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Earlier it has been argued that, in insulating materials, a proper calculation of the contributions to
the far-infrared and microwave absorption rate from two-phonon difference processes must take ex-

plicit account of the influence of the finite lifetime of the thermal phonons which participate. %e
explore this issue further here. After initial remarks on the means of incorporating these effects into

the computation of the absorption rate, we present numerical studies of the frequency and tempera-

ture variations of the low-frequency absorption constant for NaC1 and KI, through use of a model

which accurately reproduces the phonon spectrum of these materials. Our results provide a reason-

able account of the existing data on these materials, and contain predictions that can be tested by

further experimental work.

I. INTRODUCTION

In wide-band-gap insulators, such as the alkali halides,
through use of anharmonic perturbation theory one may
calculate the contributions from multiphonon processes to
the absorption coefficient tz(Q) which describes the at-
tenuation of electromagnetic radiation of frequency Q in
the material. At moderate temperatures, in general, one

expects that two-phonon processes provide the dominant
contribution to a(Q) in the far-infrared, though it has

been argued that three-phonon processes contribute as
well. Particularly in the alkali halides, extensive calcula-
tions based on rather sophisticated models have appeared,
and these account nicely for infrared absorption data. '

Special problems arise at low frequencies, such as those

encountered in the very-far-infrared or microwave-
frequency regime. The leading contribution to a(Q}
clearly has its origin in two-phonon processes, and ele-

mentary phase-space considerations suggest that the two-
phonon difference process should dominate, since then the
whole bath of thermal phonons may contribute to the at-
tenuation rate. But in any material, as the frequency Q
approaches zero, one sees easily that such processes fail to
conserve energy and wave vector. Let the photon have
wave vector Q (clearly very close to zero on the scale of
the Brillouin zone), and suppose the photon is absorbed by
mixing with a phonon of wave vector q on branch jof the
phonon dispersion curves, to produce a phonon of wave
vector q' on branch j'. We have, if Q(q,j) is the frequen-
cy of phonon (q,j), the requirement that Q=Q(q, j)—Q(q', j') from energy conservation. Near room tem-
perature or above, phonon modes throughout the Brillouin
zone are present as thermal excitations, so in general q is
large. Also q'=q+Q=q because Q is very small. The
two-phonon difference process is thus, to excellent ap-
proximation, a vertical transition between adjacent pho-
non bands when j+j'.

Then as Q~O, energy cannot be conserved in such an
interband process at a general point in the Brillouin zone.
Distinct branches may be degenerate along special lines or
at special points in the Brillouin zone, and as Q~O we
may conserve energy very near such special features.
However, the phase space available for such processes is
small. As q (and also q'} approach zero,
Q(q,j)—Q(q', j') becomes small if j and j re'fer to
acoustical-phonon branches, but upon noting that the
velocity of light in the medium is orders of magnitude
larger than sound velocities in the solid state, one may
show that processes which involve long-wavelength acous-
tic phonons also fail to conserve energy and wave vector
This rules out intraband processes.

In an earlier paper it was argued that since thermal
phonons have finite lifetimes, their energy is not precisely
defined, and in such two-phonon difference processes en-

ergy is conserved only to within the inverse of the thermal
phonon lifetime, which can be the order of 10 cm ' or
more at room temperature. In many materials the separa-
tion between adjacent phonon bands can be this order or
slightly more over an appreciable fraction of the Brillouin
zone, so relaxation of strict energy conservation "ac-
tivates" two-phonon difference processes over a signifi-
cant fraction f of the Brillouin zone. Quite clearly, f is
independent of Q as Q~O, so in this limit processes near
special points and lines which strictly conserve energy are
overwhelmed when energy conservation is relaxed. In the
earlier paper, calculations carried out by analytic methods
based on a crude model of the phonon spectrum account-
ed for the available data in several alkali halides.

This paper is devoted to a study of this question, on the
basis of model calculations which accurately describe the
phonon spectrum of two selected alkali halides, NaC1 and
&I. These two materials have very different phonon spec-
tra. The optical- and acoustical-phonon branches of NaC1
overlap in frequency, to produce a density of states that is
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smooth with no gaps. In contrast, there is a substantial

gap between the two sets of branches in the case of KI.
Since intrabranch two-phonon difference processes are
forbidden in the alkali halides, and processes in which one
phonon is optical and one is acoustical in nature, tend to
generate the largest matrix element; it is of interest to
compare the results of calculations which incorporate the
role of lifetime broadening for these two materials. We
shall find that our calculations provide a rather good ac-
count of the existing data on these materials, and suggest
new experiments be carried out.

In Sec. II we present a theoretical discussion of the
means by which one incorporates lifetime broadening of
the thermal phonons into the theory. This section is
motivated in part by remarks in a recent paper by Hardy
and Karo, who have omitted the influence of lifetime
broadening in their recent studies. In our view, in the
low-frequency regime these results are quantitatively un-
reliable as a consequence. We elaborate on this point later
on. In addition, these authors criticize the method we
used earlier to incorporate lifetime broadening into the
theory. We shall see in Sec. II that our earlier prescrip-
tion may be derived in a very straightforward manner,
and contrary to the assertion in Ref. 3, it provides us with
an approximate expression for the proper self-energy
which, when considered as a function of frequency, has
the proper analytic structure. We note, incidentally, that
in a few of their calculations, Eldridge and Staal intro-
duced the influence of thermal phonon lifetime broaden-
ing through a scheme which leads to unphysical proper-
ties of the proper self-energy.

is the imaginary part of the proper self-energy of the TO
phonon, evaluated at the frequency Q of the electromag-
netic radiation. The properties of this quantity are dis-
cussed below.

For frequencies Q «co~o, Eqs. (2.2) and (2.1) may be
combined to give

2Q(e, —e„)
a(Q)=, 1 ro(Q),

c(~,)'"~~o (2.3)

which is the expression we use to compute a(Q), once
I ro(Q) is determined.

Our task is then to calculate the proper self-energy of
the TO phonons, at low frequencies, far off "the energy
shell" relevant to evaluating the width of the restrahl ab-
sorption line. This may be accoinplished with the di-
agrammatic perturbation theory outlined some years ago
by Maradudin and Fein. Later, we shall rely heavily on
the analysis put forward in Sham.

The contribution lowest order in anharmonicity arises
from the cubic terms in the expansion of the crystal po-
tential energy in powers of the anharmonic coupling. The
diagrammatic representation of this term is given in Fig.
1(a); a selection rule on the anharmonic matrix element
applied to the alkali halides shows that the anharmonic
matrix element V3 is nonzero only if the branch index j,
differs from jz.

We shall write out the contribution displayed in Fig.
l(a} explicitly. We use a compact notation, with the sim-
ple integers 1 and 2 employed in place of the wave vector
q and branch index j to label a given phonon mode. We

II. SOME THEORETICAL CONSIDERATIONS

We are interested in the absorption coefficient for elec-
tromagnetic radiation a(Q}, here defined as the inverse of
the distance required for the energy density in a beam to
decay to 1/e of its initial value. For radiation whose fre-
quency is well below the restrahl frequency of the crystal,
we may write

(2.1)

q, j

q, j

where e, is the static dielectric constant, c the velocity of
light in vacuum, and ez(Q) is the imaginary part of the
dielectric constant, here assumed small.

In the alkali halides, in the regime where two-phonon
processes dominate the absorption, it is a good approxi-
mation to ignore the nonlinear terms in the expansion of
the crystal electric dipole moment in powers of the atomic
displacements. Then the complex frequency-dependent
dielectric constant may be written

e(Q) =e„+ 4m.ne' 1

cogo —Q —2icgroI ro(Q)
(2.2)

where e is the contribution to the dielectric constant
froin electronic excitations, n is the number of unit cells
per unit volume, e the Born effective charge, M, the re-
duced mass of the unit cell. Then co~o is the (measured}
frequency of the zero wave-vector TO phonon (anharmon-
ic corrections are incorporated into cozo), and I ro(Q)

FIG. 1. (a) Lowest-order contribution to the proper self-
energy of the q=O TO phonon. (b) Lifetime effects are incor-
porated into the theory if dressed phonon propagators (double
wavy lines) are incorporated into the calculation of the proper
self-energy, rather than the bare propagators illustrated in (a).
(c) Higher-order graph, which contributes to the ladder graph
approximation to the proper self-energy.
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let icoi ——i 2ml IP be the complex Matsubara frequency of
the perturbation theory applied to bosons, and in the nota-
tion of Ref. 5 Mp ro(ico&) is the proper self-energy of the
zero wave-vector TO phonon, evaluated on the imaginary
axis of the complex frequency plane. Here 1 is an integer
and P= 1 lk~ T. The diagram of Fig. 1(a) then gives us,
using the rules of Ref. 5,

(o) 2' j
D; (icoi) =

CO; +COI

(2.5}

where selection rules on branch index and wave vector are
assumed to be stored in the anharmonic matrix element
V3, and

MpTo(icoi)= gg I
Vs(OT»1'2)

I DI ('co& )

XDi (&coi ico—i, ), (2.4)

is the propagator which describes phonon i, in the har-
monic approximation of lattice dynainics.

It is a straightforward and standard matter to use con-
tour integration to evaluate the sum on l, in Eq. (2.4).
One finds, with n (co) = [exp(Pco) —1]

M pTo(lco/)=18/
~

V3(O, TO;1,2)
~

[n(cog) —n(coi)]
1,2

I

COI —CO2 —~COI QP ~
—F02+ l coI

+ [1+n (coi)+n (co2)] +
6) i+A)p+1COI COi+C02 —lCOI

(2.6)

and then the object I p To(Q) which appears in Eq. (2.3) is
found from the prescription

I p ro(Q) =, Im[Mp To(Q+&ri)] ~

1 (2.7)

We shall assume the frequency Q is positive, so the
term proportional to 5(coi+co2+Q) is discarded. Very
general considerations dictate that I'p To{Q) is an odd
function of frequency (and hence necessarily vanishes at
Q =0), so by discarding this term, our attention is restrict-
ed to only the domain of positive frequencies. The term
in 5(coi+co2 —Q) is nonzero, but in the limit Q~O,
phase-space considerations show this term is small com-
pared to that generated by the two-phonon difference pro-
cesses, described by the first two terms in Eq. (2.6}. Keep-
ing only these, and noting

~
Vi(O, TO;1;2)

~
is invariant

under interchange of 1 and 2, gives us

I p To(Q) = 36m g ~
Vp(0 TO;1;2)

~
2[n(co2) —n(coi)]

X5(coi —co2 —Q) . (2.8)

If we attempt to evaluate the expression in Eq. (2.8) for
very small values of Q, then we will find the argument
that the 5 function never vanishes (except for the very
near vicinity of special lines or points in the Brillouin
zone, where branch degeneracy occurs), for the reasons
outlined earlier in See. I.

The perturbation theoretic expression for 1 p To(Q) as-
sumes the thermally excited phonons have a perfectly
well-defined energy, and that energy is strictly conserved
in the decay process. As remarked earlier, these modes
have a finite lifetime, and their energy is not well defined
as a consequence. Energy is then conserved only to within
fi/~, h, with r,h a typical thermal phonon lifetime.

We may build this feature into the theory by replacing
the bare phonon propagators in Fig. 1(a) by dressed prop-
agators, as displayed in Fig. 1{b). These propagators
describe phonons whose energy is renormalized by anhar-

monicity (a small and unimportant effect for our pur-
poses), and most importantly their lifetime is finite by vir-
tue of the iinaginary part of the proper self-energy incor-
porated into the dressed propagators.

The expression for the proper self-energy of the zero
wave-vector TO phonon still has the form given in Eq.
(2.4), but now the unperturbed propagators D '(icoI) are
replaced by the dressed propagators D;(icoi). We shall
evaluate the proper self-energy using the procedure out-
lined by Sham, 6 for reasons to be discussed shortly. The
reader should note that the scheme used by Sham was
adapted from the earlier classic paper by Holstein on
electron-phonon interactions. Holstein's paper gives a
very detailed account of the rationale for the scheme.

Upon using the full phonon propagators in Eq. (2.4), we
may employ a contour integration scheme identical to that
used to generate Eq. (2.6), to replace the sum on ico&, by
an integration along the real axis of the coinplex frequen-
cy plane. Once again, this procedure is standard. %e
then let icoi~Q+i ri, to obtain Mp To(Q+iri) from
Mp To(icoc)

The expression contains several terms, among
thein products of two Green's functions
Di(co'+iri)Dz(co co'+i') eval—uated on the same side of
the branch cut coincidental with the real axis, and also
products D, (co'+i')D2(co co'+i') w—here one partner is
the product evaluated above the cut and the other below
the cut. Our interest is in phonon pairs where the fre-
quency difference (co, —co2) is quite small, and has magni-
tude comparable to typical inverse lifetime I of the
thermal phonons. It is precisely this limit that is of cen-
tral interest in Sham's paper, and following him we argue
that the dominant contribution to the proper self-energy
has its origin in those terms where both members of the
pair have frequency arguments which lie on the same side
of the branch cut. Furthermore, we may replace such
products by an approximate form derived in his paper.
Thus, ignoring the small anharmonic frequency shifts, we
have
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49~&2
D] (co'+i ri)Di(Q c—o'+i ri) =

[co]—(co') —2ico] I"](co')][co2—(co' —Q) —2icogl'l(Q —co') ]
(2.9)

and let co2 ——co]—b ]i, with h]z ——co] —co2. Assuming Q is small, and our interest is in values of b, ]i comparable to I ] and
I z, both of which are small compared to co] or co2, we write

469
~D](cd'+i g)Di(Q co—'+i g) =

[cd]—(co ) —2]cd]I ](co }][co]—(co ) +2lcd]I ](co )+2co Q —2co]6]p]

2i co][5(co] co—') 5—(co]+co') ]
co Q co—]5]2 +2l cd ]I ] (co )

(2.10)

where the reader is referred to the discussions in Refs. 6 and 7 for justification and derivation of the last step.
When Eq. (2.11) is incorporated into the expression for the proper self-energy, after performing some algebra we find

V3(0,TO; 1;2)
Mo To(Q+ 1'ri) = 18 g [n (co])—n (co, —Q)+n (co,+Q) —n (co, )] .

] 2 Q —(co]—co2)+2iI (cd])
(2.11)

Here we have taken explicit note of the fact that we have assumed I ](co]) and I i(coz) do not differ greatly in value, so
each has been replaced by an average value of the thermal phonon linewidth I . It is not difficult to obtain a formal ex-
pression for the proper self-energy without invoking this assumption, but we shall employ it in the numerical work re-
ported in Sec. III.

Then we have

I OTo(Q) =18g I V3(0,TO;1,2)
I [n (co]) n(co] —Q)—+n (co2+Q) n(col)—]2 I

1,2 (Q —co]+co2) + I
(2.12)

If we let I ~0, so that the Lorentzian in Eq. (2.13} is
replaced by a Dirac 5 function, we recover Eq. (2.8) from
Eq. (2.13). Contrary to the view expressed by Hardy and
Karo, we see that indeed lifetime broadening effects are
incorporated into the theory by replacing the energy-
conserving 5 function by a Lorentzian. Note that at as
Q~O, the right-hand side of Eq. (2.13) always vanishes,
so the expression in Eq. (2.13) does not lead to the diffi-
culty in the scheme employed by Eldridge and Staal. 4 In
earlier work z a slightly different approximation scheme
was used to obtain an expression for I o To(Q). The re-
sulting form has a somewhat different combination of
Bose factors in front of the matrix element and the
Lorentzian. We prefer Eq. (2.13), although numerical cal-
culations performed with both expressions give virtually
identical results, below 100 cm ' for NaC1 and KI. Each
thermal phonon is described by a spectral density function
whose width is I, and there is no unique prescription for
deciding where the Bose functions are to be evaluated.
The key issue is to employ a scheme which preserves the
proper analytic structure of I 0 To(Q), and for small Q the
ambiguity is of little quantitative significance.

One issue remains to be explored. This is the role of
higher-order corrections to the proper self-energy, over
the above dressing the lowest-order graph [Fig. 1(a)] by
inserting dressed propagators. A central point of Sham's
analysis (and Holstein's study of electron-phonon scatter-
ing ) is the following. If we consider the particular
higher-order graph displayed in Fig. 1(c), quite clearly it
contains two additional powers of the anharinonic matrix
element V3, when compared to the graph in Fig. 1(b).
Thus, it should be only a small correction to Fig. 1(b) in
the limit of weak anharmonicity. However, the propaga-

tor that describes the additional pair of phonons [labeled
q2j2 and —q2j,' in Fig. 1(c}] has the form of the
Green's-function pair in Eq. (2.11), if the frequency of
these two phonons lie close together. If 5]2 is comparable
to I ](co') {or possibly smaller), and if Q is small, then the
Green's-function product is of order Vi, and the graph
displayed in Fig. 1(c) contributes to the self-energy a term
quite comparable in magnitude to that from the graph in
Fig. 1(b). As Sham has demonstrated, one may construct
an infinite sequence of ladder diagrams by iterating the
basic structure added to Fig. 1(b) to form Fig. 1(c), and
each term in the ladder series has the same order of mag-
nitude as the leading term, Fig. 1(b). To compute the
self-energy under these conditions, one must solve an in-
tegral equation generated by summing the series; in the
appropriate regime of frequency and wave vector, Sham
demonstrated the equivalence of this equation to the
Boltzman transport equation.

Sham's primary interest was in the application of the
analysis to a single branch of acoustical phonons, under
conditions where second sound may be supported. In his
analysis the parameter analogous to our 6&2 is
c, [ ~ q+Q ~

—q j =—c,q.Q, where c, is the velocity of
sound, and Q the wave vector of the external driving
force of interest (the photon, in our case). Also, q is the
wave vector of the thermally excited phonon, the analogue
of (qj]) in our Fig. 1. Now quite clearly in Shaln's case,
for all choices of q anywhere in the Brillouin zone, b, ]z is
smaller than or comparable to I ](co'). Thus, when one
adds an additional pair of phonon propagators to a given
diagram, as in Fig. 1(c), the energy denominator in Eq.
(2.11) is small (of order V3) for each value of q' one
chooses in performing the sum on q'.
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lgQ
~

Vi
~

ksT
I 0ro{Q)=

&
f ~

B I
(2.13)

(We expect at room temperature and above, I'- T and f
to scale with I, so f will vary linearly with temperature. )

From the golden rule, with a similar crude replacement
procedure, we have I -2m

~
V&

~
ks T/co, where the den-

sity of states in the golden-rule formula is replaced by the
inverse of the average phonon frequency. We thus have

I o,o(Q)—=6Qf . (2.14)

For NaCl at room temperature, and Q=5 cm ', we shall
see in Sec. III that I 0 To(Q) ~0.1 cm '. Hence,
f=3X10 «1. A—n appreciable fraction of the possible
transitions in the Brillouin zone are "near resonant, " but
clearly f«1.

The above argument that vertex corrections may be ig-
nored rests importantly on the selection rule operative in
the alkali halides, which requires the internal phonon pair
to be on different branches of the phonon spectrutn. This
selection rule is operative in any crystal in which each ion
sits at a site of inversion symmetry. In crystals of lower
symmetry, where intraband scatterings are allowed, we
shall realize precisely the situation of concern to Sham,
and the role of higher-order corrections must be reexam-
ined.

Our present situation is very different. While the whole
point of our analysis is that inclusion of lifetime broaden-
ing breaks down strict energy conservation in the two-
phonon difference process and hence allows these to dom-
inate the absorption constant at very low frequencies, at
the same time as the pair (q,j, ) and ( —q,jz) ranges over
the entire Brillouin zone, and over all combinations of ji
and j2, most of the phonon frequency differences are very
much larger than the thermal phonon spectral width
I'i(co'). Thus, we are in a very different limit than the
model system examined by Sham. In our case, only a
small fraction of the contributions to the sum over q', ji,
and j2 in Fig. 1(c) have energy denominators that are
small, in Sham's sense. If, following Sec. I, we let f be the
fraction of points in the Brillouin zone which describe
phonon pairs for which b, i2 is comparable to 1 i(co'), then
while the graph in Fig. 1(c) contains near-resonant contri-
butions, the resulting supplement to the proper self-energy
is smaller than the graph [Fig. 1(b}] by the factor f«1.
We conclude that for our particular purpose, we can re-
tain only the graph in Fig. 1(b), with little quantitative er-
ror.

If we borrow the numerical results to be presented in
Sec. III, we may make a crude estimate of f. Let

~
Vq

~

be an average value of the square of the anhartnonic ma-
trix element, and let t0 be an average phonon frequency of
the material. We take the low-frequency limit of Eq.
(2.13), replace all quantities by their average, then replace
the Bose factors by their high-temperature hmit to obtain
the crude, approximate value (we use units with A'= 1)

III. NUMERICAL RESULTS AND DISCUSSION

We have evaluated the imaginary part of the TO pho-
non proper self-energy I 0 To(Q} using Eq. (2.13) for NaC1
and KI, then we used this to calculate the absorption coef-
ficient a(Q) from Eq. {2.3). As already mentioned, these
two salts have very different phonon spectra, and it will
be of interest to compare the effect of lifetime broadening
in the two cases. Central to the evaluation of I p To(Q)
are realistic lattice dynamical models which generate the
phonon spectra of these materials. Various phenomeno-
logical models that provide good fits to phonon dispersion
determined by inelastic neutron scattering exist in the
literature, and we have used the 11-parameter shell model
proposed by Cowley et a/. in the work reported here.
The parameter values were taken from Raunio and Ro-
landson' for NaC1 and fram Dolling et al. " for KI.

Berg and Bell' have given explicit expressions for the
anharmonic matrix elements Vi(O,TO;qi, coi,'q2, F02) in
terms of the phonon eigenfrequencies and eigenvectors,
along with potential derivatives. These formulas will not
be reproduced here. The values of the relevant derivatives
of the interionic potentials required were taken from El-
dridge and Staal' for NaCI, and from Berg and Bell' for
KI. The Brillouin-zone sum implied in Eq. (2.13) was
performed on a grid corresponding to a mesh of 64000
equally spaced points in the full zone. This grid yields
convergence of I 0 To(Q) to within 1%, for the far-
infrared and microwave frequencies of interest here.

Our only adjustable parameter is then 1, the inverse of
the thermal phonon lifetime. In principle, this quantity
could be calculated, assuming two-phonon processes dom-
inate, and we would then have a full description of the
microwave absorption constant within a picture that ig-
nores all decays to three-phonon final states. While we
wish to explore this issue further in future work, at
present we shall be content to replace the (frequency-
dependent) thermal phonon lifetime by an average value,
endawing it with a temperature dependence when ap-
propriate.

In Figs. 2(a) and 2(b), in the low-frequency region, we
show the frequency variation of 1 0 Ta(Q) at room tem-
perature, for various choices of I . One sees clearly that
in both materials, I'o To(Q}, and hence the absorption
constant, are influenced importantly by inclusion of the
broadening. Also, the calculated values for KI are more
sensitive than those for NaC1, as might be expected from
the nature of the phonon spectra of these two salts. At
Q=4 cm ', as I is varied from 2 cm ' to 15 cm ', in
NaCl 1 0 ro(Q) varied by only 20%, while it increases by
nearly a factor of 2 in KI.

In Figs. 3 and 4 we show similar calculations for the
two materials, but now the frequency scale has been ex-
panded to range from 0 to 100 em '. Qualitatively and
quantitatively, at the higher frequencies the results are
similar to those of earlier authors, although a dependence
on 1" clearly remains, especially for KI. Below 30 cm
our results differ dramatically from those of Hardy and
Karo, who find that I'0 To(Q) plummets to nearly zero at
these low frequencies.

It is striking that in Fig. 2, for both materials I"0To(Q)
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FIG. 2. At low frequencies and at room temperature, we

show calculations of I p To{A) for {a) Nacl and {b) KI, for four
selected values of T'.
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The function f(6), considered as a function of I, has a
maximum at I =5, and is an increasing function of I'
when I'gb„and decreases when I ~h. When the fre-
quency Q is raised, a larger fraction of the contribution to
I c To(Q) comes from transitions that can conserve ener-

gy, i.e., whose energy mismatch b is smaller than I . The
crossover frequency thus provides a measure of the aver-

4.0
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FIG. 3. At room temperature, in the frequency range from 0
to 100 cm ', we show calculations of I p To{A) for NaC1, again
for four values of I".

increases with increasing I', while at the higher frequen-
cies we see from Figs. 3 and 4 that I'o To(Q) is depressed
in value as I becomes larger. It is evident from Fig. 4
that for KI the various curves cross near 30 cm ', and for
NaC1 we find a similar crossing at 8 cm

We understand this behavior as follows. If we consider
the contributions from a particular transition that fails to
conserve energy by the amount b, =co~2 Q, then from-

Eq. (2.13) we see that this contribution is weighted by the
factor

FIG. 4. At room temperature, in the frequency range from 0
to 100 cm ', we show calculations of I p To{A) for KI, again for
four values of I'.

age energy mismatch at low frequencies in the two-

phonon difference process, and it is reasonable that this
crossover lies at a substantially lower frequency for NaC1
than for KI.

We adopt the value I =10 cm ' as a reasonable aver-
age value of the thermal broadening at room temperature,
and we now turn to a quantitative comparison between
our results and the data of Stolen and Dransfeld. 2 With
this value of I, for KI at room temperature we find
a=1.25 cm ' for radiation with a wavelength of 500 p,m.
This is within a factor of 2 of the value 2.1 cm ' mea-
sured by Stolen and Dransfeld. ' We consider this grati-
fying, in view of the uncertainty of the value of I, and
our neglect of its dependence on frequency and phonon
branch index. In contrast, Hardy and Karo' report that
their calculation yields 0.15 cm ' for a at this frequency,
roughly 15 times smaller than experiment. These authors
replace the 5 function in Eq. (2.8) by a "bin" of width of
1.67 cm '. lt is our view that their calculated value of a
at this low frequency is likely to be sensitive to the choice
of binwidth, although this possibility was not examined
by them. The fact that this is likely follows from the
dependence of our calculated linewidths on I .

To calculate the temperature variation of a, we must
recognize that I' is also temperature dependent. If the
dominant contribution to the thermal phonon scattering
rate has its origin in two-phonon processes, then near
room temperature or above, we may expect that I will

vary linearly with temperature. Thus, we write I =AT,
with A chosen so that I =10 cm ' at room temperature.
When we adopt this assumption, we then suppose that
both a and I are dominated by two-phonon processes.
This procedure is internally consistent but, as the reader
will appreciate shortly, the issue requires further study.

Stolen and Dransfeld find that for NaC1 and KI the ab-
sorption coefficient has a temperature dependence
stronger than linear in T, provided by the high-
temperature behavior of Eq. (2.8). They illustrate this by
constructing graphs in the following manner. For various
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FIG. 7, For KI and a wavelength of 320 pm, we directly
compare the prediction of our theory (dashed line) with the data
(open circles). The solid line is constructed as described in the
text.
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FIG. 5. Following Stolen and Dransfeld (Ref. 13) we plot
a/T vs T for the frequencies indicated, for (a) NaCl and (b) KI.
The curves are normalized so they intersect at T=300 K.

frequencies they plot a!T, with errors normalized so that
at the temperature T=300 K all curves meet at a com-
mon point. For KI, only the region below 300 K appears
in their plots, while for NaCI it extends slightly above. In
Fig. 5 we present the same graphs, as provided by the
present calculation. We extend the plots well above 300 K
for comparison with future experiments. To the eye, our
curves look quite similar, qualitatively to those generated

from the data. The reader should compare our Fig. 5
with Figs. 5 and 7 of Ref. 13. However, closer inspection
shows that the temperature dependence we find for a is
less strong than that obtained by Stolen and Dransfeld.

We illustrate this in Figs. 6 and 7, where for a wave-
length of 320 pm we compare our calculations directly
with the data. The points are taken from the experimen-
tal plots in Ref. 13, and the dashed line is produced by
our calculations. While we have a factor of 2 agreement
between theory and experiment over the whole tempera-
ture range, the temperature variation for o, provided by
theory is distinctly weaker than that in the data.

If we examine the discrepancy between theory and ex-
periment in Figs. 6 and 7, the difference between the
theoretical and experimental curves exhibits a T tem-
perature variation. The solid curves in Figs. 6 and 7 are
calculated by supplementin our theoretical curves by an
additional contribution BT . The agreement between the
resulting form for a and the data is remarkable. Since
one expects three-phonon contributions to a to exhibit a
T variation, this suggests that three-phonon contribu-
tions are more important than thought previously.
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FIG. 6. For NaCl and a wavelength of 320 pm, we directly
compare the prediction of our theory (dashed line) with the data
(Ref. 13} {open circles}. The solid line is constructed as
described in the text.

IV. SUMMARY

In our view the calculations reported here establish
clearly that in the far-infrared and microwave-frequency
range, a proper calculation of the two-phonon difference
contribution to the absorption constant requires inclusion
of the influence of the finite lifetime of the thermal pho-
nons on the absorption process.

%'hile we obtain a reasonable account of the data with
our calculation, if we regard a factor of 2 agreement be-
tween theory and experiment acceptable, important
theoretical issues remain to be explored. We require
values for I, calculated for the various phonon branches
and at various (low symmetry) points in the Brillouin
zone, so one may improve our rather crude procedure
which ignores its dependence on branch index and fre-
quency. %e have also raised the possibility that three-
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phonon processes enter importantly; further study of these
contributions would therefore be useful. ' From the ex-

perimental point of view, measurements above room tem-
perature would be most useful, along with studies of the
temperature variation of a at some microwave frequen-
C1CS.
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