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A theory is presented of the effect of impurity doping on the electronic states in a quasi-two-

dimensional —structure semiconductor on the basis of the Green s-function formalism. The theory is

apphed to a single quantum well of GaAs. It is shown that the states around the band edge are

strongly modulated by the heavy doping as compared with the case of a three-dimensional structure.
As the well width is decreased, the band tail becomes longer but the intraband density of states tends

to that for an undoped well.

I. INTRODUCTION

Study of a quasi-two-dimensional —structure (Q2DS)
semiconductor such as a quantum well and a superlattice
is one of the current topics motivated by a recent progress
of the epitaxial-growth techniques. Especially, optical
properties of Q2DS have received much attention in the
fields of fundamental physics' and device physics'
represented by a quantum well laser. Owing to the strong
confinement of the free carriers in the small size quantum
well, size quantization produces subbands and plays an
important role in determining the electrical and optical
properties. One of the outstanding features of Q2DS is
the density of states (DOS) which is a step function of en-

ergy. This is contrasted with a square root function in a
usual three-dimensional structure (3DS). The step-
function type of DOS has been found to result in excellent
characteristics of laser operations in Q2DS, e.g., low
threshold current and weak temperature dependence, as
compared with those in 3DS. Thus the new feature of
DOS plays various important roles in the Q2DS physics.

In practice, intentional or unintentional doping is often
inevitable, leading to modification of DOS around the
edges of the subbands. Recently, the calculation of the
impurity-band tail in Q2DS has been carried out9 on the
basis of the minimum counting method developed by
Halperin and Lax' for 3DS. This method is useful only
for deep band-tail states. However, DOS around the band
edge is more important in practical cases because device
physics is often relevant to the intraband near-edge pro-
cess as is in lasers and light-emitting diodes. Further-
more, the impurity scattering effect becomes important as
one approaches to the band edge, where DOS for an un-
perturbed band in Q2DS is finite in contrast with that in
3DS. As a result, the modification of DOS around the
band edge is considered to be more serious in Q2DS than
in 3DS. Therefore the minimum counting method may
not be powerful for understanding important aspects of
device physics although useful for an academic purpose.

On the other hand, Bonch-Bruevich" has developed an
approach for 3DS on the basis of an assumption that the
potential varies slowly enough; then fiuctuation in the en-

ergy of states mirrors closely that in the potential energy.

II. THEORY

Considering carrier confinement in the z direction, we
define notations for the two-dimensional position vector
r=(x,y) in the confinement-free directions, the three-
dimensional position vector R=(x,y, z), the two-
dimensional wave vectors q = (q„,q» ) and k =(k„k» ), and
the three-dimensional wave vector Q=(q„q„,q, ). Let us
consider the conduction band with the isotropic effective
mass. Confinement of a free electron produces subbands.
Then the wave function for the electron is given within
the framework of the effective mass approach by

1
Pii,(R)=,

&
exp(jk. r)ui(z),

(L L»)'»
(2.1)

where L~ and L» are the lengths of the rectangular crystal
in the x and y directions, respectively, and uI(z) the wave
function for the subband I in the z direction.

I.et us consider a sing1e quantum we11, where hydrogen-
ie donor impuriti. es are randomly distributed; outside the
well no impurities are present. Starting with Eq. (2.1), we

The present author has discussed the approach in a dif-
ferent method, ' i.e., a diagram method. The approach by
Bonch-Bruevich and the present author is considered in
this paper and is called hereafter as the Bonch-
Bruevich —Takeshima (BT) approach .It has been
shown' ' that the BT approach is useful for the intra-
band states and the states around the band edge especially
in the case of a light mass band such as the conduction
band at high doping levels.

In this paper we use the Bonch-Bruevich assumption
also for the case of Q2DS. This approach is not only use-
ful for a light mass band but also opens a way to analyz-
ing the band tail in a heavy mass band on the basis of the
pseudopotential approach. ' Another advantage of the
BT approach is the use of the Green's function formalism,
which is well known to offer direct methods of calculating
various physical parameters such as the conductivity, '

the absorption constant, ' and the Auger recombination
lifetime. ' Thus the extension of the BT approach for
3DS to the case of Q2DS offers a powerful method of
analyzing various phenomena of practical interest.
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define our model by writing down the Hamiltonian

H =H, +H, ;+H. . . (2.2)

Go ($k;oo )

&.= g Ei«)&iian
1,k, cr

1
+e i=-g ~(Q)l I'I('6)ol's+qcr~/ka ~

I', /, k, g, o

(2.3)

(2.4)

where H„H, ;, and H, ~ are the Hamiltonians for the
unperturbed subbands, the electron-impurity interaction,
and the electron-electron interaction, respectively; H, ;
and H, , are perturbations. The explicit forms of the
Hamiltonians are

2, k

l

Q.

I
I

Ãq~ (Sz) g, k +7(

FIG. 1. Diagram representing the impurity scattering.

U(Q)yi, i,(q. )yi, i, ( a)—
Il, 12,13,l~,

k, k', n, o', Q

X&I
&
k+qfak qo'&I3k ~ ~4k

(2.5) U(R}=

band only so that the discussion is analogous to that for
3DS. Assuming one species of the impurities, we have

2

exp( —A,R), (2.9)

Here aik, ai~, and Ei(k) are the creation operator, the
annihilation operator, and the unperturbed subband ener-

gy, respectively, for the electron with the subband index I,
the two-dimensional wave vector k, and the spin o. I (Q)
is the Fourier transform of the potential I (R) due to all
the impurities,

N;

1(R)= g Ui(R —R„)

Ui(R) =ZU(R), (2.10)

I (Q}=U;(Q)h (Q), (2.12)

where e is the electronic charge, eo the dielectric constant
of the host lattice, and Z the minus of the valency of the
impurity with respect to the host lattice. Then we have

4me
(2.1 1)

e'o Q +~

=—g I'(Q) exp(jQ R),
V q

(2.6)
where Ui(Q) is the Fourier transform of the potential
Ui(R}, i.e.,

where U, (R—R„) is the potential due to the impurity at
R=R„, N~ the total number of impurities, and V the
crystal volume defined later. U(Q) is the Fourier
transform of the interaction U(Ri —R2) between the elec-
trons RI and R2

Ui(Q) =ZU(Q),

and we define

h (Q) = g exp( —jQ R„) .

(2.13)

(2.14)

U( Ri —R2) =—g U(Q) exp[jQ'(Ri —Rz)] .
V q

yii(q, ) is an important parameter representing directly
the effect of the electron confinement on the electron-
impurity interaction, i.e.,

yii(q, )=fdz ui'(z)exp(jq, z)ui(z) . (2.8)

As for the potentials Ui(R) and U(R), we assume the
free-carrier screening a priori with the inverse screening
length A, . Derivation of the screened potential starting
from an unscreened potential is given in Ref. 12 for 3DS.
For Q2DS it is assumed that almost all of the electrons,
which contribute to the screening, are in the lowest sub-

Go (I,k;co)=
co Ei k +j5— (2.15)

under 5~0+. In a way analogous to the case of 3DS
(Ref. 16) we obtain

Based on Eqs. (2.3)—(2.5), we consider the retarded
Green s function which is a function of two subband in-
dices I and I', two wave vectors k and k', one energy pa-
rameter co, and the position vectors of the impurities
R~, R2, . . . , Rz.. A diagram representing an impurity

scattering is shown in Fig. 1 with the use of the free-
particle Green's function

r

6"(I,k;I', k') =Go (I,k) 5(1—I')b, (k —k')+ g I (k —q, q, )yii (q, )6 (I",q;I', k')
1",Q

(2.16)

where we have omitted the parameter co and we define h(x) = 1 for x=0 and b,(x)=0 otherwise with x as a scalar or a
vector. With the use of an expansion
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6"(I",q;I', k')= g, [(q—k) Vk] 6"(/",k;I', k') (2.17)

with Vk as 8/Bk, we can rewrite Eq. (2.16) as

6"(I,k;I', k')=60(l, k) b(1 —/')h(k —k')+ g I u-(JVk)G"(I",k;I', k')
Itl

(2.18)

Here we define

I !» (j Vk ) = fdz u!'(z}u! (z)I'(j Vk,z)

and I (j Vi„z}is obtained from I'(R) by replacing x, y, and z with ja/ak„, JB/Bk„, and z, respectively.
Equation (2.18) is easily rewritten with !=I' as

6 (/, k;l, k') = „b(k—k')+ g F(jVk, /, l")6"(I",k;I,k')60(/, k)

1 —60 (lk)[1 u(j Vk )+F(jVk,'l, l)]

(2.19)

(2.20)

where

60 (l,k)
F(j Vk, l I')= g I u (j Vk) I!»(jVk) .

! (+I,!"') 1 —Go (l,k)l »'!"(JVk )
(2.21}

6"(/, k;/', k') =

Note that I i! (j V k ) with l&l' is an operator representing the intersubband interaction due to the impurity scattering. On
the other hand, under I+I' we have

60 (l,k)
I u (JVk)~(k —k )Go(l, k)+ g I u"(j Vk)6"(I",k;I', k') (2.22)

1 —60 ( I,k) I u(J'Vk ) Itt (~I)

Hereafter the discussion is restricted to the case where
the energy difference between the neighboring subbands is
large enough to allow the neglect of the intersubband in-
teraction due to the impurity scattering. This corresponds
to assuming that I u(jVk) with I&/' is small enough.
Then 6"(/, k;I', k'} with I&I' is of the first order in
I u-(jVk) with I&I" so that we may consider only
6"(l,k;l, k') given by Eq. (2.20). Furthermore, since
F(jVk, l, l") is of the second order in I'i-»(jVk)with
I"+/', we obtain

6 (I,k;I,k')= a b(k —k')60 (l,k)

1 —60(l, k)1 u(JVk)
(2.23)

by neglecting all F's in Eq. (2.20). This equation can be
rewritten as

6"(/, k;l, k'}=fdrexp[j(k —k') r)

X
1 1,

~+J/i E!(k+J V „)—I u(r)—
(2.24)

where V, =B/Br and I ii(r) is obtained from I u(jVi, ) by
replacing jVk with r, i.e.,

I ll«)= fdz
I
&i(»

I

'I «)
1=—Q I ii(q) exp(jq r),
V

with the definition of

~u(q) g ) u(n)~(Q)

(2.25)

(2.26)

In Eq. (2.24) we define the operation

I 1/[a)+J5 Ei(k+J—V, ) I.u(r)]—I1

=[60 (/, k)/(1 —Oq)]1=60 (Ik) g Oq 1,
n=0

where O~ =[Ei(k+j V, )—Ei(k)+I u(r)]60 (l, k).
After the Bonch-Bruevich's approach" for 3DS it is as-

sumed that in the xy plane the spatial variation of I"u(r)
within the de-Broglie wavelength is slow enough to allow
neglecting the spatial derivatives of all orders of I ii(r)
contained in Eq. (2.23), i.e., V„"I ii(r) =0 for n ) 1. This
approximation is completely equivalent to the standard
method of the bent bands. For the present case this is
valid only at sufficiently high doping levels, as will be dis-
cussed later, i.e., Eq. (2.50). We obtain

g, 1 60 (l,k)6"(I,k;I,k')= fdrexp[j (k k') r]—
Z 1 —60 (l,k)I u(r)

=60(l,k) g [60(l,k)] fdr[I ii(r)] exp[j (k k') r] . —
O

*
LZLy

(2.27)
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With the use of Eqs. (2.12), (2.25), and (2.26} we have

fdr[I «(r)] exp[j(k —k').r] =
LxLy

4(qi+q2+ . +k—k') g —U~(Q„)h (Q„)
V

(2.28)

where

U;(Q)=y«(q, )U;(Q) .

Now we consider an ensemble average"' of 6"(I,k;I,k') over the impurity sites, which is defined as

(2.29)

( 6"(I,k;I, k') ) = ~ fdRi fdRz f fdRN6", (I,k;I,k')
(L~LyLg) '

=6"(l,k;co)h(k —k'), (2.30)

where L, is the well width. Here the integrals are taken
only over a layer where the impurities are distributed; this
layer is just the well in this paper. The last step of Eq.
(2.30) represents the fact that the space uniformity, which
is lost under the random distribution of the impurities, is
restored under the average distribution giving the momen-
tum conservation k=k'. For convenience we define q, by
proposing that the periodic boundary condition should be
satisfied for a wave exp(jq, z) at both boundaries of the
doped layer, i.e., the well. Thus we should take
V =L L~L, and obtain

1
RnCXP J s Rn — s (2.31)

layer

for Q, which is a sum of an arbitrary combination of Q s
picked out from Qi, Qz, . . . , Q~. After taking the en-
semble average by noting h (Q) in Eq. (2.14), 6"(I,k;ro) is
given as a sum of all the diagrams whose typical example
is shown in Fig. 2. The diagram in Fig. 2 represents

~(Qi+Q2+ +Q )

r

X g —U, (Q„)
n =1

Let us define

U (R)=—g U;(Q}exp( —jQ R) .
y

Then we obtain

layer

and the final expression of S is

(2.33)

(2.34)

(2.35)

S(m„m„. . . , m~)= „ ff fN[GO(It)]" Hj, "
60 (I,k)

(2.32)

where

Go" {Jk;~)
—Ui (Qrl) n = 1, 2,

U [a]

X, X
y(l y
1] y j1'
I L y ~ I

/ I

I
I

FIG. 2. Diagram representing the impurity scattering, which
is obtained by taking an ensemble average over the impurity
sites.

Icy'g' (Sz )

(!

Fgg (—gz)

FIG. 3. Diagram representing the Coulomb term of the
electron-electron interaction.
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n~ ('

S(m„m„. . . , m~)= z fd R[ U'( R)GD(l k)] "

Go(l, k) „
where n; is the impurity concentration n; =E;/V. On the other hand

1
U (R)=—g ytt(q, )U;(Q) exp( —jQ R)

y

(2.36)

=—P fdz'i ui(z')
i

Ui(Q)exp[ —jq r —jq, (z —z')]= fdz'i ut(z') i'U;(r, z —z') .
V q

(2.37)

This result evidently means that U; (R) is the potential at an impurity position R due to an electron in a well. Equation
(2.37) in combination with Eq. (2.36}is of central importance in all the discussions above.

As for the electron-electron interaction we consider the Coulomb term. The self-energy as shown in Fig. 3 is con-
sidered and we obtain'

2,",(l,k;hali) = — g 3 3 i yi i (q, )
i fdt0ImG "(I',q, co)8(o~),~I't q ~o(n+~')

(2.38)

p(tk]) =— g ImG "(I',q;t(]) .
mV (.

(2.39)

where 8(t0) is the Fermi-Dirac distribution function at an
energy co. On the other hand, DOS p(co) is given by

h(t, t, )=fdz'
i
ui(z')

i
exp( —T)/T,

T =[t'+(t, l]z')']' —'
(2.46)

Then we have

i
Z

i n; =fdrop(t0)8(to) . (2.40)

Restricting the discussion hereafter to the case of suffi-
ciently low temperatures where almost all the electrons
are in the lowest subband, we obtain

4irez
i
Z

f
n;

X, ,(l, k;N) = y 3 3 i yt, i, (q, ) i, (2.41)
eo(q, +A, )

where l i denotes the lowest subband.
For facility of the numerical calculation, we neglect the

exchange energy in view of the present purpose that we
investigate the impurity effect. In fact, an estimation
shows that the effect of the exchange energy is significant
but not so important.

With the use of Eqs. (2.36) and (2.41), the calculation of
G (l,k;oi) is performed in perfectly the same way as in
Ref. 12. In the calculation we take into account all the di-
agrams containing multisite and multiple impurity
scatterings. Thus the present calculation goes beyond the
single-site second-order Born approximation, which is not
valid'z' ' for the de-Bloglie wavelength larger than the
average separation of the impurities or for low energy
states subject to strong impurity scattering. We finally
obtain

, , q. I

Z l]
( )

q, 9's+

4~n;r= i3

(2.47)

(2.48)

fdpi p(co) 8(to),
cfQp

(2.49)

The integral of Eq. (2.45) comes from the integral
~

~ ~

~ ~

dR, which is transformed into

(2'/A3) fdt t f ,dt

by using the cylindrical coordinates ( r,z, 8) in place of the
spherical coordinates (r, 8,$) in Ref. 12 in the case of
3DS. We have defined t =Brand t, =, Az. h(t, t, ) comes
from Eq. (2.37) and is the potential at an impurity. The
integral over t„ i.e., z, in the layer region means averaging
the contribution of this potential over the impurity site.

The inverse screening length A, is calculated approxi-
mately by assuming that the screened potential of an im-
purity is spherically symmetric. This is a good approxi-
mation under d(,

' «L, . Actually, this inequality holds
only roughly in some cases of practical calculations but
we use the above approximation for simplicity. We use
the Thomas-Fermi approach, which gives

6"(l,k;oi) = 6"(0),
iZ /ezra,

6 "(0)= —.f dgexp[jgQ+yg(g)],

(2.42)
where p((ii) is calculated from Eq. (2.39). Actually, A, is
solved from Eq. (2.49) noting that p(oi) is a function of I,.

Now the criterion for the applicability of the present
approach is discussed. This approach has used, after the
BT approach for 3DS, the assumption that the potential
change within one wavelength of a quantum particle
should be sufficiently small, i.e., 2m', /k « 1. As for k we
take a typical value kF which is the magnitude of the Fer-
mi wave vector in the unperturbed band. Actually, the re-

(2.44}

(2 45)

EO0= i [co—Ei(k)],
[Zie A,

g(g)= —,
' f dt t f dt, Iexp[ j fh(t, t, ) 1] jgaI,— ——

layer
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quirement 2m', /kF «1 seems to be too strong and we

may use 2nA/. (.4kF ) & 1 instead. Considering degenerate
statistics, we approximately have A. =4/(asL, ) with as
as the Bohr radius R eo/(m 'e ), where m ' is the effective
mass. We also use kF (——2mL, n; )'~ . As a result the cri-
terion is

Q2 DS

GoAs 0 K A~ = IO cm

Lz= 6oi,

2a&L, n; & —. (2.50)

This shows that the present approach is useful for a light
mass band under heavy doping.

For practical calculations in Sec. III, we assume a sim-
ple model

' 1/2

ui(Z) =
Lg

nl,
sin

z
(2.51)

for 0 &z &L, and u~(z) =0 otherwise with energy

ml

2m L, 2m
I~

(2.52)

as measured from the unperturbed band edge. Here / is
an integer larger than zero. The above model is applicable
to the case where the well depth is infinite. With the use
of Eq. (2.51), we examine a criterion under which the in-
tersubband interaction is negligible. A spatial average of
the impurity potential (I') is roughly given by e A,y/eo.
This value must be much smaller than at least the energy
difference between the bottoms of the subbands with I= 1

and 2. With the use of A, =4/(asL, ), we obtain the cri-
terion n, L, «6m' and we tentatively give

n;L, &5. (2.53)

The relations (2.50) and (2.53) give the ranges of n; and
L, where the present approach is useful.

From Eq. (2.51) and the restriction on q, given just
above Eq. (2.31), we obtain

200 I 50 I OO 50

(d {me V )

FIG. 4. DOS's for the unperturbed (dashed line) and the per-
turbed (solid hne) lowest subband as functions of energy mea-
sured from the unperturbed subband edge under L, =60 A;
n; = 10' cm ' is used for the perturbed subband.

with L, in cm. However, for obtaining a qualitative
understanding the following calculations also include the
cases of n; outside the above range.

Figure 4 shows DOS's for the unperturbed (dashed line)
and the perturbed (solid line) lowest subband under
L,=60 A as functions of energy ca measured from the un-
perturbed subband edge. The calculation for the per-

3DS

11'a(q. ) I'=~(q. )+
4

~ q. + Lz

+6 q, —2n I

z
(2.54)

From this relation, a in Eq. (2.47) is calculated to be

1
0,=1+—

2 g +(2n/Lg)
(2.55)

III. RESULTS AND DISCUSSIONS

The theory in Sec. II is applied to a well made of n-type
GaAs at 0 K. Material parameters used are the effective
mass 0.067 in unit of the electron mass ln uacuo and
eo ——13.18. %'e consider hydrogenic donor impurities with
Z = —1 doped in a well region. The impurity concentra-
tion satisfying the criteria given in the preceding section
should fall in a range

1.3 & 10 /L, & n; & 5/L,

I50 I OO 50
( me Y)

—50

FIG. 5. DOS's for the unperturbed (dashed line) and the per-
turbed (sohd line) band in 3DS as functions of energy measured
from the unperturbed band edge. n; =10' cm 3 is used for the
perturbed band.
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turbed band has been done for n;=10' cm . It is seen
that the impurity doping not only gives rise to the band
tail but also strongly modifies the intraband region. For
comparison curves for 3DS under n;=10' cm are
shown in Fig. 5, where DOS's for the unperturbed (dashed
line) and the perturbed (solid line) band are plotted. The
method of the calculation is found in Ref. 12. An impor-
tant point is that the intraband states are much more
strongly modified for Q2DS than for 3DS. This is as a
result that in QZDS the impurity scattering effect be-

comes larger as the energy is decreased and DOS for the
unperturbed subband is a constant in contrast to the case
of 3DS, where DOS for the unperturbed band approaches
zero as the energy is decreased toward the band edge.

In the following we consider only the perturbed sub-

bands. Figure 6 shows DOS for the lowest subband as a
function of energy measured from the unperturbed sub-

band edge with I., as a parameter under n; =10' cm
It is seen that the band tail becomes long with de:reasing
well width. This result reflects the fact that an impurity
level becomes deep with decreasing well width. Another
observation is that the intraband DOS approaches that for
the unperturbed band, i.e., a step function, as the well

width is decreased. The reason is that for a smaller well
width the electron-electron interaction, which pushes up
the states to higher energies, becomes small due to in-
creased A, .

Figure 7 shows DOS for the lowest subband as a func-
tion of energy measured from the unperturbed subband

edge with n; as a parameter under 1.,=60 A. With in-

creasing impurity concentration, DOS around the band
edge is seen to be more and more modified. Amount of
decrease of the intraband DOS is larger than that of the
increase of the band tail states. Therefore the elevation of

t
020

Q 2DS

~ IO"
E

I
01

I 50 IOO 50 -50 -
I 00

( rneV )

FIG. 7, DOS for the lowest subband as a function of energy
measured from the unperturbed subband edge with n; as a pa-
rarneter under L, =60 A.

the Fermi level with increasing impurity concentration is
not only caused by the increase of the concentration itself,
but also enhanced by the decrease of the intraband DOS.
In fact„ the Fermi levels for the perturbed subband under
L, =60 A are calculated to be 0.055, .0.16, and 0.32 eV for
n;= 2&(1 0', 5X10', and 1X10' cm, respectively,
while those for the unperturbed subband are 0.043, 0.11,
and 0.21 eV for the respective values of n; Thus . the
elevation of the Fermi level due to the modification of

20
IO

Q2DS
I

Oao

I
Ot9

E
I

OI 9

E

Q
I

OI8

I50 IOO 50 -50 —IOO
Io

200 I 50 I 00 50

( rneV )

-50

FIG. 6. DOS for the lowest subband as a function of energy
measured from the unperturbed subband edge with L, as a pa-
rameter under n; =10'9 cm

FIG. 8. DOS's for various subbands as functions of energies
measured from the respective subband edges under L, =60 A
and n;=10' cm
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DOS is large. In contrast, in 3DS the Fermi level for the
perturbed band is calculated to be nearly the same as that
for the unperturbed one. The strong modification of the
intraband DOS in Q2DS may be very important in the
fields of device physics as well as fundamental physics.

Figure 8 shows DOS's for various subbands as func-
tions of energies measured from the respective subband

edges. It is seen that DOS at a given relative energy is
smaller for a higher subband especially in the band tail re-
gions. This again reflects the fact that the impurity
scattering effect is more important at lower energies. It
should be pointed out here that DOS arising from all the
subbands is practically the same as that for the lowest
subband shown in Figs. 4—7. At energies exceeding those
of some subband edges, contributions from higher sub-

band DOS and the neglected effect of the intersubband

scattering may be important. However, this does not
matter, as far as the ranges of the energy and the well

width considered in Figs. 4—7 are concerned. For exam-

ple, the first excited subband (1=2) edge lies 0.17 eV
higher than the lowest subband (1=1) under L, as large
as 100 A. Therefore, the strong modification of the intra-
band DOS is a conclusive result and may play an impor-
tant role in the fields of device physics as well as funda-
mental physics.
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