PHYSICAL REVIEW B 15 MARCH 1986

Anisotropy of magnetic polarons bound to acceptors in $Cd_{1-x}Mn_xSe$

D. Scalbert, M. Nawrocki,* C. Benoit à la Guillaume, and J. Cernogora

Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université de Paris VII, Tour 23, 2 Place Jussieu, 75251 Paris Cedex 05, France

(Received 11 November 1985)

Time-resolved donor-acceptor luminescence provides the main parameters of magnetic polarons bound to acceptors in $Cd_{1-x}Mn_xSe$. Time-resolved polarization of this emission with $H \parallel c$ in the Faraday geometry reveals the freezing of the polaron orientation at low temperature. This is related to the gyromagnetic factor $g_{\perp} = 0$ for the hole in wurtzite crystals, leading to a bistable magnetic polaron.

Among the properties of semimagnetic semiconductors,¹ one of the most noticeable is probably the formation of magnetic polarons bound to donors $(D^0$ -BMP)^{2,3} or acceptors $(A^0$ -BMP),⁴ caused by the exchange interaction between weakly bound carriers and the magnetic moments of Mn^{2+} ions. Up to now, BMP's were studied in cases where the exchange integrals (denoted usually $N_0\beta$ for free holes and $N_0\alpha$ for free electrons) were isotropic: Thus, these BMP's were free to orient their total magnetic moment in any direction. In wurtzite crystal, the top of the valence band is of Γ_9 symmetry, the gyromagnetic ratio vanvalence band is of ty symmetry, the gyromagnetic ratio values of a magnetic field $H \perp c$ ($g_{\perp} = 0$),⁵ and that property is true also for the exchange integral $(N_0\beta_1=0)$. As a consequence, A^0 -BMP's in CdMnSe should have a strong tendency to align their magnetic moment parallel or antiparallel to the c axis. In a previous work, Heiman et $a l$ ⁶ studied the polarization of donor-acceptor $(D-A)$ luminescence in CdMnSe in the Faraday geometry $(H \parallel c)$ under dc conditions. They concluded that A^0 -BMP's did not have time to form below 10 K; a conclusion rather surprising considering the long lifetime of $D-A$ emission.⁷

In this Rapid Communication, we present a time-resolved study of $D-A$ luminescence in $Cd_{1-x}Mn_xSe$ which allows, from the shift of the band as a function of time and temperature T, to extract the exchange contribution $E_p(T)$ to the binding energy of the acceptor. With a magnetic field H II c applied, the time evolution of the circular polarization P_c ,⁸ which *increases* with time delay, gives evidence of the bistable character of $A⁰$ -BMP's at low T.

The experiments are done on single crystals of $Cd_{0.95}Mn_{0.05}Se$ grown at the Institute of Physics of the Polish Academy of Sciences. The samples are analogous to those used for Raman spin-flip (RSF) experiments on D^0 -BMP's.² The excitation is provided by a dye laser modulated by an acousto-optic deflector (pulse width 200 ns, frequency 50 khz, peak power 10 mW). The luminescence is analyzed by a double-grating monochromator and processed in the so-called "single photon counting" mode; a microcomputer programmed as a multichannel analyzer controls the data acquisition. Time-resolved spectra from 13000 to 15000 cm⁻¹ with 10 cm⁻¹ resolution were obtained durin one hour of data accumulation. The precise line position and linewidth were obtained from calculations of the first and second moments.

Figure ¹ shows the spectrum emitted at 4.8 K at different time delays. The $D-A$ nature of the 14000 cm⁻¹ band is already evidenced by the shift of the band with delay. The line shape is somewhat broader at early time, but stabilizes after about 0.5 μ s; this is why we present quantitative analysis only for delay larger than 0.5 μ s. Let us recall that the energy of a photon emitted by a $D-A$ pair at separation R_{D-4} is given by

$$
h\nu = E_G(T) - E_D - [E_A + E_p(T)] + e^2/KR_{D-A} \t , \t (1)
$$

where $E_G(T)$ is the band gap, E_D and E_A the binding energy of the donor and the acceptor, and e^2/KR_{D-A} the Coulomb interaction. Figure 2 gives the line position as a function of time delay at different temperatures. The time evolution, which depends only weakly on temperature, reflects the increase of (R_{D-4}) (from about 120 to 300 A). The shift as a function of T reflects the evolution of $E_p(T)$, the polaron energy, which has been plotted in Fig. 3. To evaluate the main parameters of the A^0 -BMP, we use the so-called muffin-tin model, 9 where the hole is coupled equally to N spins of $S = \frac{5}{7}$. In this approximation, the total energy is

$$
E = \beta' \sigma M_z / 2\Omega + g \mu_B H M_z + A_1 M^2 \quad , \tag{2}
$$

where M is the magnetization, M_z its component along the c axis, H the magnitude of the applied magnetic field parallel to c, $N_0\beta'$ the exchange integral for the acceptor, Ω the volume of the muffin tin, and $\sigma = \pm 1$ according to the two

FIG. 1. Luminescence spectrum at different time delays (0.2, 5, 10 μ s). The dotted curves suggest, for the 5 μ s spectrum, a decomposition into a no phonon line and LO phonon replicas $(h\nu_{LO} \sim 26$ meV). The full width at half maximum of the no phonon line is about 46 meV.

FIG. 2. Time evolution of the $D-A$ line position at four different temperatures. The temperature dependence of E_G has been taken into account in order to display the temperature variation of $E_p(T)$.

possible hole states. The last term is an antiferromagnetic contribution, where $A_1 = 4kT_0/3N(S+1)S$. $E_p(T)$ is obtained as a thermal average of the first term in Eq. (2), which can be performed exactly. A good fit of $E_p(T)$, as shown on Fig. 3, is obtained by taking $N = 10$, the radius of the polaron 13.5 \mathring{A} , ¹⁰ and $N_0\mathring{B}' = -0.8$ eV, a value lower than the free-hole value, $N_0\beta = -1.11$ eV,¹¹ because a substantial mixing between \vec{A} and \vec{B} holes occurs in the acceptor wave function,¹² the $A - B$ splitting being small with respect to E_A . The polaron energy $E_p(T)$ is larger than in $Cd_{1-x}Mn_xTe^4$ because β' is larger and the Bohr radius smaller $[E_n(0) = 50 \text{ meV}]$. Notice that a theoretical model is needed to place the base line in Fig. 3 and to determine E_A which is found equal to 100 \pm 5 meV. It was found that Li and Na give an acceptor level with $E_A = 109 \pm 6$ meV in CdSe.¹³ CdSe.¹³

Time-resolved measurements of P_c were performed in a superconducting magnet up to 6 T, in the Faraday

geometry. If the acceptor retains pure Γ_9 symmetry, P_c is given by

$$
P_c = (P_e + P_h)/(1 + P_e P_h) \quad , \tag{3}
$$

where P_e and P_h are the donor and acceptor polarizations. Most of the data were taken at the peak of the $D-A$ band; a few spectroscopic data show that P_c decreases slowly with decreasing wave number, a feature that might be related to participation of LO phonon replicas. The remarkable point is the *increase* of P_c with time delay. This is observed only for H not too large, away from saturation. Figure 4 shows the time evolution of P_c at a constant H/T value, at several temperatures. One can clearly see that the rate of change of P, becomes very slow at low temperature. Such a behavior can be easily explained by Eq. (2): When $H = 0$, the total $A⁰$ -BMP energy presents two equivalent minima for $M_z = \pm NS$ separated by a saddle point at $M = 0$. Since the polaron involves a rather large number of particles, we assume that tunneling may be neglected; hence, transfer from one minimum to the other requires a thermal activation over a potential barrier of the order of $E_p(0)$. This explains why the time to reach equilibrium between the two states split by $2g\mu_B HNS$ becomes long at low T. A thorough analysis of P_c is certainly beyond the scope of this paper. We would like to discuss two points.

(i) How to extract P_h from the measurements of P_c ? The donor polarization P_e is well known from RSF experiments and is close to that of the free electron if $H \ge 0.1$ T; so it can be easily calculated. If it is introduced in Eq. (3), one finds a value of P_c already larger than the experimental one, even if $P_h = 0$. In particular, the value of P_c at saturation, P_{sat} , is only 75-80%. We think that the hole in the A^0 -BMP no longer has a pure Γ_9 symmetry since it is subjected to perturbations which do not possess axial symmetry: The magnetic moment of A^0 -BMP has a large component along the c axis, but due to magnetic fluctuations, it has a nonzero transverse component; in addition, the acceptor is perturbed by the random substitution of a few Mn atoms inside its orbit. We present a phenomenological model with one fitting parameter δ . Equation (1) of Ref. 11 suggests that, for an oblique perturbation, mixing occurs mainly

FIG. 3. Exchange contribution to A^{0} BMP energy $E_{p}(T)$ has a function of T_+ \mp are experimental data. The dashed line is the theory.

FIG. 4. Time evolution of the circular polarization P_c at different temperatures, for a constant ratio $H/T \sim 0.1 \text{ T K}^{-1}$.

between $|A, \frac{3}{2} \rangle$ and $|B, \frac{1}{2} \rangle$ holes. So we assume a hole state in the BMP of the following form: $|h + \rangle = (1-\delta^2)^{1/2}$ $\times |A, \frac{3}{2}\rangle$ +8| $B, \frac{1}{2}\rangle$ and $|h - \rangle$ its transform by time reversal. Then the new formula for P_c is

$$
P_c = (GP_e + P_h)/(1 + GP_e P_h) \quad , \tag{4}
$$

where $G = (3 - 4\delta^2)/(3 - 2\delta^2)$. Unfortunately, Eq. (4) implies a saturation $P_{\text{c sat}} = 1$, in contrast with experiment. We have to assume some kind of depolarization and define $P_c' = P_c/P_{c \text{ sat}}$. Then, P_h can be obtained from Eq. (4), where P_c' is the experimental value and P_e the calculate one,

$$
P_h = (P_c' - GP_e)/(1 - GP_c'P_e)
$$
 (5)

That procedure gives satisfying results at least for $T \ge 5$ $K¹⁴$ assuming δ^2 of the order of 0.4. On Fig. 5, as a function of H, we compare the values of $P_h(2)$ at a delay of 2 μ s with the thermodynamic equilibrium $P_{h,th}$ obtained by an appropriate average on Eq. (2). The values of $P_h(0)$ at zero delay are compared to the following model: Our sample is *n* type, so A^0 is photocreated when the field H is already present. The N spins in the box around A^- undergo magnetic fluctuations and one can readily calculate $P_{M_r}(H, T)$, the rate of "magnetic polarization." Figure 5 shows that, to a good approximation, $P_h(0) = P_{M}$. This means that if at the time of the hole capture, M_z points towards a given direction, then A^0 -BMP will develop its magnetization towards the same direction, independent of the spin polarization of the captured hole.¹⁵ $P_h(2)$ is found to be smaller than $P_{h,th}$ and the discrepancy seems to increase at low T. This is consistent with the model of A^0 -BMP orientation freezing.

(ii) How to justify the order of magnitude of the time constant of P_c as a function of T ? The rate of transfer U from one valley to the other is proportional to the probability of reaching the saddle point, assuming the polaron is in a given valley. With the model leading to Eq. (2) , U is thermally activated by an energy $E_{ac} = 42$ meV at $H = 0$. Such a value of E_{ac} would probably induce a rather abrupt change in the P_c time constant at a temperature higher than observed. In fact, the property $g_{\perp}=0$ for the hole is valid

FIG. 5. Initial A^0 BMP polarization P_h (O) (+) compared to calculated P_{M_2} (dotted curve) and final A^0 BMP polarization $P_h(2)$ (\Box) compared to the calculated value at equilibrium $P_{h, th}$ (dashed curve), at two temperatures.

only to first order, i.e., for small transverse field. For large transverse magnetization, a type-A hole can gain exchange transverse magnetization, a type-A hole can gain exchange
energy,¹¹ so that the saddle point does not occur at $M = 0$ but rather at $M = NS$, $M_z = 0$, with a substantial reduction of E_{ac} , maybe by a factor of 2. In addition, since the mean number of spins in the A^0 -BMP is 10, N should fluctuate from 6 to 14, inducing a broad distribution of E_{ac} values. These two facts justify probably the temperature range (10-40 K), where the P_c time constant is in the μ s range.

To conclude, we have shown that, in wurtzite semimagnetic semiconductors (SMSC's), despite the fact that Mn^{+2} ions of S-like electronic configuration have essentially no anisotropy, the strong anisotropy of the Γ_9 hole is transferred to A^0 -BMP. If one could grow p-type $Cd_{1-x}Mn_xSe$, the component of magnetization related to $A⁰BMP$ should exhibit magnetocrystalline anisotropy and hysteresis at low T. More theoretical studies of acceptors in wurtzite SMCS's are needed in order to bring interpretation on a more quantitative basis.

We thank Dr. A. K. Bhattacharjee for his fruitful comments. The Groupe de Physique des Solides is a "Laboratoire associé au Centre National de la Recherche Scientifique."

- 'Permanent address: Institute of Experimental Physics, University of Warsaw, Poland.
- ¹See, e.g., J. Gaj, in Proceedings of the Fifteenth International Conference on the Physics of Semiconductors, Kyoto 1980 [J. Phys. Soc. Jpn. Suppl. A 49, 797 (1980)].
- 2M. Nawrocki, R. Planel, G. Fishman, and R. Galazka, Phys. Rev. Lett. 46, 735 (1981).
- ³D. Heiman, Y. Shapira, and S. Foner, Solid State Commun. 45, 899 (1983).
- ⁴T. H. Nhung, R. Planel, C. Benoit à la Guillaume, and A. K. Bhattacharjec, Phys. Rev. B 31, 2388 (1985).
- ${}^{5}R.$ G. Wheeler and J. O. Dimmock, Phys. Rev. 125, 1805 (1962).
- ⁶D. Heiman, J. Warnock, P. A. Wolff, R. Kershaw, R. Ridgley, K. Dwight, and A. Wold, Solid State Commun. 52, 909 (1984).
- 7 The time of formation of BMP's measured on bound excitons is smaller than 1 ns. A. V. Nurmikko, J. Lumin. 30, 355 (1985).
- SIN this paper, the polarization rate P_i ($i = c, e, h, M_z$) is defined as $P_i = (P_i^+ P_i^-)/(P_i^+ + P_i^-)$. $P_i = (P_i^+ - P_i^-)/(P_i^+ + P_i^-)$.
- ⁹The first version was the "magnetic molecule" of A. Yanase and T. Kasuya, J. Phys, Soc.Jpn. 25, 1025 (1968).
- ¹⁰This radius corresponds to about 1.8 a_B , where a_B is the Bohr radius of an hydrogenic envelope function; after R. Planel, T. H. Nhung, G. Fishman, and R. Nawrocki, J. Phys. (Paris) 48, 1071 (1984).
- ¹¹R. L. Aggarwal, S. N. Jasperson, J. Stankiewicz, Y. Shapira, S. Foner, B. Khazai, and A. Wold, Phys. Rev. B 28, 6907 (1983).
- 12 The case of zinc blende was treated by J. Mycielski and C. Rigaux J. Phys. (Paris) 44, 1041 (1983).
- ¹³C. H. Henry, K. Nassau, and J. W. Shiewer, Phys. Rev. B 4, 2453 (1971).
- ¹⁴In addition to thermal excitation processes, the time evolution of P_h depends on preferential recombination on polarized electrons, which is dominant at 2 K: Then P_c (and thus P_h) decreases with time delay.
- ¹⁵A somewhat different situation, namely, the direct creation of localized excitons by polarized light (site selection) and subsequent development of a magnetic polaron was considered by J. Warnock, R. N. Kershaw, D. Ridgely, K. Dwight, A. Wold, and R. R. Galazka, J. Lumin. 34, 25 (1985).