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Using the self-consistent pseudopotential technique and planarly averaged one-dimensional potential
(quantum well), we provide a rigorous basis for understanding the quantum size effect and dimensionality
of thin metal films. The density of states, work function, surface energy and vertical surface relaxations,
subband energies, and surface charge density are found to vary as a function of film thickness. The density
of states has a ladder-type structure (characteristic of a two-dimensional electron system); its value at the
Fermi level changes in quantized steps with film thickness, L. The relative position of the Fermi level
between subbands, which changes with L, provides an interesting explanation for the variation in physical

properties.

Electrons confined in thin films have a quantization of
states which is quite different from the bulk. The electronic
wave functions normal to the plane (z direction) of the film
become exponentially damped, and the energy-level spec-
trum splits into subbands. These and other physical
phenomena arising from the lowering of the dimensionality
are called the quantum size effects (QSE). They have been
observed in heterostructure superlattice semiconductors!
and have important implications, such as the Hall quantiza-
tion and solid-state electronic devices with very short
response time. In metals, electrons near the Fermi energy
have short de Broglie wavelength (~5 A), so the QSE are
limited to thin films. Electron standing-wave states in thin
Pb film have been observed by electron tunneling.? The os-
cillations of the chemical potential are found to influence
the width of the superconducting gap.® Other effects, e.g.,
localization, can be significantly enhanced* in the presence
of QSE.

The deposition of thin metal layers on various types of
substrates leads to exotic structures and electronic proper-
ties.’ Therefore, an understanding of the electronic proper-
ties of thin metal layers is becoming increasingly important
both from fundamental and technological viewpoints. On
the fundamental side one needs to be able to delineate a
transition from two- to three-dimensional behavior. Also, it
is important to know how the metal changes when cut to a
few layers. Early studies® used the Sommerfeld model and
treated the electron in a square cut potential to explore the
QSE. Apart from these oversimplified models, Schulte’ in-
vestigated the metal in the jellium approximation using the
density-functional formalism.2 Recently, the discrete lattice
was introduced by Feibleman in a detailed linear combina-
tion of atomic orbital (LCAO) calculation.® Other slab cal-
culations'®-!2 have dealt with surface states and chemisorp-
tion aspects.

In this paper we present results for QSE calculated by
combining the self-consistent-field (SCF) pseudopotential
method and realistic model calculations. Our results are
based on thin Al(111) films consisting of one, three, five,
and seven layers treated by a repeating slab geometry. We
performed self-consistent pseudopotential calculations!?
within the framework of a local density functional theory,?
applied in the momentum space formalism. We used a non-
local norm-conserving ionic pseudopotential given by
Bachelet, Hamann, and Schliiter,' and Ceperley-Alder!’ ex-
change and correlation potential. Plane waves with Kinetic
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energy less than 7 Ry are treated exactly, and those having
kinetic energy between 7 and 9 Ry are included via
Léwdin’s perturbation scheme. During the self-consistency
iterations, the electronic valence charge was sampled at 49 k
points placed uniformly in the surface Brillouin zone. A
modest amount of thermal smearing of the Fermi-Dirac dis-
tribution function was permitted to reduce the grid depen-
dency. In addition, we generated an (x,y) averaged one-
dimensional (1D) (quantum well) potential, ¥ (z), from the
local part of the SCF slab potential, which is simple enough
to reveal fundamental aspects of systems of lower dimen-
sionality. We then assumed a free-electron behavior in
(x,y) directions and solved the 1D Schrédinger equation
numerically!® to obtain the electronic structure of a quasi-
2D system. By comparing results obtained from quantum
well and SCF slab calculations we were able to draw impor-
tant conclusions regarding the quasi-2D character, the
dimensionality of the metal films, and provide a rigorous
understanding of the QSE.

Figure 1 shows the band structure for three metal films of
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FIG. 1. Energy band structures of one, three, and five layers of
aluminum, calculated by the self-consistent pseudopotential method,
are shown by heavy lines. Lighter lines correspond to energy bands
obtained from the quasi-2D system quantum-well structure. The
energy is measured with respect to the vacuum level.
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different thicknesses calculated self-consistently. Also
shown is the Fermi level Er in each case and the corre-
sponding work function ® which is oscillating with the film
thickness.”»? For one and three layers, lighter lines give the
subbands of the quasi-2D system described more fully
below. As seen, the slab subbands and the subbands of the
quasi-2D system, E,+#%(k2+k?)/2m follow each other
closely. Some minor differences are due to the fact that the
former split according to the symmetry of the slab potential.
This clearly demonstrates the quasi-2D free-electron charac-
ter in the thin Al film with the effective mass m" being
close to the free-electron mass m. Due to the neglect of
(x,y) corrugation and the nonlocal part in the planarly aver-
aged potential, the subbands and the Fermi level of the
quasi-2D system are shifted upwards relative to that of the
3D slab. However, this 1D potential obtained by a planar
avarage of the self-consistent pseudopotential is able to yield
the Fermi level crossing by the subbands correctly. Hence,
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it is capable of providing a more realistic description of the
s-p bonded metal films than a simple square well potential,
as well as the jellium model. Simple models give the
subband spacings (E,.;—E,) to be proportional to
(2n+1)/L?, where the electrons are confined in a length L
along z direction. A planarly averaged potential, as well as
the completely self-consistent potential which we have con-
sidered here, gives a quantization quite different from
(2n+1)/L?, as can be seen from the irregular spacing of
energy levels at I in Fig. 1.

It is well known that the density of states of a 2D free-
electron gas, D,(E), is energy independent. Consequently,
the density of states of a quasi-2D system,

Dy (E)=3 H(E~E,)m/mk?

(where H is the Heaviside function) yields a ladder-type
density of states. Thus, whenever a new subband dips
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FIG. 2.

1D potentials (quantum wells) generated by the planar average of the self-consistent pseudopotentials calculated for one- and

three-layer Al films. The bound subbands and the wave functions are shown. The conduction bandwidth and the energies at k=0 of the
slabs are, respectively, indicated by dash-dotted and dashed lines. The ladder-type state densities of the quasi-2D system and the density of

states of slabs calculated at 144 k points are shown in the right panels.
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below the Fermi level, D,,(E) increases by a step m/mhk2,
In the limit of large L,

E
Dy(E) = [ Dy(E")Dy(E')dE"

becomes the density of states of a free-electron gas =+E.
In a real metal film, the relative positions of subbands, E,,
are closely related to the form and the symmetry of the po-
tential, and hence D;(E) deviates from the VE form
characteristic of the density of states of the 3D free-electron
gas. Since the confinement length of the electrons is finite
in a thin metal film, the crossing of the Fermi level by an
another subband due to an increase of L gives rise to a
jump in D,,(Ef) causing significant changes in electronic
properties. Certainly these changes are negligible for a thick
film, but become important with a decreasing number of
metal layers. In the jellium model, an additional subband
dips below the Fermi level whenever L increases by
Ar/2=(xw/3p)Y? (p is average charge density), and the
electronic properties oscillate accordingly.” In the square
well model potential (E, +,— E,) is inversely proportional to
the square of the number of layers. As stated above, in a
real system the subbands are irregularly spaced, and hence,
simple model potential calculations are not adequate for ob-
taining the Fermi-level crossing correctly.

One may also understand the properties of metal over-
layers deposited on semiconductors in terms of the depen-
dence of the subband structure on the form of the potential.
When the form of this potential is changed by the substrate
weakly interacting with the metal overlayer, then D (Ef)
may undergo a sudden change with significantly altered
electronic properties. Evidently, such an effect cannot be
deduced from simple quantization models. Here it may well
be speculated that the superconductive state of Ag mono-
layer’ on Ge bears a close relationship to the shift of the
subband with respect to Er. The density p,, which is simply
the number of electrons per unit area in the (x,y) plane,
determines the Fermi level through the relation

2 (EF—E,,)=ﬁ21rp,/m

It is connected to the planarly averaged slab charge density
by p,=f5(z)dz. Consequently, variations in p, also in-
duce changes in the properties of the thin metal film. The
electron density of the metal overlayer may vary with the
geometrical structure and also the substrate temperature
leading to phase transitions. It is interesting to note that the
Al monolayer in Fig. 1 has an equilibrium lattice con-
stant (a=3.76 A) 7% smaller than the ideal bulk value.!”
This lattice contraction imposes an 18% change in ps and a
4% increase in the work function, ®. The bandwidth (mea-
sured from the first subband up to Ef) increases by 17%.
The change of the bandwidth as a function of the lattice
parameter follows the d~2 rule.!®* Incidentally, the calculat-
ed equilibrium total energy of Al monolayer is 0.8 eV/atom
(which is twice the surface energy) higher than the bulk
value. It implies that Al atoms on a substrate may prefer to
form cluster rather than an epitaxial layer. However, even a
weak bonding to a substrate with a binding energy = 0.8 eV
may lead to formation of epitaxial overlayer.

In Fig. 2, the calculated density of states for the quasi 2D
system is shown, and it has the ladder-type structure. Also
shown are the density of states of one- and three-layer films
calculated at 144 k points in the SCF slab model. Except
for some structure due to coarse k sampling and the lattice
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potential, these density of states also have a ladder shape in-
dicating the dimensionality of the metal. We propose that
the shape of the state density can be taken as a fingerprint
of the dimensionality, much like the plasmon dispersion.!?
As the number of layers increases, the step density also
increases, and eventually the system becomes three dimen-
sional. This trend is already apparent in the five-layer Al
slab density of states.

In Fig. 3 the surface energy, bandwidth, work function,
and subband energies at k=0 are shown for one-, three-,
five-, and seven-layer slabs calculated self-consistently. Our
work function and surface energy values exhibit an oscilla-
tory behavior due to the QSE. The work function of the
monolayer is large and close to the semi-infinite slab value
(4.3 eV), but by going to a three-layer slab it decreases to
3.2 eV. It is interesting to note that in agreement with pre-
vious arguments, another subband drops below the Fermi
level of the three-layer Al slab. In the five-layer slab, ® in-
creases again to 3.4 eV and reaches 3.7 eV in a seven-layer
slab. As for the surface energies, they are oscillatory, but
show a reverse trend as compared to ®. Calculated forces
exerted on the atoms in the ideal positions indicate small,
oscillatory vertical multilayer relaxation. Small and inward
direct forces on the surface layer diminish with a seven-
layer film implying the size dependence of the surface verti-
cal relaxations. Ho and Bohnen?® found a small change in
the work function ~— 0.2 eV between the relaxed and ideal
Al(110) slab. The surface relaxation effects on the work
function of the Al(111) slab are even smaller and do not ef-
fect our conclusions in any essential manner.

The oscillatory behavior of the electronic properties, espe-
cially that of the work function, is related to the surface
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FIG. 3. Surface energies (upper panel), work function, conduc-
tion bandwidth, and subband energies at I' (lower panel) of one-,
three-, five-, and seven-layer slabs calculated by the SCF pseudopo-
tential method.
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electronic charge density varying as a function of film thick-
ness.” The surface charge density is low when the Fermi
level lies close to an empty subband. It passes through a lo-
cal maximum when the Fermi level is near the middle of an
occupied and the next empty subband. As a result, the
work function is near a local minimum whenever the Fermi
level is closer to a subband and increases when Efr is in
between two subbands. Since the Fermi-level position with
respect to subbands varies with the film thickness, the work
function shows an oscillatory behavior thus described. In
Fig. 3, the position of the Fermi level with respect to the
subbands and oscillations in the work function confirm this
argument. For example, in a monolayer the Fermi level oc-
curs in the middle, and for three layers it is near the edge of
a subband with a severe reduction in the work function. In-
terestingly, the Fermi level of the seven-layer thick film lies
close to a subband and suggests that a six-layer film (for
which Er will be located closer to the middle) will have a
higher value of the work function.

The planar average of the pseudocharge density p(z) has
small Friedel oscillations appropriate for Al. From the
outermost plane going towards vacuum, monolayer has the
highest and the three-layer film has the lowest charge densi-
ty among all the slabs considered here. In the multilayer

slabs the highest charge density occurs in the outermost
atomic plane. An analysis of the total charge density con-
tours in the layer planes shows that the monolayer has the
highest charge density at the center of the line connecting
any two nearest neighbors. For multilayers, there are two
maxima on the line connecting two nearest neighbors and a
shallow minimum at the center of the equilateral triangles
connecting the three nearest-neighbor atoms. This is a
consequence of the fcc close-packed structure.

In conclusion, the self-consistent pseudopotential calcula-
tions, as well as the results from the quasi-2D system show
that charge density, surface energy and surface relaxation,
work function, and the conduction bandwidth, depend on
the size of the metal film thickness. The relative position of
the Fermi level with respect to the highest occupied and the
next empty subband undergoes a change depending on the
size of the film. This in turn influences the surface charge
distribution and the resultant electronic properties. The
relative position of the Fermi level between two subbands is
an important parameter in assessing properties of metal
overlayers on semiconducting substrates.?! The calculated
ladder-type density of states is characteristic of the dimen-
sionality of very thin film and gradually goes over to the 3D
system starting at around five to seven layers.

‘Permanent address: Department of Physics, Middle East Technical
University, Ankara, Turkey.

*Present address: IBM Zurich Research Laboratory, CH-8803
Riischlikon, Switzerland. Permanent address: [IBM Almaden
Research Center, San Jose, CA 95120-6099.

IR. Dingle, in Festkdrperprobleme, edited by H. J. Queisser, Ad-
vances in Solid State Physics, Vol. XV (Pergamon, Oxford,
1975), p. 21; also, see T. Ando, A. B. Fowler, and F. Stern, Rev.
Mod. Phys. 54, 437 (1982).

2R. C. Jaklevic, J. Lambe, M. Mikkor, and W. C. Vassell, Phys.
Rev. Lett. 26, 88 (1971).

3A. Paskin and A. D. Singh, Phys. Rev. 140, A1965 (1965).

4P. Chaudhari, H.-U. Habermeier, and S. Maekawa, Phys. Rev.
Lett. 55, 430 (1985).

5M. J. Burns, J. R. Lince, R. S. Williams, and P. M. Chaikin, Solid
State Commun. 51, 865 (1984); 1. P. Batra and S. Ciraci, this is-
sue, Phys. Rev. B 33, 4312 (1986).

6B. G. Smith, Phys. Lett. 18, 210 (1965); R. Stratton, ibid. 19, 556
(1965).

7F. K. Schulte, Surf. Sci. 55, 427 (1976).

8P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
W. Kohn and L. Sham, ibid. 140, A1133 (1965).

9P. J. Feibleman, Phys. Rev. B 27, 1991 (1983).

10Ed Caruthers, L. Kleinman, and G. P. Alldredge, Phys. Rev. B 9,
3330 (1974); K. Mednick and L. Kleinman, ibid. 22, 5768 (1980).

11J. R. Chelikowsky, M. Schldter, S. G. Louie, and M. L. Cohen,
Solid State Commun. 17, 1103 (1975).

121, P. Batra and S. Ciraci, Phys. Rev. Lett. 39, 774 (1977).

13M. Schluter, J. R. Chelikowsky, S. G. Louie, and M. L. Cohen,
Phys. Rev. B 12, 4200 (1975); J. Ihm, A. Zunger, and M. L.
Cohen, J. Phys. C 12, 4409 (1979); M. T. Yin and M. L. Cohen,
Phys. Rev. Lett. 45, 1004 (1980); K. C. Pandey, ibid. 49, 223
(1982); I. P. Batra and F. Herman, J. Vac. Sci. Technol. A 1, 1080
(1983).

14G. B. Bachelet, D. R. Hamann, and M. Schliiter, Phys. Rev. B 26,
4199 (1982).

15D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980);
also, see J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

168, Erkoc and S. Ciraci (unpublished).

17A similar kind of lattice contraction for the AI(100) surface was
previously reported: I. P. Batra, J. Vac. Sci. Technol. A 3, 1603
(1985).

18W. A. Harrison and S. Ciraci, Phys. Rev. B 10, 1516 (1974).

19D, M. Newns, Phys. Rev. B 8, 304 (1970); T. Aruga, H. To-
chihara, and Y. Murata, Phys. Rev. Lett. 53, 372 (1984).

20K. M. Ho and K. P. Bohnen, Phys. Rev. B 32, 3446 (1985).

211, P. Batra and S. Ciraci, Phys. Rev. B 29, 6419 (1984); J. Vac. Sci.
Technol. B 2, 427 (1984); S. Ciraci and I. P. Batra, Solid State
Commun. 51, 43 (1984).



