
PHYSICAL REVIEW( 8 VOLUME 33, NUMBER 1

Self-consistent wake binding energies
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%e consider an electron that is trailing a swift ion in condensed matter and is trapped in the wake

of the ion. The many-body theory of such a wake-bound state is developed, including polaronlike

nonlocal self-trapping effects. The binding energy is computed self-consistently for several cases.

Since the early work of Neufeld and Ritchie' and
Ritchie, a great deal of experimental and theoretical work
has been concerned with the distribution in space and
time of perturbations of electron motion in solids caused
by the passage of swift charged particles. Neelavathi,
Ritchie, and Brandt (NRB) pointed out that the oscillato-
ry wake of electron density fluctuations trailing a fast ion
may (a) influence the motion of nearby ions traveling with
nearly the same velocity, and (b) give rise to wake-bound
electron states. Subsequently, Brandt, Ratkowski, and
Ritchie showed experimentally and theoretically that the
energy loss of proton clusters in solids is influenced by the
presence of such wakes. They bombarded thin foils with
swift H2+ and H3+ ions and found that the energy lost by
an ion cluster in a foil was larger than that which would
have occurred if the constituent ions were isolated from
one another. The augmented energy loss is mainly due to
the retarding effect of the wake of a leading ion on a trail-
ing one. Gemmell et al. s found that it was necessary to
include in their calculations the wake potential generated
by the leading ion in order to explain the experimental
distributions in energy and angle of protons emerging
from crystals bombarded with (HeH)+ beatns under pla-
nar channeling conditions. The force acting on the trail-
ing ion, arising because there is an excess of polarized
electrons behind the leading ion, tends to move it towards
the track when it is in the region

( —mv/co~) && (O.
Here v is the velocity, co& the plasma frequency, and z is
the coordinate along the direction of motion in a reference
frame moving with the cluster with origin at the leading
1on.

Recent experiments with swift channeled ions that have
atomic numbers ranging from 5 to 9 and carry a single
electron in a E-orbital state show resonant excitation of
the electron due to coherent periodic perturbation by
atoms in the bounding crystal rows. A pronounced split-
ting in the resonant dips of the surviving fraction of these
ions as a function of ion speed may be attributed in sub-
stantial portion to the wake of the ion. Hybridization of
excited hydrogenic levels on the ion (wake energy split-

ting) is a measure of the mean retarding force on the ion
and has its origin in the wake. ' Bell and co-workers
have measured the shift in the x-ray energy corresponding
to the transition between the 'I'~ and 'So multiplets in
heliumlike sulfur projectiles. This decrease in binding en-

ergy may be attributed to the wake of the ion. s

When swift ions penetrate gaseous or solid targets, they
emerge with accompanying free electrons traveling with
nearly the same velocity as the ion. These are the so-
called convoy electrons. ' For gaseous targets this
phenomenon was first observed by Crooks and Rudd"
and explained by Macek' in terms of charge-
transfer —to—continuum states associated with the
Coulomb potential of ions moving in vacuum. Some in-
vestigators'3' have observed two components in the mea-
sured velocity distribution. It has been suggested' that
some of the convoy electrons from solids might originate
from wake-bound electrons trailing the swift ion in the
solid. Part of the binding energy of such an electron must
originate from polarization induced by the electron itself.
Besides its intrinsic interest, a self-consistent calculation
of the wake-bound electron state could lead to a better
understanding of the spectrum of convoy electrons emerg-
ing from a solid. Little quantitative attention has been
given to capture and loss processes involving weak-bound
states. "

In the calculation of the wake potential by Neufeld and
Ritchie, ' a local dielectric function was used to represent
the response of the medium. They also studied the
shock-wave aspects of the wake by employing a spatially
dispersive dielectric function. The local form was also
used in the first papers of NRB (Ref. 3) and Gemmell
et a/. Day' considered the effect of including plasmon
dispersion on the binding energy of wake-bound electrons
in an electron gas described by Lindhard s classical dielec-
tric function. ' More realistic calculations' ' using a
quantal dielectric function differ appreciably from Day' s.

These authors' 2' presented a detailed study of the
wake potential and of the density fluctuations within the
plasmon-pole approximation and estimate the binding en-

ergy of wake-riding states. The concluded that although
the binding energies are smaller than the ones calculated
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by NRB binding existed over the whole range of experi-
mental velocities (2—20 a.u.). These results are in agree-
ment with those found by Day and Ebel who used a
semiclassical dielectric function to represent the response
of the medium and a variational procedure in which an
exponential trial function was employed. The validity of
the plasinon-pole approximation for this problem was
confirmed by Mazarro et al. who presented a detailed
study of the wake using the full random-phase approxi-
mation dielectric function to describe the response of the
electron gas. The binding energies calculated in the
random-phase approximationz ' are in general agreeanent
with the ones obtained within the plasmon-pole approxi-
mation for the medium response.

Although most of the theoretical work related to these
problems is couched in the language of the electron gas,
the results are of much wider applicability. They apply to
semiconductors and insulators, where collective excita-
tions centered at some resonance frequency coo are known
to exist. Ritchie et al. '9 pointed out that the form of
the wake may be influenced by the damping of the collec-
tive excitations in such media to a greater extent than in
metals. Recently Ashley and Echenique have evaluated
the effect of damping using the Mermin dielectric func-
tion to describe the response of the electron gas.

Most published theoretical work on the wake has used
classical electrodynamics to describe the response of the
medium via a causal dielectric function. Ritchie and
Echenique have presented a completely quantal treat-
ment of the wake potential.

None of the calculations of the binding energies quoted
above include the effect of the self-wake of the trapped
electron on its binding energy in the trough of the leading
ion. In fact, once the electron is trapped, polaronlike non-
local effects in the wake will tend to increase the binding
further. We present in this paper the results of a calcula-
tion including such effect. The response of the medium is
taken to be the full random-phase-approximation (RPA)
function.

SELF-ENERGY APPROACH

The quantum-mechanical interaction of an ion-bound
electron with an interacting electron gas has been studied

by Ritchie and Echenique. 2s The energy of a electron-ion
complex can be described in terms of the destruction and
creation operators CK„,CK„. The electron-ion system has
center-of-mass momentum K and internal state specified
by the quantum index n We have. then, the free Hamil-
tonian Ho,

&0= QQEK. CK.Cr (1)
K n

where

E
K» 2(M )

II

Here co„ is the energy of internal motion and M the ion
mass. We use atomic units throughout (e =iii=m =1).
The Hamiltonian of an interacting electron gas H,~ is

1
H,s

——QEpAuAu+ g'g guqAu qApAu+qAu,
p q p p'

where A& is a destructive operator for an electron with
momentum p and Ez ——p /2. The normalization volume
is 0, ue =An/q is the momentum representation of the
Coulomb interaction energy, and the prime in the sum
over q means that the term q=O is to be omitted to ac-
count for the presence of the uniform positive background
charge. The energy of interaction between the ion-
electron system and the electron gas may be written as

=1Ht ———g g g ue [p„„(q)—Z5„„]C q „C„„Au+qA p,
p q

where p„„(q)= ( n
~

e'q'
~

n'), is the matrix element of the
density operator with respect to the static vectors of the
internal motion, and Z is the ion charge. The Dyson
equation for G „„,the exact Green's function of the in-
teraction system, may be solved formally as

—1
G»n, (u

= (tu E»n+ X»», ()))

where X« is the irreducible self-energy of the ion-
electron pair due to the interaction with the medium. It
may be represented by an infinite suin of diagrams in
which interactions with the medium occur in all possible
ways except that no diagrams are to be included that can
be separated into two unconnected parts by cutting only a
single line representing the propagator of the electron-ion
pair. The analysis is similar to that for the interaction of
a single particle with the medium. We work in the pair
approximation. Then we have

d g
X»», ())=t g J 3 uq~q

(2m )'

CO —1
G» —q, n ', a) —())' (eq, (0'

where Mq ——p,„(q)—Z5„„.
A first order perturbative solution of this equation is

found by replacing G by G the free ion-electron Green's
function in the right hand side of Eq. (5). G is obtained
from Eq. (4) by neglecting X. Then we have

3

X (g f „=U~(M~( l (e~
' —))D, (6)

2~

where

D =fco co' E» q„—+i5—sgn(E» q „—p))
and p is the chemical potential. The ~' integral may be
evaluated by rotating the contour so it lies along the imag-
inary axis of the m' plane. If we are interested in the
quasiparticle properties of the ion-electron gas we look at
co=E„„and then we get in the nonrecoil approximation,
justified because M »1,

d igX „E ——g ~ p„„(q)—z5„„~
(2ir)

—j.X u, (eq„.q+
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where v is the velocity of the center of mass that we take
to be the ion pair velocity since it has been assumed that
M ~)1.

From the structure of Eq. (7) it may be seen that dis-
tinct contributions to X originate from (a) transitions of
the projectile in which its internal state remains unaltered
and (b) transitions in which the internal state changes.
Consider the four terms of Eq. (7) that appear when the
absolute square bracket is multiplied out. The term pro-
portional to Z arises from the reaction of the ion on it-
self through polarization induced in the medium. This is
of no interest here and will not be considered further. The
two terms proportional to Z may be considered to
originate (a) in the action of the ion on the electron and (b)
in the action of the electron on the ion. The second of
these may also be disregarded for present purposes. The
remaining portion X'„of the self-energy is written as

3
X'„=g f 3uq f d ru„'(r)e'q'u„(r)

(2m )

x [p„*„(q)—Z5„„]

(8)

where tt„(r)—:&r
I

n & and 5„„ is the Kronecker delta.
An expression for the self-energy as it depends on the

coordinate r may be found directly by the argument that
X'„ in Eq. (8) may be considered to be the expectation
value of the space-dependent self-energy X'„(r) with
respect to the wave function of relative motion in the nth
state, i.e.,

Xn= 1~n r &n r ~n r

Equating the integrands of Eqs. (8) and (9},it follows that

d q u„'(r)
X'„(r)=g f uq, e'q'

(2n )' tt„'(r)

X(p„'„Z5„,)(eq, ,'.q~—„,1) . (10)—
The term in Eq. (10) that is proportional to Zi,

3

Xz.(r) = —Zl ' uqe'q'(eq, „l
q 1), . —

(2n )

may be seen to be essentially the same as the semiclassical
wake potential, ' ' i.e., the real part of Xz is the stan-
dard wake potential expressed in atomic units and multi-
plied by the electron charge ( —1).

The part of Eq. (10) containing the factor p„'„(q) arises
from the action of the electron's wake on the electron
itself. The set of single-particle eigenfunctions t &r

I
n & ]

that determines the matrix elements p„„should be solved
self-consistently, given that the self-energy enters the
Schrodinger equation for I &r

I
n & J. An exact solution

cannot be obtained. Useful approximations valid for
eigenvalue spectra closely space compared with ~o may be
obtained by invoking closure to evaluate the sum over n'
in Eq. (10). If the spacing between eigenvalues is large
compared with coo it may be a good approximation to
neglect all terms except for n'=n

Here we will consider the term p„„(k}p„"„(k) for n '= n,
and will focus on the infiuence on the bound electron of
the wake set up by the bound electron itself. Thus we get

d3
X~n g pnn q fq y q 1

(2m. )
(12)

Z] 00 ~ I COZ /0

@z,(r t) = f, gJo(gb)dg f k
(14)

The cylindrical coordinates b and z refer to the direction
of motion and are defined as b =(x +y )'~ and
z =z ut re—lative to the positive (x,y, z) =(0,0,ut) of
the moving charge Z i. The wave number
k = (Q +pi lu )'~ has component Q in the b direction.

An electron trapped in a bound state having a wave
function %p(r), will set up a wake potential given by

P (r, t)= —f pp(r')4z, i(r —r')d3r', (15)

where pp(r) is the probability density of an electron in the
state 4'p(r): thus

(16)

Thus the ground-state energy Ep of an electron in a state
described by a wave function will then be

&o= &'41( —
2
~'}

I
'4&+ &'Pp

I
( —@z,)

I
Po&

+ —,
'

&'Ilp
I

( —@ )
I
'Pp&,

where ——,
' V'- is the kinetic-energy operator and we have

included a factor of —,
' in the last term to account for the

fact that it represents the self-energy of the electron due
to the polarization of the medium that the electron itself
has created. Eo can be written more explicitly as

Ep ——
&Vp I(—V )I+o&

d k 1
, f, f d3rp(r)e'"'

2% k

( —1} d k Po(r)+
4H k 2

)& f d r f d r'pp(r)pp(r')e'""

%'AKE BINDING ENERGY

We want to calculate the ground-state energy of an
electron trapped in the first trough of potential energy of
the wake set up by a fast-moving leading ion, but taking
into account the interaction of the trapped electron, now
moving at a speed u relative to the medium, with the
medium itself.

The scalar electric potential 4"(r,t) in an homogeneous
isotropic medium due to a swift point charge Z, having
constant velocity v is given in the reference frame of the
moving ion by

Zi dke4" (r, t)=
(2m. )' kz

or in a cylindrical coordinate system,
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Zo =
& eo

~
( —2

V')
~
eo&+

po

26 k

g
d'k Ipo«) I'

4n k
(19)

yK
Zl=l

where po(k) is the Fourier transform of the probability
density po(r) given by

po(k)= J d're'"'p, (r) . (20)

We could try to solve for the minimum of binding energy
Eo by a variational procedure by using Eq. (19). Alterna-
tively, an explicit expression for the position dependent
wake may be derived and then Eq. (17) may be evaluated
by performing the integrals in real space.

A calculation of this type using the full RPA result to
represent the medium response will clearly be a formid-
able task. Fortunately in the region of the first trough of
the potential energy curve the potential of the leading ion
is well described by fitting it to a harmonic oscillator
well, ' ' ' both along and transverse to the direction of
motion. We are interested in estimating the order of mag-
nitude of the effect and therefore we shall approximate
the potential created by the leading ion in the neighbor-
hood of the first potential energy trough for an electron at
(z —zi ) by an expression of the form

FIG. 1. Plot of the scalar electric potential generated in a me-

tallic medium due to the presence of a swift proton with velocity
U=2 a.u. The medium density corresponds to a one-electron ra-
dius of r, =2 and the potential was computed using the RPA
dielectric function. The potential of the bare ion has been sub-

tracted out and the result is shown as a function of position
along the track with z=0 corresponding to the location of the
proton. All quantities are given in atomic units (e =A=m =1).
The value of mv /co~ appropriate to this case is 10.3 a.u.

For very large charges this effect of the self-wake is given
by the energy shift

@z,(b,z—) = —Vo+ ,
' aib'+——,

'
a1'11(z —z, )' . (21) ~= —i No+ —'poz o+ — +

zi 2ai 2aoi

For the electronic bound state, we use a trial wave func-
tion of a Gaussian type

1/4
aap2

m3

—ab2/2 —ao(s —s& ) /2
e e (22)%o(r) =

The potential set up by the localized electron is calculated
by approximating the point-electron wake to be used in
Eq. (15) by either a harmonic well or a Gaussian.

(i) Harmonic well approximation. We approximate the
potential set up by a point electron in the neighborhood of
zo, by an expression of the form

which increases slightly with increasing Zi,' the relative
effect, of course, decreases with increasing Z, .

(ii) Gaussian approximation If the po. tential set up by
the incident ion, is described by a Gaussian centered in the
neighborhood of zo, i.e.,

e (bz)= —y t"e -"' "'
(29)

then the potential created by the bound state charge distri-
bution can be easily evaluated and is given by

V=2

41(b,z) = —Po+ , P b + —,'Po(z ——zo) (23)

and obtain for the expectation value, E(a,ao), of the
Hamiltonian of Eq. (18) using the trial wave function of
Eq. (22)

2 2
o, &p A ) CKp)E(a a11)=—+ +Z, —Vo+ +

4 2u 4ap

yK
Z]=t

+— do+ pozo + —+—2-2 p' p'

leading to a ground-state energy of

Eo =—Zi Vo do~2+ .POZ o+af—+ z aof—
where

af =p +Ziai2 2

2 2 2aof po+ Z 1a01

(25)

(26)

FIG. 2. Plot of the scalar electric potential calculated under
the same assumptions as those of Fig. 1. The wake potential is
given as a function of lateral distance b from the track for two
different values of z. All quantities are given in atomic units.
The value of mv /co~ appropriate to this case is 10.3 a.u.
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TABLE I. Binding energy of an electron trapped in the first

trough of potential energy for a proton moving with velocity v

ln a medium with density corresponding to that ln alumlnunl

(r, =2). The medium response is described in the RPA. Eo is

the binding energy in eV without inclusion of the self-wake ef-

fect. EHw and b~ are the extrabinding produced by the self-

wake in the harmonic well (H%) and Gaussian approximations

( 6) to the trapped electron well described in the text.

TABLE II. Additional binding energy 56 in electron volts
due to the self-wake. The Gaussian approximation is used for
the trapped electron wake for ions of charges Zl (1,2,5) moving
at velocities U (2,4,6) in an electron gas of density corresponding
to that of aluminum (r, =2). The electron gas response is
described in the random-phase approximation. Numbers in

parentheses are values of Fo in eV.

Z]
2

0.85
4.24
4.63

5.1

2.64
2.3

3.11
2.23
1.74

3.11 (0.85}
2.23 (4.24)
1.74 (4.63)

3.68 (7.5)
2.47 (10.5)
1.85 (12.0)

4.47 (29.5)
2.83 (37.0)
1.94 (35.5)

1/2
a ao

0 "(r,&) = yo— 7r3/2

(a+p)(ao+ po)

ap z- aopo
Xexp b exp (z —zo)a+p ao+ po

4o a
2 a+P

a
ao+ po

ao
X

ao+yo

ao'vo
exp- Zo

ao+ 3'o

where

and

y =ap/(a+ p),

ro=aopo/(ao+ po) .

The expectation value of the Hamiltonian is then

2 2
a ao a1 ao1

E(a,ao) =—+ +Z, —Vo+ +
2a 4ao

(30)

(32)

(33)

tial of the leading ion in the transverse direction both at
the first trough of electron potential energy zi ———12.3
together with the wake created by a point electron at the
position of the first minimum for the electron zo ———2.8.

In Table I, we show the binding energy of an electron
trapped in the first minimum of potential energy for a
proton moving with velocity U in a medium with density
equivalent to that of aluminum. We show the binding en-

ergies calculated with and without inclusion of the
trapped electron self-wake effects. We show the results
obtained by using the two approximations described in the
text: the harmonic well approximation, denoted as HW,
and the Gaussian approximation. The harmonic well fit-
ting has been chosen so as to give an overestimation of the
self-wake effect while the Gaussian gives an underesti-
mate. A reasonable description could be obtained by tak-
ing the mean of the two numbers.

In Table II, we show the increase in binding due to the
self-wake of the trapped electron for different velocities
and different ionic charge. The binding increasing slight-
ly with increasing Zi [see Eq. (28)] the relative effect, of
course, decreasing with increasing ionic charge. For v=2
and Zi ——5 (5/Eo-0. 1) while at Zi ——1 there would be
practically no binding without the self-generated wake ef-
ect.

RESULTS

We have calculated the wake potential using the ran-
dom phase approximation' ' to the dielectric function to
describe the response of the medium. The results of such
calculation along the incident ion trajectory are shown in
Fig. 1 for an ion moving with velocity U=2 in a medium
with an electron density corresponding to that of alumi-
num ( r, =2). In Fig. 2, we show for U=2 the wake poten-
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