
PHYSICAL REVIE& 8 VOLUME 33, NUMBER 6 15 MARCH 1986

Calculation of rotational T2 relaxation in solid parahydrogen and orthodeuterium
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The shifts, the relative intensities, and the linewidths of the rotational Raman spectrum of solid

parahydrogen (p-H2) and orthodeuterium (o-D2) are calculated by combining the memory-function
formalism and a second-order perturbation treatment of the electric-quadrupole —quadrupole in-

teraction. Lattice vibrations are neglected in the present theory. The linewidth is sho~n to
represent the phenomenological T2-dephasing relaxation time, an upper bound of which can be set
at =600 ps for p-H2 and =100 ps for o-D2. It is shown that at low pressure, the present theory
compares favorably with the spontaneous Raman measurements on this solid.

I. INTRODUCTION

The study of vibrational and rotational relaxation phe-
nomena in dense materials is receiving increasing atten-
tion. New impulses have come with the introduction of
time resolved spectroscopy techniques on picosecond and
subpicosecond time scales using mode-locked lasers. The
general idea is to first excite the system via stimulated Ra-
man scattering with a powerful laser pulse, after which a
second pulse is used to probe the time evolution of the ex-
citation. It is clear that this technique not only gives new
dimensions to the study of fast relaxation processes, but
that it also creates the need for theoretical calculations of
the relaxation times to be expected. This is, however, not
a straightforward matter because up to now the theoreti-
cal description of these experiments have treated the re-
laxation mechanism phenomenologically through the ad-
dition of exponential damping terms in the equations of
motion for the collective amplitude (dephasing time Tz)
and the excess population number (energy relaxation time
T, ) of the excitation. From a microscopic point of view,
theoretical calculations on relaxation phenomena can be
made within the framework of transport theory. It is
therefore interesting to reformulate the phenomenological
description in terms of this theory.

Within the framework of the electronic dipole approxi-
mation and linear optics, second-order time-dependent
perturbation theory predicts that the spectral function
Spp(co) of the scattered light be proportional to the
Fourier transform of the polarization autocorrelation
function (P(0)P(t)). P stands for a component of the
polarization tensor P. With the use of the fiuctuation-
dissipation theorem one can connect the spectral function

to the Laplace transformed polarization relaxation func-
tion happ(z),

Spp(Co} ~ lim Im4&pp(co+is),
1 —e I & 0

(l. la)

Xpp(0) —

happ(z)

@pp(z) = (1.1b)

in whicli happ(z} is the polarization-polarization suscepti-
bility. It is shown that the spectral function Spp(to) for a
damped harmonic oscillator with a periodic driving force
is, in the vicinity of the resonance frequency too, propor-
tional to:

1/Tz
Spp(~)—

(to —too) +(1/T2)'
(1.2a}

or
—~ /T2

Spp(t) —e cos(toot), (1.2b)

which has led to the conclusion' that the homogeneous
linewidth in spontaneous Ram an measurements, and
time-resolved studies of the coherent excitation, give the
same Tz. This is of course under the assumption that the
relaxation is well described by the phenomenological time
T2. As already mentioned, one can make calculations on
the relaxation function (1.1b), and consequently by use of
theorem (1.1a) determine a spectral function analogous to
the one mentioned in (1.2a). If this result would strongly
resemble (1.2a) then a T2 time (in the sense of the
phenomenological differential equations) could be identi-
fied. Great discrepancies on the other hand might indi-
cate shortcomings in the phenomenological treatment.
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We have made such calculations for rotational excita-
tions in solid parahydrogen (p-Hz) and orthodeuterium
(o-Dz) because a detailed and reliable description of the
potentials in these solids is available. In the next section
we will briefly discuss the model used to describe the rota-
tional dynamics. In Sec. III we return to the subject of
the polarization tensor and its expansion into operators,
suitable for a description of rotational excitations. The
actual calculation of the relaxation function is presented
in Sec. IV and the results are discussed in Sec. V.

II. ROTATIONAL DYNAMICS IN THE SOLID

Solid hydrogen is a quantum solid which can be visual-
ized as a collection of nearly-free quantum rotators whose
centers of mass are, as a consequence of the large zero-
point motion, not very sharply located on the hcp lattice
sites of the crystal. Multiphonon relaxations in these
solids have recently been shown to be relatively slow (=10
ps) (Ref. 3) in comparison with the pure rotational relaxa-
tions (=100 ps). We therefore restrict our attention to a
description of the rotational motion without phonon cou-

pling. The Hamiltonian reads

(2.1a)

with,

Ho ——g BJ~, (2.1b)

1

H jibed(co/ jcojpR&j)
1+J

(2.1c)

Ho representing the free quantum rotators (molecular an-
gular momentum operator J~) with molecular rotational
constant B=R /2I, and A;j standing for the anisotropic
interactions between the molecules i and j at distance R;J
and depending on their relative orientations co;,coJ as ex-
pressed in a reference frame (g', rj, g) with the g axes along
the intermolecular axis R;~. As discussed by Van Kranen-
donk it is a good approximation to restrict A to the
long-range electric-quadrupole —quadrupole coupling
(EQQ}. After transforming the pair-tied frames (g, rj, g) to
a crystal-tied frame (x,y,z) with z axes along the hexago-
nal direction, the interaction Hamiltonian can be further
specified as

2

H i ——2m a4 g f4Oq(R(j )
g+1 m, m'= —2 9

' 1/2

[ Y4 + (R,j)]'C(224, mm') Yz (Q;) Yz (Qj ), (2.2a)

where

Qz(r;)Qz(r, )
e4 (Rj)=

5(R;J )
(2.2b)

a4 —v 70, C(l, lzl3, m, mz) stands for a Clebsch-Gordan
coefficient, 5 and YP represents a spherical harmonic.
Note the difference between the operators Yz depending
on the molecular orientations Q in (x,y, z) and the func-
tions Y& depending on the orientation of the R;j axis.
The former will be considered as dynamical variables
while the latter are merely numerical functions. Qz is the
molecular quadrupole moment, depending on the internu-
clear distance r. The normalization is such that a4e~ is
a measure for the strength of the EQQ interaction. Since
a4F4 /8=0 77 for p-H. z and 0.18 for o-Dz, one is al-
lo~ed to treat 8& perturbatively and to keep considering
J as a nearly good quantum number for the solid. Note
that the vibrational quantum number is not under con-
sideration and as a result is assumed to retain its ground-
state value v=0. Since the excitation energy of the state
1=4 is =1700 K we will restrict ourselves to a two-level
picture for the rotator (J=0 and J=2), resulting in six
states:

~

J=O, m =0) and
~

J=2,m ), m = —2, . . . , 2.
It may be clarifying at this point to briefly summarize

some results found by treating H& to first order: (i} if the
scattering region can be considered as small in comparison
with the wavelength, only k=O states are excited in the
Raman process, (ii) to first order in Hi, the Raman active
@=0states form three equidistant levels corresponding to
m =0,+ 1, +2, (iii) non-EQQ interactions make the separa-
tions slightly different, and (iv) within this formalism, the
linewidth is zero.

III. ROTATIONAL RAMAN SPECTRUM

The spectral function determined in a Raman experi-
ment is proportional to the Fourier transform of a polari-
zation autocorrelation function (Pits Pxs ), RS denoting
the Cartesian components of the crystal-polarization ten-
sor P in the laboratory frame (X, Y,Z) It is o.ur aim in
the present section to show that, by properly transforming
the Cartesian tensor components to their spherical com-
ponents, the relevant part of (PtsPjts } can always be
written as a linear combination of three simpler correla-
tion functions.

Starting from (X, Y,Z), one can make a transformation
to the lattice-tied frame (x,y,z), introduced previously by
use of the direction cosines e,R between the axes e, and
e

Pas =g &rlt essPrs (3.1)

%orking in the independent polarizability approxima-
tion, the crystal polarization tensor I' is given by

N

P = gS (rk» (3.2)
k=1

where |z stands for the molecular polarization tensor,
ri, (rk, rk), rk —d—enoting the orientation of the kth mole-
cule in the reference frame (gk, i)k,gk) with gk along the
internuclear axis. For each such molecule, the Euler an-
gles (ak A, yk ) can be specified to map (x,y, z) to
(gk, gq, gk). Then, the spherical tensor components, more
suitable to treat the molecular orientations, are propor-
tional to the isotropic and anisotropic parts p; and p, of
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the tensor P, defined by One finds

1 0 0
p=p; 0 1 0 +p, 0

0 0 1

0 0

0 (3.3)

(0) (2)pgs=pRs+pRs ~

where

(3.4a}

paoq — v'—12mp; g g e,ae~( U~, ) ( U~, }'C(110,mm'0) Yq(pa), (3.4b)

2

p~s' &8m——/15p, g g geiies(U~, }'(U,)'C(112, mm'p)Yp(Pa), (3.4c)

where for simplicity we have suppressed the molecule index k. The U~ are complex constants which appear when

spherical components are introduced. " For evaluations of rotational Raman transitions, only pas is relevant and it is not
difficult to express this Hermitian operator as

2

pRs g pRP (3.5a)
p=O

with

p~g"'=(1 —5&o/2)v'8m/15p, g g eae~C(112,mm'p)[( U, )'(U, )' Yg+c.c.] . (3.5b)

When substituting this form in the correlation function

&pcs pcs &, many terms arise but with use of the selection
rules given in Appendix B and after substitution of Eq.
(3.2), it is possible to simplify the result to the form

2
&p"'p"'&= y b ( )&~ ~ &, (3.6)

m=0

I

three correlation functions &M W &, m=0, 1,2. In the
following, we will omit the index "2." Using the
fiuctuation-dissipation theorem (l. la) as a link between
the spectral function S~ ~ and the relaxation function

4~ ~, we will concentrate on the latter, using the resol-

vent formalism and Kubo's scalar product

where

Mz N '"g [F—z (k-)+ F, '(k)] .
k

4gs(z) = A, Bl

z —L

(A,B)=f dA, &Atex~B&,
P

(4.1a)

(4.1b)

The sum over k runs over all N lattice sites and clearly
is a k =0 Fourier transform. The coefficients

has(m) are listed in Table I. The relative coefficients ob-

tained from this list are identical to Van Kranendonk's re-
sults with the exception of a factor of 2 for the values

corresponding to m =2, which will be accounted for later
on.

& A & =Tr(e i A)/Tre (4.1c)

where the operators A and B represent physical observ-
ables and I. is the Liouville operator that determines the
operators' time evolution (LA =—[H, A]). From (4.1b) it
follows that

(A, LB)=(LA,B)=&[A,B]& . (4.2)
IV. CALCULATIONS

As explained in the preceding section, there are three
spectral functions to be evaluated, corresponding to the

In the following we will use Lo and Li for the Liouville
operators corresponding to Ho and H], respectively.
Note that we have I.~M =0 because F operators mutu-

TABLE I. ExPansion coefficients bss(m) of &PssPss & in units 2mP, /45.

c~~Z

1

2

6
5

8
5

Powder
m =2 m=0

3
10

3
10

3
10
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ally commute. The relaxation function is determined us-

ing Mori's continued fraction formula up to the fourth
moment since this is the smallest possible form which ac-
tually introduces widths in the spectral function. The
continued fraction is truncated using the procedure given
in Ref. 7. The result of all this is as follows:

4~ ~ (z)=

in which

(M ,W )

Q2

z+X)(z)

(4.3a)

&)(z)= (4.3b)

(4.3e)

(4.3d)

(4.3e)

)=(LW,LM },
(to )=(L M~, L W ).

(4.3f)

(4.3g)

According to Ref. 7 )i =1, but since the approximation on
X& is the most uncertain part in the calculation, we initial-
ly wanted to keep an extra degree of freedom, not chang-
ing the z dependence. Actually it turns out that ~=1
gives the best agreement with the experimental results.
Note that if i)(,z

——0, (4.3a) reduces to a sum of 5 peaks at
frequencies +b, i. Within approximation (4.3) the
linewidth therefore vanishes with vanishing b,2. Substitut-
ing (4.3a) and (4.3b) into (l.la), one finds as the spectral
function:

NS~m~ns l ~
—g4

( p)g2i()2(i( 2+i) 2)1/2

[P) —o)(h)+62)] +a' (@+52)(o) —(5, ))
(4.4)

Using the formulas in Appendix B it can be shown that

(Mp~Mp) =2(M)~M) ) =2(M2~W2}

which means that the m dependence of (o) ) in the
numerator renders precisely the factor of 2, mentioned at
the end of the preceding section. Remember that the ex-
perimental measurements consist of linear combinations
(m=0, 1,2) of the functions (4.4) according to (3.6). The
coefficients bi)s(m) depend on the experimental setup and
should be incorporated when comparing our theoretical
results with experiment. In the vicinity of the rotational
transitions (e™Qp——512 K for p-H2 and 258 K for o-D2),
and at a characteristic temperature of 4.2 K e ~ is negli-
gibly small (respectively, 10 and 10 2 for p-H2 and
o-D2}.

To calculate the moments (4.3e)—(4.3g), one can start
from the definition (4.1b). That is what we. intend to do
for (p)o), but the other moments can be simplified using
(4.2) so that we have to calculate explicitly

(p)o)= f dgTr(e( t)+i)H~ e 2 M ) (45a)
0

(co )=Tr(e ~H[M, LoW ]), (4.5b)

[Lo~~ Lo~~ l)

+Tr(e @ [L ) Lp&~,LpW~ ]) . (4.5c)

Since we know first-order calculations yield a sum of 5
functions, it is exptx:ttxl that the first nonzero contribu-
tions to hz can only appear from second-order on. Equa-
tions (4.5) will therefore have to be evaluated up to second
order in the EQQ interaction according to the following
perturbation formula:

p)Ho+EH) ) —@Ho ~ d
(r —i))Ho rHo —

~2 d
— d, (r t))H(& (r' — H—() HH0

0 0 0
(4.6)

Further simplification of (4.5c) is possible if one realizes that Ho describes a two-level system with time evolution L p.
Confming ourselves to the

~

J=O, m =0),
~

J=2,m ), m = —2, . . . , 2 subspace, one verifies that the matrix representa-
tion of Y satisfies

1
Y =cos(tQp)Y + s)n(tQp)Lp Y~+Z~ .Nl (4.7)

This implies that in the time correlation function, there will be a time-independent contribution, and hence Z can be
identified as a nonergodic part of the matrix representation of Y . Since this part is known, it is possible to correct for
it. However, an analytical evaluation of [Y~,exp( iLpt) Y~] up to first order in EQQ reveals that its contributions to the
moments (4.5) are proportional to the Boltzmann factor exp( —PQp) which is perfectly negligible. It is therefore allowed
to use the relation L o Y =Qo Y and further simplify (4.5) to

-u P
&aP) =2+ f dA(e Y(i) , e Y(0)) 5o+( —1) g f dA& e ~Y(i) e" Y ~(0)&, (4.8a)

(o) ) =2[ ([Y (0),Lp Y (0)])5 o+( —1) ([Y (0),Lp Y (0)])J,

&~'&=2QoI&[Y (o»Lo Y (0)]&5m,o+( —1) &[Y ~(0»Lo Y (0)l&!

(4.8b)

+2+ [([L)L()Y (i), Lo Y(0)])5 p+( —1) ([L)Lp Y (i),L(), Y (0)]) I . (4.8c)
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TABLE II. Number of different terms appearing in the analytical evaluation of the elementary con-
stituents of (4.8) up to second order in the EQQ interaction.

Zeroth order First order
m=1 m=2 m=0 m=1 m=2 m=0

Second order
m=1 m=2 m=0

(F,F )

&(LiLOY, LOY ))

75
40

128

66
120
268

59
80

119

A sum over i means that a lattice sum runs over all lattice
sites, and the number "0" indicates a fixed lattice point,
which can be chosen as origin. The factors 5m 0 follow
from the m-selection rule given in Appendix 8 stating
that the sum of the m values should equal zero. Deriving
these Kronecker 5's is somewhat more subtle than might
appear at first sight and includes lattice symmetry con-
siderations. The problem is that in the perturbation ex-
pansion each H& contributes two extra I' operators
whose m values are to be considered as well.

As already mentioned, evaluations with pen and paper
have been done up to first order but extension to second
order was quite hopeless. We therefore turned to the
computer-program coMMUT (Ref. 8) which handles the
analytic evaluations of the commutators in (4.8) using the
algebra of the angular momentum operators J+, J, and
J' and the operators F . An additional procedure was
written to evaluate the operators e ~ perturbatively to
second order. To evaluate the traces, resolutions of the
identity g ~

YI ) & Y~
~

=1 (I =0,2 andm = —l, , l) have

been inserted whenever it was necessary. This results in
three types of matrix elements,

& Ymi YMi Ym)

Ymi Y Y
i

Ym)

( Ym
~

YMYhf'YM"
~

Ym)

which can all be expressed in terms of Clebsch-Gordan
coefficients as indicated in Appendix A. All these analyt-
ical manipulations have been carried out on a VAX
11/780 computer, resulting in 977 different contributions,
divided over the possible cases as given in Table II.

Printing all these terms here would make the paper too
long and we therefore will restrict ourselves to the numer-
ical evaluation of &co )/&co ) and &co )/&~ ) since they
immediately lead to b i and b, ~2. In Table III results for
T= 4.2 K are given in the form

Ao[ I+A, (e,oo/8 )+A,(Boo/8)'], (5.1)

TABLE III. Coefficients Ao, Ai, and A, [see (5.1)]. Ai and
A2 are dimensionless numbers and Ao is expressed in units
I'68) . Since the temperature dependence of the A; is negligible
in the region from 0 to 12 K, our results depend only on the pa-
rameters F4 and 8 as explicitly given by (5.1) and apply to
both p-H2 and o-D2.

&co'&/&co') 1.8035
—1.2023

0.3006

14.7702
15.9265
15.3461

K) of the coefficients A; is negligible as expected from
previous considerations on the Boltzmann factor. As a
consequence, slight differences in the numerical value of
8 have no effect on A; and only influence Ai and h2 as
explicitly given by (5.1). This is also illustrated by the
fact that, within the numerical accuracy of our calcula-
tions, we found the same values of A; for p-H2 as for o-
D2. In further calculations we will use the zero-pressure
values9 8=85.379 (43.040) K and e4E )~=0.791 (0.979) K.
From now on, o-02 results will be mentioned between
parentheses. Note that these values for P~~~ are not
corrected for zero-point motions. The spectral function
(4.4) at zero-pressure is shown in Fig. 1 and numerical
evaluations of the peak positions, full width at half-
maximum (FWHM), and relative intensities are listed in
Table IV. It follows that the splitting of the signals is
given by

5~2 ii ——2.475 (3.050) cm

5(0.2) ——2.458 (3.000) cm

High precision measurements give 2.01+0.01 (2.6+0.1)
cm ' and 1.98+0.01 (2.6+0.1) cm ', respectively. ' As
we have already mentioned, the first nonvanishing contri-
butions to hz are of second order in EQQ. Consequently,
the continued fraction (4.3a) can be approximated up to
first order by setting X, =O, resulting in two equally
separated 5 peaks. The values for the first-order splitting
obtained in this way are consistent with the ones of Van
Kranendonk's first-order perturbation treatment of the
Hamiltonian (2.1). On the other hand, we do not know if
our approximation (4.3b) on Xi contains all second-order

Ao, Ai, and Az resulting from zeroth-, first-, and second-
order calculations, respectively. Ap is expressed in units
(6B) . The temperature dependence (in the region 0—12

&
~' &/& ~') 1.8035

—1.2023
0.3006

22.6357
23.1819
22.9069
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{~I m=0
TABLE IV. Properties of the zero-pressure spectral function

at T=4.2 K. The transition frequency (Oo) and full width at
half-maximum (FTHM) are given in cm '. The intensities (W)
are normalized to the signal m =2.

m =1 p-H2
e =2 p-H&

m =0 p-H2

&o

354.346
356.821
359.279

F%'HM

0.11
0.12
0.12

1.03
1.00
1.95

e =1 o-D2
m =2 o-D2
m =0 o-D2

177.925
180.975
183.975

0.34
0.35
0.36

1.002
1.000
1.970

353 3% 357

RAMAN SHIFT 5v {cm 'j

ORTHO- 0)

{bj m=o

361

function then describes the time-dependent relaxation;

S(t)=Ye ' 'cos(Qot)+ Y'e '~'sin(Qor)+ Y"e —'~~

(5.2)

The relaxation times and proportionality coefficients are
listed in Table V. The excitation frequencies Qo can be
found in Table IV. It is clear from Table V that Y' and
Y" are sufficiently small to map (5.2) with the single ex-
ponential form (1.2b), from which r can be identified with
the dephasing time T2. One should avoid the temptation
to give any physical interpretation to the other time ~' in
terms of Ti or T2. As a matter of fact, by increasing the
number of poles in the relaxation function (4.3a) one
could in principle increase the number of relaxation times
in (5.2) up to any number. Note that the o-D2 and p-H2
results scale as

(T2) D,

(~2)p-H,

'ISO 182 180

RAMAN SHIFT hv (cm"'j

FIG. 1. Spectral functions S~ ~ (a) for p-H2 and (b) for
m m

the o-D2, for the zero-pressure values of the parameters h~ and
A2 listed in Table III. For comparison with an experimental sit-
uation, remember to include the coefficients b~q(m) as indicated
by Table I.

contributions. Therefore, the line splittings presented in
this work do not necessarily have to agree with those of a
second-order perturbation calculation on (2.1)."

Our calculations introduce a FWHM of 0.11 (0.35)
cm ' while the experiment mentioned above gives a value
of 0.3+0.1 (1+0.1) cm '. The resolution of the experi-
ment was 0.1 cm ' and a convolution of (4.4) with a
Gaussian of width cr=0.05 v'21n2 cm ' increases the
FWHM from 0.11 (0.35) cm ' to 0.17 (0.41) cm '. Very
likely, part of the discrepancy is due to inhomogeneous
broadening.

To calculate a time scale from this width, one can
determine the inverse Laplace transform of (4.1a). This

as is expected from the second-order character of the
phenomenon.

Via its R dependence, the coupling constant eq is
strongly pressure dependent. In Fig. 2 we scanned the
behavior of the excitation frequency and the widths of the
signals as a function of Vo/V where Vo is the zero-
pressure volume and V is a value under pressure. At low
pressure the results are in qualitative agreement with ex-
periinent, ' but for higher values, great discrepancies with
the experiment are seen. This can partly be understood
from the knowledge that the EQQ Hamiltonian (2.2) is
only valid for the long-range region of the intermolecular
potential. On the other hand there is the increasing influ-
ence of phonon coupling at the higher pressures. Note
that, as pressure increases, the calculated asymmetry in
the splitting between the three signals remains too small
in comparison with experiment, but that the low pressure
splittings compare favorably, indicating the importance of
second-order treatments of pairwise interactions.

The results of Fig. 2 can be fit with a fourth-order
polynomial of the form

E( Vo/ V) =o 4( Vo/ V)'+ 0 3( Vo/ V)'+ o 2( Vo/ V)'

(5.3)
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TABLE V. Coefficients Y, Y', and Y" and relaxation times v and ~' of the time relaxation function
(5.2). The relaxation times are expressed in ps and the numbers are normalized to Y.

m =1 p-Hz
m =2 p-Hz
m=0 p-Hz

1.0
1.0
1.0

—1.6x 10-'
—1.6x 10-'
—1.7x10-'

—3.1x 10-4
—3.1x10-4
—3.3 x10-4

599.2
578.8
560.2

0.094 15
0.093 50
0.092 84

m =1 o-Dz
m =2 o-Dz
m =0 o-Dz

1.0
1.0
1.0

—9.4x10-'
—9.6x 10
—9,6x 10-'

—1.9x10-'
—1.9X 10-'
—1.9x10 '

98.84
96.48
94.27

0.094 60
0.093 00
0.091 49

525,-
(Q) within an error of at most 0.16 (0.20} cm '. The coeffi-

cients cr; can be found in Table VI, as well as a set of
coefficients o,' which reproduce the upper-limit lines in
the figure. From the two curves one can determine the
F%'HM.

E
050

425

375

260

E

2N

220

CY

Vo/V

VI. CONCLUSION

We have calculated the Raman spectrum for the rota-
tional transition

I
J=O)~I J=2} in solid p-Hz and o-

Di. In setting up the model, we assumed that the EQQ
interaction is responsible for the rotational relaxation. To
calculate the Raman spectrum it is necessary to go beyond
first-order perturbation theory. A second-order treatment
not only introduces a relaxation time Ti (a finite
linewidth) but also changes the relative intensities and the
splittings of the Raman lines when compared to the first-
order theory. As the EQQ interaction changes with pres-
sure, we have also studied the pressure dependence of the
Raman spectrum. Up to a certain pressure qualitative
agreement is good. For large pressures the theory breaks
down. In nonpublished work' a compilation was made
of experimental data (Raman and far infrared, both at low
and high density} on deuterium and hydrogen. It turns
out, and this may be against one's feeling, that the best fit
to experiment was obtained by using a pure EQQ interac-
tion. All attempts to include the more sophisticated non-

EQQ components have given poor results. It is clear that
this aspect is far from being understood.
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APPENDIX A: MATRIX ELEMENTS

f J d&[r, '(n)l'[I;, '(&)]=&... ti (A 1)

Integrals of two spherical harmonics are defined by the
orthogonality relation
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TABLE VI. The fitting parameters o; (in cm ') for the calculated lines of Fig. 2 (at 4.2 K), accord-
ing to formula {5.3). To obtain the peak positions Oo, use the rows labeled a; to obtain Qo+ 8'~HM/2,
use the rows labeled b. The polynomials fit our theoretical results within an error of at most 0.16 cm
for p-H2 and 0.20 for o-D2.

m=0
p-H2

—0.021 686 4
—0.032 487 6

0.556 986 5

0.752 550 11
1.057 629 5
0.675 666 8

2.002 725 6
2.483 959 7

355.7605
355.5228

m=1
p-H2

—0.029 342 6
—0.042 9154

0.981 098 8

1.227 562 5

—3.025 053 7
—3.616838 5

0.960 862 6
1.720035 6

355.4955
355.1508

m=2
p-H2

—0.030 622 1

—0.047 962 0
0.829 125 5

1.121 672 9
—1.168 454 9
—2.007 9300

1.790 152 1

3.116 1509
355.4418
354.6805

m=0
o-D2

—0.127 800 3
—0.086 865 1

1.660 317 1

1.267 389 8
0.982 036 1

3.620 020 6
2.206 383 7

—2.200 9168
179.2854
181.7010

m=1
o-D2

m =2
o-D2

—0.156389 2
—0.1940767

—0.052 236 7
—0.258 744 2

2.608 320 7
3.003 568 9

1.173 576 5

3.295 960 2

—4.346 126 1

—4.345 260 1

1.995 1739
—4.399403 1

—0.109 383 6
—0.838 785 2

—4.564 861 3
4.594 3117

180.0385
180.6256

182.6338
177.9115

whereas integrals of more than two functions on the same
lattice site can always be reduced to the previous one by
using the coupling ru1e for spherical harmonics

Yl) (Q) Ylz (Q)=+V(li lzl )C(1i lzl, m imz )

x C(l, 1 1,00)Y( ' '(Q), (A2)

with

(21i + 1)(21z+ 1)
V(lilzls) =

4sr(21s+ 1)

From these basic formulas, one immediately finds

(A3)

& Yi,
'

~
Yi

~ Yi,
' &= V(lilzls)C(lilzls, mimz)C(lilzls, 00),

~
Yi 'Yi, '

~ Yi,
'

& =+ V(lilzl) V(lsl14)C(lilzl, mimz)C(lilzl, 00)C(lsll4, msmi+mz)C(ls114, 00),
l

& Yi,
'

I Yi, 'Yi, 'Yi, '
I Yi,

'
& =g V(lilzl ) V(lslk ) V(1411s)C(lilzl mimz)«lilzl 00)

l, k

XC(lslk, msm, +mz)C(lslk, 00)C(14kls m4 mi +mz+m) s(C4 lk0s0) .

(A4)

(A5)

(A6)

APPENDIX 8: SELECTION RULES

Characteristic for a perturbative approach is that one
always considers energies of the unperturbed system
which in this case only depend on 1 (0 or 2) but not on m

( —1, . . . , 1). Therefore, the matrix elements above always
appear with a summation over m, direct1y resulting from
the trace

&Y;i YP i
Y-&

—V(11'1)C(11'1,00) y C(11'l,mm') . (B&)

gy including C(101,m0) =1, the summation over m can
be evaluated, using the orthogonality of the Clebsch-

Gordan coefficients, leading to

m (21+ i)
& Yi I Yi

i Yi & = 5
m= —l 4m

(82)

& Yi,
'

I Yi I Yi, '&&Yi, '
I

Yi
I Yi, '&,

We refer to this formula as the "1selection rule. "
The previous considerations are only valid for a specific

summation of matrix elements, but one can also make
statements on the m values of single matrix elements,
occurring in the evaluation of traces. Starting with the
most elementary case & Yi

'
~

Yi
~ Yi,

'
&, the Wigner-

Eckart theorem states m=O. This can be extended to
combined forms
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leading to tn+rn'=0. Finally formula (A2) also permits

us to include matrix elements of combined operators; e.g.,

( 1' '
f
1; 1;

/
Y,

' ) ( 1' '
f

1'-
/
1; ' )

is only nonvanishing for m+m'+ m"=0. These results
can be summarized by the statement that, whatever corn-
bination of operators one might have on a particular lat-
tice site, the sum of their m values must be equal to zero.
This rule is referred to as the "m selection rule. "
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