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Critical behavior of the six-state clock model in two dimensions
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%'e have examined the critical properties of the q =6 clock I,'vector Potts) model in two dimen-

sions through Monte Carlo simulations. The model was investigated on I )&L square lattices of size

I =4 to I.=72 with periodic boundary conditions. %'e found an intermediate XY-like phase be-

tween a low-temperature ordered phase and a high-temperature disordered phase. The phase transi-

tions occur at kqTl /J =0.68+0.02 and kq T2/J =0.92+0.01 and are of the Kosterlitz-Thouless

type. The susceptibility diverges in the intermediate phase and the exponent g varies between 0.100
at Tl and 0.275 at T2.

I. INTRODUCTION

The q-state ferromagnetic clock model (also known as
the "vector Potts model" ) is a discrete version of the XY
(plane rotator) model and consists of two-dimensional pla-
nar spins restricted to q evenly spaced directions. The in-
teraction energy of the spins is proportional to their scalar
product. If s; = (cos8;,sin8; ), where 8; is the angle the
spin makes with an arbitrary axis, the site variable p;
representing the state of the ith spin, is defined through
8;=2mp;/q, with p;=1,2, . . . , q. The Hamiltonian may
be written as

I= —Jg cos[2n (p; —p )/q] .

Here, J is the strength of the interaction and the sum is
over nearest-neighbor pair ij (q =.2 yields the Ising
model and in the limit q ~ ao we get the XY model. )

Theoretical interest in clock models was stimulated
after Kosterlitz and Thouless' showed that the XY model
possessed a novel type of critical behavior with essential
singularities and topological ordering. In the Kosterlitz-
Thouless theory the correlation length g and the suscepti-
bility X diverge exponentially as T~T, +. Below T„
both quantities are infinite. Though the Mermin-Wagner
theorem prohibits conventional ordering in the XYmodel
in two dimensions, Kosterlitz and Thouless showed that a
different form of ordering is possible via vortex forma-
tion. In this "XY-like" phase, the spin-spin correlation
function G(r) decays as a power of the distance r:
G(r)-r ". The phase transition is characterized by the
response function of the system (X) changing drastically
due to vortex-pair unbinding.

The theoretical analyses are not exact and have relied
chiefly on the close relationship between the clock models
and the Villain model (where the partition function is a
Gaussian). The first study was by Jose et a/. who inves-
tigated the planar model with q-fold symmetry-breaking
fields h». (The perturbative fields were introduced to
simulate the crystal fields in real substances and yield the
clock model in the limit h»~ao. ) Their conclusions are
based on the results of a Migdal renormalization scheme
as well as a low-temperature expansion for a generalized

Villain inodel. For q (4, they found a single power-law
transition, but for q =6 the theory indicated an intermedi-
ate XY-like phase between a low-temperature ordered
phase ( T & Ti) and a high-teinperature disordered phase
( T & T2). The transitions at T, and T2 were of the
Kosterlitz-Thouless type with P diverging exponentially
at the transitions and staying infinite in between. They
predicted T2 to be the critical temperature of the XY
model and Ti was found to vary as kit T, /J =4m /1. 7q .
The exponent »I was found to vary between ri(T, ) =4/q
and ri(T2) = —,.

Elitzur et al. considered a discrete Villain model with

Z» symmetry. By using duality arguments and a Grif-
fiths inequality for the correlation functions, they estab-
lished the existence of an intermediate massless (XY-like)
phase for q greater than a critical value q, (which they es-
timated to be 4). By using a Coulomb gas representation
they were also able to recover the results of Josi: et al.
(which were really valid for small h» ).

Subsequent analytical work on more general forms of
Z& models extended the results given above and revealed a
complex phase structure. Thus, Cardy investigated the
duality properties of general Z» models and predicted that
for q &5 the system would order via a first-order transi-
tion, two Kosterlitz-Thouless transitions, or successive Is-
ing, three-state Potts, or Ashkin- Teller transitions.
Domany et ttl. studied a general Z5 model analytically
as well as through simulations and concluded that the
transition from a disordered to an ordered phase could
take place either through an intermediate XY-like phase
or a single first-order transition. There have also been
conflicting results for q, . Roomany and Wyld obtained

q, =5 by using a finite-lattice method. Rujan et al. con-
firmed the existence of three phases for q =6 and 7 but
their results were not conclusive for q =5.

Experimental verification of the theories has so far not
been possible and we must resort to computer simulations
to test the predictions. Tobochnik' simulated the model
for q =4, 5, and 6 using a Monte Carlo renormalization-
group method. He concluded that for q =4 there was
only one transition with a finite value for the exponent v,
but that for q =5 and 6 there were two transitions with
v= ac (thus indicating the XY-line nature of the inter-
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mediate phase' ). He estimated that for q =6 the transi-
tions took place at ktt Ti /J =0.6 and ktt T2/J = 1.3, with

g varying between 0.10 and 0.32 at ka TIJ =0.6 and 1.0,
respectively.

Our own work involves Monte Carlo simulations on
several lattice sizes using a different sampling scheine
from that of Tobochnik' and making careful finite-size
analyses of the data. We have two objectives in studying
the q =6 model. First, we wish to verify the predictions
concerning the nature of the phases and the transitions.
This should prove useful when two-dimensional systems
with the requisite symmetry are available. (Solids with a
fivefold symmetry are not realizable. ) Second, we hope
our work will yield useful knowledge regarding the simu-
lational treatment of essential singularities in critical phe-
nomena. We reported earlier" from preliminary results
that although two transitions could be clearly seen in
moderately large lattices for q =6, we did not find an
XY'-like intermediate phase. Our subsequent research
(described later in this paper) has enabled us to confirm
the XY-like phase, obtained estimates for the exponent r),
and locate T~ and Tz quite precisely.

The rest of the paper is organized as follows. Section II
gives a description of the methods used in our analysis.
Section III presents our results and comparisons with oth-
er work. Section IV presents a summary of our con-
clusions.

mL —— g cos8;, g sin8; (2)

where N is the number of sites (N =L ). The specific
heat Ct, and the susceptibility Xt were computed from
the fluctuation results:

CL N((E—t—) —(EL ) )Ika T

XL N((mL——) —(mt ) )IkttT,

(3)

where E is the internal energy per site and ka is the
Boltzmann constant. Equation (4) is valid in the ordered
regime. Where it is known that (mL ) =0 for the infinite
lattice, it is more appropriate to define the susceptibility
through

X, =N(m,')/T . (5)

fluctuations. The total number of MCS kept for each
data point was determined from two properties of the
simulation. First, we examined the averages to see if they
changed appreciably as data froin additional runs were
added in. In addition, we monitored the "coarse-grained"
statistical errors obtained at each stage of the analysis.
The data we used for analysis represent averages over
250000 MCS in the critical region and 8000 to 50000
MCS outside it.

The order parameter mL is defined as the absolute
value of the magnetization mL given by

G. METHODS

A. The Monte Carlo method
We also computed the fourth-order cumulant:

Ut ——1 —(mt )/3(mL ) (6)

A standard importance sampling method' was used to
simulate the behavior of the model on L )&L square lat-
tices with periodic boundary conditions. In a single
Monte Carlo step per site (MCS) each site in the lattice is
visited in turn to test the spin for "flipping" from a state
p; to a random new state p . The probability of a flip is
proportional to the Boltzmann factor exp( —P~R'), where

P is the inverse temperature and hE is the change in inter-
nal energy due to the flip. (This is in contrast to
Tobochnik's method' where only flips with

hp; =p —p; =+1 were allowed. His rationale was that at
low temperatures flips of one unit to the right or left will
be the most favored so that fewer MCS will be nix:essary
for the system to reach equilibrium. However, it has been
our experience that flips with bp; & 1 formed a fair frac-
tion of the total number of flips. Thus, for L =16 in the
range of temperatures studied, the larger flips accounted
for 15—40% of the total number. ) The thermodynamic
variables were obtained by averaging over many MCS
after discarding several thousand to allow the system to
reach equilibrium.

We performed simulations on lattices of size I.=4, 8,
12, 16, 20, 32, 48, and 72. For each lattice size we made
several runs ranging from 4000 to 40000 MCS. Each run
was made with a different initial configuration or
random-number sequence. The number of MCS needed
varies with temperature since large runs are needed in the
critical region to compensate for the long relaxation times.
The number of MCS also varies with lattice size because
(especially in the critical region) large lattices have large

This quantity is used in the cumulant method described
later in this section.

B. Finite-size scaling

We have relied on the methods of finite-size scaling' to
draw our conclusions. As is customary, we argue that the
only relevant variable that "rounds off" the divergences in
a finite system is the ratio of the lattice size to the correla-
tion length L /g. In the Kosterlitz-Thouless theory, g and
X behave as

g —exp(at o'),
X-g

where a is a constant, t =(T—T, )/T„and T, is the crit-
ical temperature of the XY model. Since m -(T, —T)~
and g-(T, —T) in second-order transitions, it is easy
to show that

Here we have used the relation P/v=(d —2+ g)/2, where
d is the lattice diinensionality. ' (One of the implications
of the essential singularities in the Kosterlitz-Thouless
thixiry is that g is the only exponent in zero field. The ex-
ponent relations, however, still hold, provided that the ex-
ponents are suitably defined. ') The singular part of the
free energy is considered to be a generalized homogeneous
function of L and g. XL and mL (which are derivatives of
the free energy) are assumed to have the functional forms
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b =rt/2,
c=2—'g .

(12)

(13)

Using Eqs. (12) and (13) in Eqs. (10) and (11), we see that
at a critical point

mL I.-&~'

or, equivalently,

XL, ~L

(14)

(15)

since Yi and Y2 approach constant values. If the inter-
mediate phase is indeed a line of critical points with rl

varying continuously with temperature, we should find
Eqs. (14) and (15) to hold true for all T i & T & T2

We may express Eqs. (10) and (11)as

mL L——~Yi($/L),

XL, L——'Y2(g/L),

where b and e are constants and 7& and F2 are unknown
functions. Since we must regain (8) and (9) in the
infinite-lattice limit, we obtain

dUbt /dUL. =b (18)

III. RESULTS

Figure 1(a) shows the temperature variation of the
internal energy for three lattice sizes. Figure 1(b) shows
the variation of the internal energy with lattice size for

In general, there is a size dependence for the estimates of
v and T, obtained in this fashion and one must extrapo-
late against (lnb) ' to obtain accurate values.

The cumulant method worked very well for the Ising
model studied by Binder and has the advantage that it
eliminates the need for a simultaneous fit of three param-
eters used in conventional finite-size scaling. Our chief
interest in the method stems from the fact that an inter-
mediate XY-like phase (if it exists} should show up in the
cumulant plots as a line of points where UL ——UL (since
v= oo for the XY model). The method was successfully
used in simulations of the XY model with a fourth-order
anisotropy field hq (Ref. 17), where the low-temperature
phase of the XY model (h4 ——0) was clearly manifest as a
line of critical points.

mLL =Yi(L 'exp(at )}, T &Ti,
XLL '=Y2(L 'exp(at )), T & T2 .

(16)

(17)

Here, t =(Ti T)/T, fo—r T & Ti and t =(T—Ti)/Ti
for T &Ti. From the above we derive the important
inference that when the parameters a, b, c, Ti, and T2
are chosen correctly, the data for all the lattice sizes
should lie on two curves (which correspond to the univer-
sal functions Yi and Yi). This provides an accurate way
of obtaining estimates for the critical exponents and the
transition temperatures. The above variation of finite-size
scaling was used successfully in Monte Carlo studies of
the Ising model with competing interactions on a triangu-
lar lattice. '~

E/J

-1.5—

L
4

~ PO
x 7P

C. The cumulant method

We used the fourth-order cumulant Ut defined in Eq.
(6), in a finite-size analysis of the type originally suggested
by Binder. ' Binder used the Monte Carlo method to
study the probability distribution function Pt (mL ) of the
Ising model on lattices of various sizes. These distribu-
tions were found to be Gaussian centered about the mean
inagnetization (mL }. In a manner analogous to usual
finite-size scaling, he assumed that PL (mL ) was a general-
ized homogeneous function of g and L. The analysis then
led to predictions regarding the behavior of the cumulants
of the distribution function. He showed that Ut ~L
for T & T, and Ut -(2 4(,mt } L k+T—XL )/3 for
T & T, . (Here, d is the lattice dimensionality and T, is
the critical temperature of the Ising model. ) In the limit
L~ao, UL ~—,

' for T & T, and 0 for T & T, . At T„UL
approaches a universal constant U' which is independent
of L. Therefore, plots of the cumulants for different lat-
tice sizes I. and L,

' at various temperatures should yield
estimates of U' (where UL

——UL ) and T, . If b =L'/L
(& 1), the slope of the UL, vs UL plots yields estimates for
the exponent v (Ref. 16):
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FIG. 1. (a) Variation of internal energy with temperature for

three lattice sizes. Results of only the heating runs are shown
because the results of the cooling runs are identical. (b) Varia-
tion of internal energy with lattice size at different tempera-
tures.
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several temperatures. %e did not see any interesting
features such as hysteresis or finite-size effects for large
L.

Figure 2(a) represents the variation of the specific heat
with temperature for several lattice sizes. While the two
peaks clearly suggest two phase transitions, it should be
noted that the peaks are not located at the transition tem-
peratures (as determined from finite-size scaling). They
shift only slightly toward Ti and T2 as we increase the
lattice size. While there is a slight size dependence of the
peak heights, we believe that this tendency will disappear
for large enough lattices. This may be seen from Fig.
2(b). These results are in general agreement with those
obtained by Tobochnik. '

The finite-size effects in the behavior of the magnetiza-
tion are striking. Figure 3(a) shows the temperature varia-
tion of the magnetization. It may be seen that there is
only a slight undulation in the plots near T& and that mL
decreases markedly only beyond T2. %hile we expect a
finite-size tail for T & Ti, the values of mL are unusually
large in the intermediate region. That this is a conse-
quence of the infinite correlation length in the intermedi-

k
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x 32

x

0
X

+ 0
X

0,5—

ate region can be seen from the variation of mL with L
shown in Fig. 3(b). There we see that the magnetization
reaches a nonzero value only for T ~ T&. %e see an inter-
mediate phase characterized by excellent linear behavior.
Once the temperature is raised beyond T2, the deviations
from straight-line behavior reappear, indicating that the
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FIG. 2. (a) Variation of specific heat with temperature for

various lattice sizes. The bold curve shows the behavior for
I. =72 which we believe is essentially the same as for an infinite
lattice. The values of TI and T2 were obtained from the scaling
plots in Fig. 4. {b) Variation of the peak values of specific heat
with lattice size. Cl and C2 represent the specific heat maxima
near TI and T2, respectively.
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FIG. 3. (a) Temperature variation of the magnetization. The

solid curve shows the expected infinite-lattice behavior. (b)
Log-log plots of rnL vs L at various temperatures. The dashed
curves indicate deviations from straight-line behavior. The solid
curves indicate the linear behavior in the intermediate phase.
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FIG. 5. Scaling of the data in Fig. 4{b) assuming a power-law

divergence of the correlation length. [See Eq. (19).]

system is no longer in the critical regime. The values of rl
are shown in Table I. [rI can also be obtained from the
divergence of the susceptibility according to Eq. (15) but
this does not yield any new information. )

The data for all lattice sizes were scaled according to
Eqs. (16) and (17). The results are shown in Figs. 4(a) and
4(b). It is evident that the data scale very well with the
following values for the parameters:

I
X

l

0
]0-2

G 4
8
12

+ 16
x 20
0 32

72

a =1.54+0.01, b =0.050+0.001, c =1.725+0.025,

ks Ti /J =0.68+0.02, kit T2/J =0.92+0.01 .

The errors were determined by considering the quality of
the fits upon deviating from the best-fit results. We

I

1O'

I

Io

I

]O'

I I I

]O'

L' exp(ahT 05}

{b)
FIG. 4. {a) Finite-size scaling of the low-temperature mag-

netization data (T& T, ). [See Eq. (16).] (b) Finite-size scaling
of the high-temperature susceptibility data ( T) Ti). [See Eq.
(17).]
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~V
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0.650
To T =co

fixed point

L 72
x 32
o l2

0.68
0.70
0.80
0.90
0.92

0.100
0.128
0.176
0.236
0.275

TABLE I. Variation of the exponent q in the intermediate
phase. The values at T] and T2 are obtained from the scaling
plots in Fig. 4. The other values are obtained from a least-
squares fit to the data in Fig. 3{b).

AT/J

0.6+5
0.650

I

0.655 0 660
I

0.655
I
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0.665

FIG. 6. Examples of the UL vs UL, plots. The plot on the
left is for I. =8 and the one on the right is for I. =20. Each
data point corresponds to a different temperature. Inset shows
the expected behavior if the intermediate phase is XY-like. The
straight line represents UI ——Ul and its intersection with the
plot through the data represents a nontrivial fixed point. The
XY-like character of the intermediate phase shows up clearly
when I. is larger.
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FIG. 7. Extrapolation of the values of T2 obtained from the
UL, vs UL, plots.

1.0

disagree substantially with Tobochnik's' value
k&Tz/J =1.3, while his estimate k&T, /J =0.6 differs
from ours by about 12%%uo. We note that our value of Ti is
very close to the critical temperature of the plane rotator
model (around 0.90) (Ref. 18) and the value of T, is con-
sistent with that predicted by Jose et al. (=0.65 for
q =6). Also, the value for a is in agreement with that
given by Kosterlitz' (=l.5). However, the exponent
values of 0.100 for rl(Ti) (=2b) and 0.275 for iI(T2)
( =2—c) deviate by 10% from the theoretical values. ' '

We have also attempted to scale the high-temperature
susceptibility data assuming a power-law singularity in
the correlation length: g-(T —Tz) ". In a manner
analogous to that employed in obtaining Eqs. (16) and
(17), we can show that

X L "=F (L' "hT) (19)

where F& is a universal function. The best results that
could be obtained are shown in Fig. 5. We see that while
the data scale very well for the extreme values of hT,
there are systematic deviations in the intermediate region.
We conclude that scaling indicates exponential singulari-
ties unambiguously. As will be seen presently, the cumu-
lant method substantiates this.

The cumulant method was initially not useful in clari-
fying the nature of the intermediate phase. " By extend-
ing our simulations to larger lattices and averaging over
250000 MCS per data point (about 20 hours on the Cyber
750 for a 72 X 72 lattice), we have obtained a picture con-
sistent with the scaling results. Figure 6 shows typical
plots of UL, vs UL for L =8 and 20 and various values of
L'. We draw the attention of the reader to the scale of
the plots: the changes in the curnulant as the temperature
is varied are minute and can be as low as one part in 6500
for a temperature variation of k&AT/J =0.1. This is one
of the reasons why good quality data were essential.
When L =8, we see a "hump" in the intermediate phase
when L' is large. We attribute this effect to the finite-
lattice size and note that for the cumulant method to yield
good results we need L &g. Thus, this spurious ordered
phase has practically disappeared when we examine plots
of UL vs U20. A large value of b ( =L'/L) is also neces-
sary in order that substantial size effects not be evident in

0,65—
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1

0.10
1

0.15

ksT/J

o 040
0.50
0.55

0 oeo
x 062

0.65
0.70

0 0.80
0.90

v 0.92
v 0.94
+ 095

1.00
I

0,20
I

0.25

FIG. 8. "Flow diagram" of UL, vs I. ' at various tempera-
tures. UL ———, represents the trivial fixed point for the ordered

phase and UL ——0 is the high-temperature fixed point. The ex-
trapolation for k~T/J =0.65 is based on the value of T~ ob-
tained from the scahng plots in Fig. 4.

the cumulant. We found that Ti obtained in this fashion
is dependent on the choice of L' and L. In Fig. 7 we
present the extrapolation of T2 vs (lnb) ' (as in Ref. 16).
(The hump obscures the location of T, and we are able to
make only a rough estimate for the same. ) In this
fashion, the cumulant method yielded ka Ti /J =0.62 and
k~Ti/J =0.935. These estimates of the transition tem-
peratures are in general agreement with those obtained
from finite-size scaling. However, there is an element of
subjectivity in locating a nontrivial temperature in the cu-
mulant method (in the manner of drawing the curves) and
we feel that the scaling results are more accurate. Finally,
we present in Fig. 8 the behavior of UL as a function of L
at various temperatures. The line of fixed points is clearly
manifest in the intermediate phase as the range of tem-
peratures for which UL becomes independent of L. From
the figure it will be readily appreciated that one has to ex-
amine rather large lattices in order to extrapolate correctly
to the thermodynamic limit. Thus, though the plateau is
evident in the smaller lattices even at k&T/J =0.55, it
moves toward I.= 00 as we approach TI and extends all
the way to I. = 00 only in the intermediate phase.

IV. SUMMARY

We conclude that the model has two Kosterlitz-
Thouless transitions in zero field at kaTi/J =0.68+0.02
and k~T2/J =0.92+0.01. The intermediate phase is
XF-like with zero magnetization and infinite susceptibili-
ty. The specific heat remains finite at both transitions.
The exponent g varies continuously with temperature in
the intermediate phase and our estimates for rl are close to
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the theoretical values of Jose et a/. The results from the
cumulant method are in good agreement with those from
finite-size scaling and we conclude that the method works
well, but only provided the simulations are done on very
large lattices.

ACKNOWLEDGMENTS

We wish to thank Professor K. Binder and Professor
M. E. Fisher for helpful comments. This research was
supported in part by NSF Grant No. DMR-83-00754.

J. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973); J.
Kosterlitz, ibid. 7, 1046 (1974).

2N. D. Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133
{1966).

J, Villain, J. Phys. (Paris) 36, 581 (1975).
~J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,

Phys. Rev. 8 16, 1217 (1977).
5S. Elitzur, R. B. Pearson, and J. Shigemitsu, Phys. Rev. D 19,

3698 (1979).
6J. L. Cardy, J. Phys. A 13, 1507 (1980).
7E. Domany, D. Mukamel, and A. Schwimmer, J. Phys. A 13,

L311 (1980).
SH. V. Roomany and H. %'. Wyld, Phys. Rev. 8 23, 1357

(1981).
P. Rujan, G. O. Williams, and H. L. Frisch, Phys. Rev. 8 23,

1362 (1981).
' J. Tobochnik, Phys. Rev. 8 26, 6201 (1982). Several figures in

this reference were incorrect; see also, J. Tobochnik, Phys.
Rev. 8 27, 6972 (1983) where the figures in the original paper

were corrected.
C. S. S. Murty and D. P. Landau, J. Appl. Phys. 55, 2429
(1984).

See, for example, K. Binder, in Monte Carlo Methods in Sta-
tistical Physics, edited by K. Binder {Springer, Berlin, 1979).

t3M. E. Fisher, in Proceedings of the International Summer
School (Enrico Fermi) l970, Course 5l, Varenna, Italy, edited

by M. S. Green {Academic, New York, 1971). Finite size
scaling has been verified for a variety of Ising models; see, for
example, A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185,
832 (1969);D. P. Landau, Phys. Rev. 8 13, 2997 (1976).

i~H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena (Oxford University Press, Oxford, England,
1971).

5D. P. Landau, Phys. Rev. 8 27, 5604 (1983).
K. Binder, Z. Phys. 8 43, 119(1981).

'7D. P. Landau, J. Magn. Magn. Mater. 31-34, 1115 (1983).
~ J. Tobochnik and G. V. Chester, Phys. Rev. 8 20, 3761 (1979);

and references mentioned therein.


