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Nuclear magnetism in a metal

P. Kumar'
Low Temperature Laboratory, Helsinki University of Technology, SF 021-50 Espoo 15, Finland

J. Kurkijarvi

Department of Technical Physics, Helsinki University of Technology, SF 0215-0 Espoo 15, Finland

A. S. Oja
Low Temperature Laboratory, Helsinki University of Technology, SF-02150 Espoo 15, Finland

(Received 17 May 1985}

We discuss the ordered-state properties of an assembly of nuclear spins, interacting via a classical

dipolar and conduction-electron-mediated exchange interaction. The ground-state spin arrangement

can be found by using a continuum model which casts light on the considerable degeneracy of the

ground state. We have studied the effect of a magnetic field and have derived a set of equations for

spin dynamics. We also discuss the implications of these results in specific examples such as Pt, Tl,
Na, and Cu.

I. INTRODUCTION

Nuclear magnetism has become a subject of consider-
able activity in recent years. ' The reasons for this are
twofold: on the one hand, the quest for lower tempera-
tures seems to have settled on adiabatic demagnetization
of nuclear spins as the best procedure. The only residual
entropy in a system at ultralow temperatures that can be
extracted by mechanical means (i.e., magnetic field) to
produce even lower temperatures, belongs to nuclear
spina. This approach is limited by the appearance of nu-
clear magnetic order and the accompanying reduction in
entropy. The second reason for interest in nuclear magne-
tism is the simplicity and uniqueness of the nuclear-spin-
spin interaction itself. In a dielectric, as extensively stud-
ied by Abragam and co-workers' at Saclay, the nuclear
spins interact via the long-range classical dipole-dipole in-
teraction. In the more familiar form of magnetism with
electronic moment, there is a strong total-spin-conserving
exchange interaction in addition to the total-spin-
nonconserving dipolar interaction. The former dominates
the local molecular fields, while the dipolar interaction
determines the various relaxation times. Nuclear spins in
a metal bridge these two regimes.

This paper is about nuclear magnetism in metals. In a
metal the conduction electrons mediate another form of
spin-spin interaction. Because of the hyperfine coupling,
a nuclear spin polarizes the conduction electrons, which is
then sensed by the neighboring nuclear spins. This in-
direct exchange interaction [Ruderman and Kittel (RK)]
has been widely studied in the literature in the context of
rare-earth compounds. It depends on the band structure
of the conduction electrons and, in the case of nuclear-
spin interaction, on the hyperfine coupling constant. The
same features also determine the Knight shift and the
nuclear-spin-lattice relaxation time Tl. One would then
expect a simple correlation between these quantities. Such
a correlation indeed exists qualitatively. Since both the

dipolar and the RK interactions vary as r at large dis-
tances, it is possible to define a parameter rl that mea-
sures the relative importance of the RK interaction.
Copper, which has one of the largest T, T (=1.2 sK),
corresponds to ri=0. 7. Thallium, on the other hand, has
one of the shortest Ti T (=2.7X 10 sK) and, therefore,

80, implying a basically exchange-dominated system.
Platinum has an intermediate value for T i

(Ti T =3X 10 sK) and i) =50, and is still essentially an
exchange-dominated nuclear-spin system. Copper admits
a direct determination of rl based on experiments' on nu-

clear spina alone. The values quoted for platinum and
thallium have been estimated on the basis of a rather im-
precise expected increase of i) proportional to T&. We
thus have a class of magnets where the ratio of spin-
conserving and spin-nonconserving forces varies over a
wide range.

The class of metals where nuclear magnetism can be
studied is not large. Most metals become either electronic
magnets or superconductors upon cooling and access to
the nuclear-spin system is lost. However, when nuclear
spins are accessible, they become a prototype clean system
to study complex phenomena. Platinum is an interesting
example. Only one isotope, ' Pt, with the natural abun-
dance of 34% has a nuclear spin, all others are nonmag-
netic. By varying the isotope composition, it should be
possible to dilute only the magnetic moments without af-
fecting anything else. Effects associated with percolation
and/or a spin glass with long-range interactions could
then be studied.

The Hamiltonian of nuclear spins in a inetal is given by

H =-,' QSI'Gi,'"S,",
jJ

pv

where
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GI'"=(A'} y„{[1+rlf(2kF[r,j [ )]5/„

—3(re )~(r,q)„I . (2)

Here Sf' is the pth component of the spin at site i with y;
as the gyromagnetic ratio, and the previously mentioned
quantity g measures the relative strength of the RK in-
teraction. The varying y; allows for different isotopes.
Furthermore, f(x) is the range function that depends on
the band structure of the conduction electrons and
r;J=r; —rj is the lattice vector between nuclear spins.
The kernel of the interaction is anisotropic in spin space.
The function f(x) for a spherical Fermi surface ' is
given by

II. GROUND STATE

The ground-state spin arrangement can be obtained us-

ing mean-field approximation (MFA). Numerical results
for the fcc lattice that include both the spin arrangement
and the transition temperature as a function of rl have
been reported by Kjildman and Kurkijarvi.

The classical ground state of spins in a continuum can
be found exactly. This helps in understanding the numer-
ical results. Not only are many of the continuum results
unaffected by the introduction of a discrete lattice, but it
is often possible to estimate the nature of lattice effects.
Unless otherwise specified, spins are treated as classical
vectors. The kernel of the Hamiltonian of Eq. (1) is an
operator in both spin and real spaces. Knowledge of the
eigenfunctions of

f(x) =cos(x) —sin(x)/x

with

(3) g GIJ
"0)=~4'

r)=
9

)'&'13f
I Uk„(0}I' (4)

where y, is the electron gyromagnetic ratio, pf the density
of states at the Fermi surface, and Uk„(0) the wave-

function amplitude at the nuclear site.
An experimental determination of 3) usually involves

the product gg(q), where g(q) represents the Fourier
transform of f(x). Frequently, gg(q=0) is measured.
Copper has bren the most widely studied system of nu-
clear spins. The constant g has been determined' in two
different experiments. At high fields, the two isotopes of
copper, Cu and Cu (abundance ratio 7:3) have different
Larmor frequencies due to the differing gyromagnetic ra-
tios. The ratio of the absorption intensities at high polari-
zation is different from the abundance ratio and can be
understood in terms of the exchange enhancement of the
exciting (transverse) fields. An analysis of the intensity
ratio for two isotopes delivers gg(0). Assuming the free-
electron value for g(0}, this yields rl =0.7. In the second
experiment, at low fields and high polarizations, extra ab-
sorption was seen at roughly twice the Larmor frequency.
There is a shift in that frequency which involves the ex-
change interaction via the coherent precession of two
spins in the mode. An analysis of the results yields
g=0.7. Thermodynamic quantities" such as magnetic
susceptibility, entropy, and energy depend on the mo-
ments of the eigenvalue spectrum of the Hamiltonian ker-
nel in Eq. (1). At this level, the agreement between a
free-electron spherical Fermi surface and experiments be-
comes qualitative. Evidently, the nonspherical features of
the Fermi surface play an important role. We will discuss
this further later.

This paper is an analysis of the ground-state properties
of a system described by the Hamiltonian of Eq. (1). To
be specific, we have assumed a fcc lattice structure in the
discussion of the ground-state spin arrangement of Sec. II.
In Sec. III we study consequences of the presence of a
magnetic field. Section IV consists of a discussion of spin
dynamics. Finally, Sec. V includes a summary of con-
clusions with a brief discussion of the expected properties
in four examples: copper, sodium, platinum, and
thallium.

allows us to write

& =—,
' g k„(k)

~
a„(k)

~

k, n

S(k)=g a„(k)P„(k),

(6)

(7)

A, i(k) = +gg(k), fi(k) k=,
3

A3(k)=A3(k), $3(k)=d (k d=O),

(8a)

(8b)

~3(k}— +rig(k), $3(k)=kXd,
3

(8c)

g(k) =g(k) —gg(k),
BZ

4kF —k k +2kF
4kkp

~

k —2k@
~

(8d}

Here g(k) is the Fourier transform of f(x). ' The equa-
tion relating g(k) to g(k) accounts for the absence of
self-interaction. The lower eigenvalue A.3(k) is doubly de-
generate in spin space. Apart from the constraint that it
should be orthogonal to k, the unit vector d is arbitrary.
The eigenvectors P;(k) constitute an orthogonal triad in
the spin space. Since k is a continuous vector and g (k) is
a monotonically decreasing function of k, the wave vector
corresponding to the minimum of A,2(k) is at infinity in a
continuum. The cutoff maximum of k is imposed by the
lattice. Detailed lattice calculations *' show that the
lowest eigenvalue lies at the high symmetry points Q~ at
the zone boundary in the ( 1,0,0 } directions:
Q~=(2m/a)kJ, j=1,2,3, where a is the lattice constant.

where S(k) and P(k} are the Fourier transforms of S; and

P;, respectively. From Eq. (6) it is evident that the lowest
energy state corresponds to the minimum of the eigen-
value A,„(k) as a function of k, and the corresponding
P„(k) describes the arrangement of spins in a continuum.
Fourier transformation diagonalizes Eq. (5) in real space
and the spin space diagonalization is straightforward with
the results
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The ground state thus has a threefold degeneracy in k
space and a twofold degeneracy in spin space.

The most general ground state can be written as a linear
combination,

S(r;)=g dzexp(i+~ r;), (9)
J

subject to the condition that dj k(i=o. If we further re-

quire that ~S(r;)
~

be independent of r;, the d's must
satisfy d; dj ——

~
d; I 5,&. It is then possible to write three

possible degenerate ground states, classified according to
the number of k vectors involved (see Fig. 1}.

(1) The 1 —k state, the usual collinear antiferromagnetic
referred to as type I [Fig. 1(a)]:

S(r;)=diexp(iko. r;) .

The ferromagnetic planes with spins alternate as +di
perpendicular to ko.

(2} The 2—k state, shown in Fig. 1(b), is a four sublat-
tice state, consisting of antiferromagnetic planes:

S(r;) d=iexp(iko r;)+12exp(iko r;) .

In the above, ko and ko are a pair of energy minimum
wave vectors. The relative orientation of the staggered
magnetization between successive planes ( =

~

d i ~

—
~

dz
~

) in the direction k& is arbitrary
(3) The 3 —k state. This state too is a four sublattice

antiferromagnetic state:

S(r;)=diexp(iko r;)+d2exp(iko r;)+diexp(iko r; } .

(12)

The only restriction here is that the sum of the four sub-

lattice magnetizations be zero. As shown in Fig. 1(c), this
state has the highest degeneracy of the possible ground
states.

All three of these states have been discussed by
Kjildman. ' We will call these states KK states. Belo-
brov et al. ' have studied the dipolar Hamiltonian in two
dimensions numerically and report a state which can be
interpreted as a 2 —k state.

The extensive degeneracy of the ground state within
MFA must be lifted by additional unknown terms in the
Hamiltonian of Eq. (1). No simple general principles ar-
gument appear to lift this degeneracy. The only
symmetry-breaking field in the problem is the magnetic
field.

III. MAGNETIC FIELD EFFECTS

A number of general results about the effect of a mag-
netic field on the ordered state can be found by studying
the ground state at T=0. The Hamiltonian in Eq. (1)
must now be supplemented by the Zceman energy; within
the MFA it shall be minimized subject to the constraint

(b)

FIG. 1. Three possible ordered states are {a) 1 —k, {b) 2 —k,
and {c) 3 —k. The 1 —k state is the usual collinear type-I anti-
ferromagnet. The 2—k and 3—k states are four sublattice
states. In the 2 —k states, the spins in a plane are arranged anti-
ferromagnetically. However, there is no correlation between the
staggered magnetization between successive planes. In the 3—k
state, each plane has a finite moment. However, successive
planes have moments oriented antiparallel to each other. The
dashed line parts of the arrows present the part which is inside
the conventional primitive cell.

(14}

which are incorporated using Lagrangian multipliers. If
the solution so obtained also satisfies Eq. (13), the
stronger constraint, it is the solution we are looking for.
The effective energy can then be written as

(S;&=8;/
f
8;

i
(13)

where the length of the spin vector has been normalized to
one. As before, (S; & and B; are the average spin and lo-
cal magnetic fields. We use a generalization of the
Luttinger-Tisza" ro.ethod, i.e., we minimize the energy
subject to the weaker constraints



33 NUCLEAR MAGNETISM IN A METAL

whose minimum is described by

5&IIMF &

g&S &
2 I 2 2

& 2
= ——'8.——'8 ——

& S; &
——' Il =0 . (17)

and A, and il are the Lagrangian parameters. Since Eq.
(17) must be valid for all sites i, it follows that

Bp+il =0,
Bi+A,Si ——0

(19a)

(19b)

with A, ~ 0, the strong constraint Eq. (13) is then automati-
cally satisfied. The energy can be written as

E- &HMF & =-X—-8 &S(k=o)&
N

(20)

In Eq. (16), the standard method of splitting up the
~man energy in two pieces has been used such that,

8;=Bp—gg;"&S &

dp di+d2 di ——0,
dp d2+di. di ——0, (27)

dp dp+di. d2 ——0 .
The four equations along with the constraint di kj =0

are sufficient to determine coefficients of Eq. {25). In
sum then, Eq. (25) along with Eq. (21) are finite-field
solutions. At the field 8, =A,(0)—A, i,k, there is a continu-
ous transition to a polarized paramagnetic state. These
results seem to be anticipated already by Luttinger and
Tlsza.

The effect of finite temperature is to scale the vectors

d~ Q =1,2,3) so that

3

I
d I'+ X I d, I'=p' (28)

j=l
where p is the polarization, determined'6 (Bs is the Bril-
louin function for spin S) by

where S(k} is the Fourier transform of & S; &. Substituting
Eq. (18) into Eq. (19b) and using g.g,z

——A(0)I where I
is a unit matrix, for a spherical sample,

and

p ( T) =Bs[ap/(T/T, )], a =3S/(S+ 1)

kg T, = ——,
' S(S+1)(Ay) pl, kk,

(29)

(30)

and

d, = & S(k=o) & =Bp/[X(0) —X]

E = —,
'

A, ——,
'

I Bp
I

/[A, (0)—A, ] .

(21)

(22)

The Lagrangian multipliers A, satisfies the eigenvalue
Eq. (5). It is not immediately clear whether the ground-
state wave vector in the presence of a finite field in an ar-
bitrary direction with respect to the crystalline axes of a
fcc lattice is the same as the zero-field wave vector lqI.

Suppose that an alternative state characterized by A,
'

(where 0&A, '&Xkk, A,kk being the eigenvalue of the KK
state} has a lower energy for Bp&8,. Then 8, would
have to satisfy

8, = [A,(0)—A,kk ][A,(0)—A, '] .

The magnetization for this state would be

(23)

' 1/2

(24)

3

& S; &
=dp+ g diexp(ikjp r; ) (25)

satisfies the strong constraint Eq. (13}. The conditions on
the d's then are

and it would violate the condition 1&S(k=0)&1 &1. A
simple substitution is sufficient to demonstrate that the
solution

where p is the number density. The susceptibility g(8p, T)
is independent of temperature and field and is isotropic
for a spherical sample

g(Bp, T) =[A,(0)—A,kk] 'I .

The critical field 8,( T) is given by

8,(T)=[A,(0}—Akk]p(T) .

(31)

(32)

IV. SPIN DYNAMICS

It would be nice to be able to perform an analysis of the
NMR response of the ordered nuclear spins in the spirit
of the adiabatic analysis used by Leggett' in his theory of
He spin dynamics. The result would be useful in deter-

mining experimentally the kind of order the nuclei main-
tain in as much as the NMR frequencies depend on the
spin arrangement. 's This works for the strongly
exchange-dominated systems. Only when the RK interac-
tion is much stronger than the dipolar interaction, does
one have the strong interaction which maintains the
quasiconserved components of the order paraineter. This
is, for example, the case in Pt. Application of the spin-
dymvnics discussion below to copper is questionable.

The d's of Eq. (25) can be separated into equilibrium
and nonequilibrium terms:

dj =dj+dj, j=0,1,2,3 (33}

where di are the coefficients of the equilibrium ground
state and dj are small deviations. Since dj is no more

orthogonal to kj, we can express the local field

8; =Bp—k(0)dp —Raked exp(ig. r;)

I do I

'+ g I
d

I

'=1
j~$

{26)
A.—(A, i

—Akk )g(dj.kj )k~exp(ik42 r; ), (34)
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where A, , is the larger eigenvalue as discussed in Eq. (8a).
Defining A,D

——A., —A,kk, we have basically an easy-plane

anisotropy of the form AD(dj ki) in the total energy of
the system, akin to the He examples mentioned above.
This energy comes from the dipolar interaction which
does not conserve the total spin and, therefore, causes a
shift in the Larmor frequency.

By substituting Eq. (34) into the Bloch equation, it is
possible to derive, for small departures from equilibrium,
the equations of spin dynamics

1—do=doxB0 —&D g(d, xkj)(dj kj),
j=l

1 ', 1, p 0

y X
—d i =—doxdi —AD[(doxki)(di ki)

(35a)

—(dixki)(di kg)

—(d', xk, )(d,' k, )] . (35b)

Here the magnetic field Bo 1ncludM the demagnetization
corrections. Equations for 12 and di can be obtained
from Eq. (35b) by cyclic permutation of indices 1,2,3.
Here X is the static susceptibility, Eq. (31). The four
equations constitute a complete description of the classical
spin dynamics in the ground state of exchange-dominated
nuclear spins.

The relationship between these equations and the Leg-
gett equations' ' is best seen if we limit ourselves to a
1 —k state (without linearization)

1 A.—do ——dox Bo—AD(di xki)(ki di),
y
1 A A—di ——di x (Bo—do/X) —&n(dox k))(ki di) .
y

(36a)

(36b)

—(d,');=—(doxd;);, i =1,2, 3 .1 ', 1
(37)

The resonance frequencies are identical to the ones
found for solid He by Osheroff, Cross, and Fisher. ' For
a 1 —k state with ki ——x, di ——

~
di

~ y, and
B=80(sinex+ cos8z),

qadi I'
8O+ kDy' x

+ [(&o—&D (
d i ~

'/X)'

The important difference lies in the presence of the last
term in Eq. (36b).

The solution of Eqs. (35) is considerably facilitated by
the observation that only three (out of nine) components
of d;, i =1,2,3 are relevant. These are the components of
d; parallel to k; since

ty. For nuclear spins in copper, di varies with field ac-
cording to Eqs. (20) and (24).

V. SUMMARY AND CONCLUSIONS

While the results of the present paper are mostly gen-

eral, a certain preference has been given to monovalent
metals with cubic lattice structure and exchange domi-
nance. This preference is responsible for the absence of
any discussion of ground states with wave vectors less
than the zone boundary value. If we assume a free-
electron-like RK range function, a strong exchange brings
the ground-state k vector to the zone boundary in the cu-
bic symmetry directions. The physical properties of these
states can be understood in the simple framework of a
continuum model. We have further calculated the
changes in the ground state brought about by a magnetic
field and have derived equations for spin dynamics. The
latter resemble the Leggett equations well known in the
context of superfiuid He and magnetically ordered solid
He. The applicability of these results to specific exam-

ples is discussed belo~.

A. Strong exchange: platinum and thallium

Both platinum and thallium are strongly exchange
dominated. As discussed in the Introduction, the estimat-
ed ri for Pt and Tl are 50 and 80. The Tl lattice structure
is hcp and gives rise to only twofold degeneracy of the k
vectors in the basal plane. The ground state for Tl is,
therefore, expected to be a 1 —k or a 2—k (spiral) spin-
density wave. It should be possible to determine ri for Tl
directly with an isotope-effect experiment. There are two
isotopes Tl and 5T1 in the abundance ratio 3:7. The
gyromagnetic ratios differ by 1%. Thallium is expected
to have a T, =10p, K. An approximate estimate of T, for
an isotopically pure sample of ' Pt is 1 pK. Both Pt and
Tl have T, 's in the accessible range of electron tempera-
tures and it should, therefore, be possible to cool the nu-

clear spins in a state of equilibrium with the lattice elim-

inating the problem of short spin-lattice times. Platinum
is quite extraordinary since it affords an ideal opportunity
to study the effects associated with dilute magnetism in

an isotopically, i.e., "cleanly, "doped system.
The exchange interaction in this class of systems is no

longer as simple as the one described by Eqs. (1)—(4).
More precisely, the non-s-wave character of conduction
electrons in these high-Z materials gives rise to alternative
media for nuclear-spin interaction. A detailed analysis of
the nuclear-spin-lattice relaxation time in selected transi-
tion metals' shows that while such effects in copper can
be small, although perhaps not entirely negligible, they are
rather large in Pt and Tl. The Knight shift in Pt, known
to be negative, has been understood as an effect of core
polarization. We defer a detailed analysis of these effects
until later.

+480sin Nii
~

d i ~

/g]'~ (38) B. %'eak exchange: copper and sodium

In solid He, d& can be assumed independent of the
magnetic field. The energy scale for its variation is deter-
mined by the exchange interaction, a much larger quanti-

Copper is by far the most widely studied nuclear-spin
metal. Essentially the entire discussion above is motivat-
ed by the need to understand its properties in the spin-
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ordered state. The ordering in co per occurs at 60 nK,
via a first-order phase transition, ' into an antiferromag-
netic state. The various thermodynamic and NMR prop-
erties in the paramagnetic phase have been analyzed' "
using the eigenvalue spectrum discussed in Sec. II. The
agreement with experiments is good. In the ordered state,
a phase diagram in the field-entropy plane has been sug-
gested with the aid of susceptibility measurements. Ac-
cording to this, the system undergoes a first-order phase
transition at 60 nK in an antiferromagnetic (AF) phase at
zero field. At fields Bo, 0. 12 g Bo (0.17 mT, another or-
dered state AF2 seems to appear. In fields with Bo y 0.17
mT, the nuclear spins line up gradually with the external
field leading to a polarized paramagnetic state at B =0.27
mT. The low-field AF1 and the high-field AF3 states can
be interpreted as being consistent with the states discussed
in Sec. III. Although transitions within the mean-field
approximation are continuous, the cubic symmetry of the
system may lead to a fluctuation-induced first-order tran-
sition.

It is also possible that nonzone-boundary k-vector
states appear in copper. On the fcc lattice, the ground
state ko is locked to the zone boundary for ri & ri, =0.52.
It may be instructive to view the problem in terms of the
Fourier components of the RK interaction. As discussed
in the Introduction, experiments in the paramagnetic state
largely determine either rig(0) or some moment over the
density of states. If the RK interaction does not have the
free-electron range function, and "effective" si could be
different for properties that depend on the ground state
and, therefore, a specific nonzero ko. A preliminary in-

vestigation shows that if the nearest-neighbor coupling
is changed by as little as 15%, the effective ri falls below

Then the k vector of the ground state depends on
both the external magnetic field and the temperature.

On the basis of Knight-shift measurements it is possible
to estimate s)=0.13 for sodium. The ground state for
sodium is expected to correspond to a nonzone-boundary
wave vector. Such a state must be highly sensitive to a
magnetic field and it probably displays the usual com-
mensurate lock-in transitions at varying values of tem-
perature and magnetic field. Unfortunately, sodium has a
rather low mean field T, (60 nK} and is expected to get
even lower due to fluctuations. s With the improvement
in cooling techniques, however, it should be possible to ex-
plore the effects of competing interactions in sodium.

In conclusion, the properties of the ground state of a
system described by the Hamiltonian of Eq. (1} are rich
and diverse. Further experimental investigation of these
systems would considerably help elucidate our under-
standing of this exotic type of magnetism.
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