k+T=0.4J. It is particularly interesting that
there is no indication of a peak in the specific heat (or a
singularity in the uniform magnetization) at the phase
transition and that it is only through the observation of

0.05 0.) 0.2
I I

0.5-

0,5 10 20
l

~~goo
~~~cga

5 )0 20
I ) ) o~»—o-ao ~0

~ o~o ~~~

0,05 0,1 0.2 0.5 ) 2
) )

4')) L o5-j

50
I

Csv)
0.1

(b)
(a)

(b)
M=5 J

X„TL"~"
0.2—

0.05—

0.02—

L

o )8
a 24

36
~ 48
~ 72

0.0)—
I )

0.05 0.& 0.2
I 1 I

05 ) 2
) )

5 )0

gO

20

0.2—
»7

x))T L
0.)—

0.05—

0.02—

0.0)-
I

0.05

jo o

$2
o )8

24
36
48
72

) ) )

0.1 0,2 0.5 ) 2

O

~ i

5 )0 20

FIG. 26. Finite-size —sealing analysis for the ( C3„,C6„)~(C„Cq„)transition for (a) H =2J and (b) H =3J. The plots are obtained
using the exponents of a three-state-Potts model with P= 9, y = '9', and v=

6 .



33 SYMMETRY ANALYSIS AND MONTE CARLO STUDY. . . 471

C

WQX

~ H =2J
o H=5J

t.0
10 20

1 1 i I

80

the behavior of properly defined order parameters that we
can locate the phase transition.

V. SUMMARY AND CONCLUDING REMARKS

We have presented a detailed investigation of the AFP
model on a triangular lattice using an approach which
combines the rigor of group-theoretical arguments with
the power of Monte Carlo simulations. This combination
has proved to be essential to the correct elucidation of the
entire phase diagram. Our analysis has resulted in a
surprisingly rich phase supporting a variety of new criti-

L
FIG. 27. Maximum of specific heat as a function of lattice

size for the (C3„,Cq„)~(C„C2„)transition. The exponent de-

duced from these results is consistent with a three-state-Potts
model.

cal phenomena.
One of the most interesting features is the possible ex-

istence of a multicritical point describing the confluence
of the Ising and Kosterlitz-Thouless universality classes.
Our results are consistent with, but do not rigorously
prove, that this multicritical point actually occurs at
H=O near k~ T=0.5J. One indication suggesting the ex-
istence of only one critical point at H=O is given by the
results in Fig. 32. Here we present specific-heat data in
the vicinity of k~T =0.5J for various values of the mag-
netic field. The lattice size is 72 X72. Two well-defined
peaks are clearly distinguishable which seem to merge into
one peak as H~O. The most quantitative evidence is
provided by the finite-size —scaling results for the
stagered helicity and spin-orientation order parameter
which specify a Kosterlitz-Thouless transition at ksT
=(0.505+0.005)J and an Ising transition at ks T
= (0.510+0.005)J. These are statistically consistent with
a single multicritical point.

This analysis, however, does not rule out the possibility
of the existence of two distinct transition temperatures.
In this case on physical grounds TET &Ti. Moreover,
from the finite-size —scaling analysis they are within 0.01J
of each other. Finally, it is iinportant to note that in this
system the presence of domain-wall excitations provides a
physical mechanism for the two transitions to be so close
and occur at low temperatures. This can be illustrated by
the following heuristic argument.

Domain-wall fiuctuations are present on a length scale
smaller than the Ising correlation length. Consider the
system at a temperature near the Kosterlitz-Thouless
transition. One can now imagine integrating out the
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FICi. 28. Finite-size —scaling analysis for the ( Ci„,C6„)~(C„C,) transition for (a) H =41 with P=0.20, y = 1.55, and v= 1.0, and

(h) ksT =0.3J with P=0.28, y=1.45, and v=1.0.
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o H-QJ
~ H =5J

L
FIG. 29, Maximum of specific heat as a function of lattice

size for the (C3„,C6„}~(C„C,) transition. The specific heat
does not appear to diverge as I.~ ao.

domain-wall degrees of freedom by performing coarse
graining up to a length scale equal to the Ising correlation
length. The net effect is to reduce the problem to a
"pure" Kosterlitz-Thouless system with a smaller bare
coupling constant J'. The vortex-antivortex —unbinding
transition will now be proportional to J' and will conse-
quently occur at a 1otoer temperature than for a system
which cannot support domain-wall excitations. Thus, it
also follows that the closer the Ising and Kosterlitz-
Thouless transitions occur, the more effective this lower-

ing in temperature becomes. We believe that the proximi-
ty (if not coincidence} and low values of T, are a manifes-
tation of this effect.

Finally, it is appropriate to note that the possibility of
two distinct phase transitions has been emphasized by Mi-
yashita and Shiba. '6 Their order-disorder transition (cor-
responding to our TI) is estimated two ways, yielding
0.515+0.005 and 0.513 while TKT is calculated to be
0.502+0.002. At the standard-deviation level their tem-

peratures are distinct (although they overlap our values of
Tq and TKT within error bars}. The present level of nu-

merical calculations cannot give a definite answer to the
question of one or two transitions. Very recently, howev-

er, renormalization-group calculations for the uniformly
fully frustrated square lattice indicate the possibility of
one nonuniversal transition consistent with our conjecture.
More work is certainly needed to completely settle this is-

sue.
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2 ~ 0
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(Al)

Here F, and Fb are free energies given by

F, = k&T In Tr—IeI exp —PJ g cos(8; —8~)
&Ij&

(A2a)

APPENDIX A

In this appendix we will derive (40) for the spin-
stiffness constant y. We recall that
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FIG. 30. Maximum of the specific-heat and scaling analysis for the perpendicular component of the order parameter for the
(C~, C~ )~(C„Cq„)transition at (a) ksT =0.3J with P=022 and v= 1 0, and (h) ksT =0 4l with P=014 and v= 1 0.
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Fb ——ksT ln, TrIsI exp —PJ g cos(8; —81
&~j)

8'(r) =8(r)+e, .ra

in terms of 8'. Boundary condition ( b} becomes
(A2b)

(A3)

where Tr'sI and TrlsI designate the sum over all possible
spin con tgurations under the boundary conditions (a)
and (b) given by Eqs. (37) and (38), respectively. The key
step in deriving (40) is a simple change of variables. Let
us define

8'(r+Net) =8'(r),

8'(r+Ne2) =8'(r),

which is exactly boundary condition (a). Therefore,

(A4)

r

Fs ——AT ln. Tris) exp j3J g—cos[8,' —8'+(e;,"e&)&]
& jj')'

(A5}

2

[—k Tln(Tr~)e j)H(( ) ')]y=
N2 M,2, , 8 (el

where

(A6)

H( [8],h} J g cos[8; —8j+(etj"e(}b] .
&ig)

After performing the derivatives in (A6), we obtain

Here e;J is the unit vector pointing from site j to i Su.b-

stituting (A2a) and (A5) into (Al), we obtain
TrIsI Oexp gl g cos(8; —8 )

&ij&

TrI()I exp PJ g cos(8; —81 }

Because cos(8; —8j.) is even under interchange of i and j,
((aH/Bb, )~ o) =0. Substituting (A7) into (AS), we ob-
tain

e~ e;. 'cos; —8,
&&J )'

y= —kjtT P
N

'2

g (e( ej}sin(8;—8 }
(~'j)

(A 10)

since p=2/v 3 and (e, e j)=1 or + —,'. We obtain finally

where

(A8)

1 2 J2
v3 k, m'y=—

'2
X g (e& e;j ) sin(8, —81 ) . (Al 1)
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FIG. 31. Specific-heat and finite-size —scaling analysis for the perpendicular component of the order parameter for the
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there is no indication of a peak in the specific heat across the transition.
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OOOO

H—= /. Z5J'

1 0

3. The energy of the triangle is then

J H
Ea ——(S, S2+S, S3+Sz S3}——.(Si+Si+Ss} .

2 6

(82)

The weighting factors of —,
' and —,

' are defined such that
the total energy of the triangular lattice is obtained by
summing Ea over all elementary triangles.

Thus, the ground-state energy EG of the entire triangu-
lar lattice must satisfy

0

—=0.H

= 0.75

o

EG & QEa, (83)

where Ee is the ground-state energy of (82). If we can
now show that each elementary triangle can realize its
ground-state pattern on the triangular lattice as a whole,
the equality in (83) holds, and this state must be a ground
state. Moreover, it then follows from (83) that any other
ground state of the triangular lattice must also have each
elementary triangle in one of its ground states, since if a 5
were not in its ground state, the equality in (83}would be
violated.

To calculate the ground state of an elementary triangle,
we rewrite (82) as

0 I

0.4
kTl J

I

0.6
1 H' 1 H

J 4 9J2 4
3+ +—S)+Sp+S3- 3J

2

FIG. 32. Specific heat near k~T =0.5J for various values of
the magnetization. Two well-defined peaks appear to be merg-

ing into one peak as H~O. The results are for a lattice of size
72+ 72. S,+$,+$,= (85)

It is now clear that for H(9J the minimum of (84) is
realized when

APPENDIX 8

and for H & 9J the appropriate solution is

S)——S2——S3——H . (86)

H
mi+m2+ms —— for H &9J . (81)

We first consider any elementary triangle in the triangular
lattice. We label the three vertices of the triangle I, 2, and

In this appendix we present proof that, even in the pres-
ence of a uniform magnetic field, the ground states of (45)
exhibit a V3)(v 3 periodicity and that the three sublattice
magnetizations mi, m2, and ms must satisfy

The elementary-triangle ground-state pattern (85) can
be used to construct a ground state in the triangle lattice
in the following way. One simply begins with one elemen-
tary triangle in one of its ground states. Since any two
spins on the edge of an elementary triangle generates a
third spin using constraint (85), this procedure specifies
all the spins on all the other lattice sites of the system.
The resulting spin configuration is a ground state for the
triangular lattice and is forced from (85) to be ~3X ~3.
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