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Nonlinear Landau absorption in III-V semiconductors near the fundamental absorption edge
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Analytical investigations have been made of nonlinear Landau absorption in important III-V
semiconductors such as GaAs, GaSb, InSb, and InAs which have been irradiated by suitable lasers

of photon energies (fe) nearly equal to the band-gap energies (Aez} in the presence of a large magne-

tostatic field. A coherent radiation-exciton interaction model has been used for the direct allowed

transitions between the n =0 Landau subbands. The result obtainable for linear magnetoabsorption

using the present model agrees very well with that obtained in the 1960's using a completely dif-
ferent approach. The effective nonlinear Landau absorption a~"(Bo) has been studied by exam-

ination of the imaginary part of the third-order optical susceptibility. The contributions from the
higher-order susceptibilities have been neglected. The Wannier-Mott exciton wave function P(0) is

found to play a very important role in the nonlinear Landau absorption processes as it occurs in the
fourth power in the expression for 0, "(Bo). For near-band-gap resonant excitation in the true
continuum with il(to —cos) less than the crystal exciton rydberg,

~
P(0)

~
&&1 and its contribution

must be recognized under this regime. The renormalization of the crystal band gap due to the exci-
ton rydberg and the light shift has also been discussed.

I. INTRODUCTION

The key role played by the giant nonline irities in crys-
tal refraction and absorption in achieving optical bistabili-
ty in semiconductors is well established. ' The origin of
these nonlinear properties lies in the large nonlinear opti-
cal susceptibility of the crystals irradiated by a laser with
photon energy nearly equal to the band-gap energy This
experimental result has been interpreted differently by dif-
ferent workers. Gibbs et al. ~ ascribed it to the saturation
of the excitonic absorption in GaAs while Miller et al.
argued that the excitonic effect is negligible in InSb and
that interband resonant transition mechanisms are respon-
sible for the observed giant nonlinearity. The experimen-
tal observations of Miller et al. 3 were also explained by
Moss on the basis of the dynamic Burstein-Moss effect.
Hang' has discussed how, by a nonperturbative many-
body technique which incorporates the long-range
Coulomb interaction in the quantum system of the elec-
trons and holes, the nonlinear optical properties of semi-
conductors could be explained. Kanskaya et al. 6' have
claimed the successful observation of the ls Wannier-
Mott type of discrete exciton structure of the fundamental
absorption edge of InSb and concluded that all of the im-
portant III-V semiconductors including GaAs and InSb
exhibit the same excitonic structures of the absorption
edge. Keeping in view the common nature of the non-
linear optical phenomena and the wide-ranging theoretical
interpretations, Sen proposed an independent model
which could explain satisfactorily the experimentally ob-
served results in both GaAs and InSb. Consequently, us-
ing the coherent-radiation —exciton interaction model, Sen
found reasonable agreement between the theoretically
determined value of the third-order susceptibility 7' ' not
only for GaAs and InSb but also for GaSb and InAs.

The same theory was extended later to the case of the
above crystals subjected to a very large magnetostatic field
to study nonlinear refraction. Quite interesting, the re-
sults could be expressed in a form identical to that of
Wherrett and Higgins' (although the approaches are
completely different} by neglecting the role of excitons in
Ref. 9 and choosing Ti —T2 in Ref—. 10. In this connec-
tion, it may be noted that the dephasing time constant Tt
and the population relaxation time constant Ti are still
regarded as essentially unknown parameters. " To take
into account the numerical contribution of the factor
Ti/Tq-10, it has been shown that for very-near-
resonant interband transitions in the true continuum near
the fundamental absorption edge of the crystals the con-
tribution of the Wannier-Mott-typ exciton wave function
could be around 2)& 10 to 5 X 10 for a laser photon ener-

gy larger than the crystal band-gap energy by roughly half
the exciton Rydberg. From the above discussion, it ap-
pears that the coherent radiation-exciton interaction
model should also be employed to study nonlinear absorp-
tion phenomena in the above class of semiconducting
crystals in the presence of a large magnetostatic field.
This is possible only if the roles of various nonoptical pro-
cesses are taken into account such that the optical suscep-
tibihty becomes complex with the imaginary part being
responsible for the absorption phenomena. This can be
done by introducing phenomenologically a damping pa-
rameter into the equation of motion of the probability am-
plitude of the excited electron-hole pair state. Such an ap-
proach is ~e11 established in quantum mechanics to take
account of damping.

In Sec. II, basic formulations for the perturbational cal-
culation of X' ' are presented using the coherent model for
direct-gap semiconductors in the presence of a magnetos-
tatic field. Section III deals with the general theoretical
formulations which lead to an expression for the
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intensity-dependent optical susceptibility of the crystals.
Section IV is devoted to the comparison of the results of
the present analysis for linear magnetoabsorption with
those of earlier workers. ' The phenomenan of nonlinear
Landau absorption has been investigated analytically in
Sec. V. SI units have been employed throughout.

II. BASIC FORMULATIONS

We consider that all of the chosen III-V semicon-
ductors possess isotropic, nondegenerate, and parabolic
bands and permit only direct allowed transitions between
the highest valence band and the lowest conduction band.
The crystal is subjected to a magqetostatie field Bp ap-
plied along the z axis and consequently, the crystal energy
spectra are given by'

e, = ,e+p(A kz/2m, )+(n'+ —, )Ace„+g,pBpMq

~b, = —ps, (k, )E(t) and H,s —— p,b(k, )E(t) . —

The screened Coulomb potential is given by

Uk exp[i (k r cot)). —
U r, t)=

2n ~ e(((co k)
(4)

where U~ ———4m.e /k and r is the electron-hole separa-

e„=e„p (R k—g /2m„) (n +——,
'

)Aco~ +g„PBpMg,

where the suffixes e and u stand for the conduction and
valence bands, respectively. e„(e ) is the energy at the
center of the lowest conduction (highest valence) band.
m, „, g, „, and co„(=

~
eBp/m, „ I ) are the effective

masses, g factors, and the cyclotron frequencies, respec-
tively. P (= eA'/2mp mp being the electron mass) is the
Bohr magneton and Mz (=+—,

'
) is the spin quantum

number; n and n' are the Landau quantum numbers. For
direct allowed transitions when Bp+0, the selection rules
yield n =n' and k, =k,'. If Bp is very large, one can as-
sume that only the n =n'=0 Landau subbands partici-
pate in the band-to-band transitians. Hence, we define the
interband transition frequency from Eq. (1) as

cok ——coe+0, /2+(g, —g„)PBpMq/A+4k, /2m, , (2)

where we have taken e, —e„=Acok, Q, =co„+co,„, and
—1 —1 —1

mr mc +mv
We now consider the equations of motion of the proba-

bility amplitudes of the crystal ground state a (t) and the
excited electron-hole pair state b(k„t). A spatially uni-
farm coherent pump electric field E(t)=Ep cos(cot} acting
through a dipole moment p, (k, ) excites an electron from
the valence band to the conduction band at k, leaving
behind a hole at the same value of k, . Here, we have as-
sumed p(k, ) and E(t} to be parallel to each other. The
interaction Hamiltonian (assumed to be to dipole type) for
this case is p(k, )E(t). The —band-to-band transitions
take place between the states a and b such that the Ham-
iltonians for the two types of transitions are obtained as

tion. e~~(co, k) is the excitation-dependent longitudinal
dielectric function.

During band-to-band transitions in semiconductors,
many electron-hole pairs (excitons) are optically created
which screen the Coulomb potential of a given exciton.
Under high-power excitation, the interparticle spacing can
be comparable to the exciton Bohr radius and the screen-
ing becomes so strong that the bound state, being no
longer stable, undergoes a Mott transition. This situation
can be studied by incorporating many-body effects arising
from the long-range Coulomb interaction in the quantum
system of electrons and holes. 5 In this article, we are in-
terested in the exciton effects in DI-V semiconductors; we
consider a comparatively low density of electron-hole
pairs at moderately low excitation intensities well below
the Mott transition. Accordingly, we have omitted
without sacrificing much accuracy the excitation depen-
dence of screening and chosen e~~(co,k)=ei, the lattice
dielectric constant.

Using the rotating-wave approximation, one can write
down the equations of motion of a (t} and b (k„t) on us-
ing Eqs. (3) and (4) as

it «.}Ep
a(t) =i g '

exp[ i(cok— co)t]b (k„—t}
2R g

(5a)

b(k„t)+ —g (k,
~

U
~
k,' ) exp[i(cok coq, )—]tb(k,', t)

kg'

p~b (k, )Ep.=i exp[i (cok co}t)a (t) y—b (k„t}. —
2 g

(5b)

In writing Eq. (5a), the assumption has been made that
the transitions taking place between the crystal ground
state a and the possible excited pair states ranging over all
of the possible values of k, participate in the interaction.
The term y in Eq. (5b) is the phenomenological damping
constant and takes into account the effects of various
nonoptical processes encountered during the interband op-
tical transition. It may be noted in this connection that
the coherent model considers the same damping for both
the population (Ti ') and the dipole moment (Ti ').
Thus, in this investigation, we assume T, ' =T2 ' ——y.

It was pointed out by I,etokhov and Chebotayev' that
coherence effects could be maximum only if the two de-

cay constants Tz and Ti are equal to each other. Elci
and Rogovin' used the validity of this assumption while

studying the phenomenon of four-wave mixing and phase
conjugation in direct-gap semiconductors. Earlier, Sen
had shown that such an assumption could establish the
identity between the results obtained by himself (using the
coherent radiation-exciton interaction model) and that of
Wherrett and Higgins' (using the resonant interband
transition model) for nonlinear refraction in an InSb crys-
tal.
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III. INTENSITY-DEPENDENT OPTICAL
SUSCEPTIBILITY

cj can be determined by using Eq. (6) and taking r=0:

cj= A—(pl Eo/2RH/j(0)/(Q+co c—oJ ) . (10)

In order to investigate the phenomenon of intensity-
dependent optical susceptibility of semiconducting crys-
tals by using the coherent radiation-exciton interaction
model, one has to confine oneself to a particular regime of
the exciting-laser-pump intensity. It is well known that
the excitons can exist only at low pump intensity. As the
intensity increases, the Mott transition becomes more and
more dominant and has been carefully avoided in the
present woi'k, since we realize fully its importance and
complexities which go hand to hand.

We consider the weakly bound electron-hole pairs of
the Wannier-Mott type in all of the direct-gap important
III-V semiconductors with an exciton wave function
represented by

Takjng the Fourier transform of g~(r) from Eq. (6), we

obtain

B,(k, )= ~ Jg, (r)e d''r
(2m)

and using Eqs. (5), (9), and (10}along with the normaliza-
tion condition

~
a(r) ['+ g ( b(k„r) ~'=1,

one finds

pEo

QJ(r)= QBg(k, ) exp(ikgr),
k

with Bj(k, ) satisfying the equation

(cok co )JB—(Jk, )+ lii' g (k, i
U i k,' }BJ(k,

'
) =0,

2
fA )2= 1+ g (Q, +~0—~, )'+(y+Q;)'

with Q ( =Q, +i Q; ) being obtained as
2

pEO

J 0+N —N +lpJ

(12)

(13)

with coj being the eigenvalue obtainable from the hydro-

genic series

co, =a) s R'e,„(0)—/J', j =1~2,3 (&)

Here, ~ (0)=m, e'/2A e and is the exciton Rydberg f'or
the particular semiconductor.

We now proceed to solve Eqs. (5) by assuming solutions

of the form

a(t)=Ae

b(k„t)= gcjb;(k, ) exp[i(cok ~ Q)t] . —

In obtaining Eqs. (12) and (13), we have assumed that
~p~ ~

= ~p, s, ~
p. Using the above formulations, one

can determine the values of a (t) and b(k„t) in terms of
the physical parameters of the crystal and the pump laser.
Consequently, the ensemble average of the time-dependent
dipole moment can be determined by using the relation

(p(&) }=&p (2 '(&)g b (k„t)exp(i cok r)
k

/
I2EO/2A'

f

'
/ xp, (0)

)

2

1+ 2J2
(fd —cop) +y~

(15)

where co~, ——coj —Q, and y, =y+ Q;.
Equation (15) is identical with Eq. (14) of Ref. 9 where

y was introduced as a correction to the pump frequency co

replacing co by co+iy with y&&~. %e would now
proceed to calculate the total induced polarization P(t)
due to the laser-induced band-to-band transitions in the
semiconducting crystals when the crystal is subjected also
to a very large magnetostatic field. The role of the mag-
netic field is actually twofold in the type of transitions we
are concerned with. One of these roles has already been
discussed while defining the transition frequency ask by

using the conventional energy spectra of the crystals [Eq.
(2), Sec. II]. The other role comes into effect during the
determination of P(t) It is well know. n that the magne-
tostatic field causes the sharpening of the density of
states. The number of Landau subbands associated with a
given quantum number n (for n =n'=0) in the range k,

ea, V lP(&)= —g (p(k„r) } .
k

(16}

Here, one should note that the number of dipoles per unit
volume has been defined as X= 1/V gk with k, ranging

from 0 to ao, remembering that for real direct-gap semi-
conductors, most of the population is around the center of
the first Brillouin zone. One can consequently replace

gk by L/n I dk, such that Eq. (16) can be modified

to

I

» equal «&BoV/(4n A')hk, (Ref. 13). Here, V is the
volume of the crystal and k, =n./I. , L being the length of
the cavity. ' Taking into account the effect of spin degen-
eracy, this number becomes eBOV/2~. Thus, we de-
fine P (t) at finite Bo as
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p(i)= f (ptk„i'i&&k.
2 fi

In writing Eqs. (16) and (17), we have assumed that the
transition dipole moment depends upon the suave number

k, . This is quite obvious from the definition

p = er,—b with r~ ip——,b lmocok,

where mo is the free-electron mass and p,b is the inter-
band momentum matrix element.

The form of )(c represented by Eq. (18) also shows how
the interaction Hamiltonian is modified in the presence of
the magnetostatic field through the transition frequency
cgk defined by Eq. (2).

Writing

and using Eqs. (15) and (17), we obtain

eBO ~r~ f'Elt'i
~

dk, [i)i(0)
~

'
P(c)= 2' R m ()

o cgk 1 (c0 coj—)r+ l 7' r
g

Is Eo»& I'I 0,(» I'
'+

(co ci)& )—+1'
(19)

Equation (19) givm us the tot 1 indu~ pol~zation in the prMence of the magnetmtatic field. The summation aver j
represents all possible exciton states at j=1,2,3, etc. Keeping in view the experimental observationss'7 of the ls
Wannier-Mott discrete exciton structure of the fundamental absorption edge of im I)ortant III-V semiconductors and the
smallness of the contributions of exciton states for j& 2 in the discrete spectrum, 7 one can obtain a much simpler ex-
pression for P(t) by omitting the summation over j. Consequently, for j=1, one gets

e&o
P(r)= 2

2n A mo o cok (c0—o))r)+iyr
I) E,»a

I
'I t(,(o}I'

(co —c0), ) +y,
(20)

»a
I

'
I @,(0)

(o)—o)i ) +'}r
(21}

I
p,Eo/2)ri

I I 1())(0) I

(c0—co)r ) +1'r

I)(cEo»)}iI'I 4)(0) I'=1—
(~ ~)r)'+xi

(22}

It may be noted in this connection that we have restricted
ourselves to an intensity of the pump laser which is quite
moderate and the existence of weakly bound Wannier-

Matt excitons is not screened by the free-carrier genera-
tion. Under such a regime of the pump intensity, for a
real III-V semiconducting crystal, it may be reasonably
assumed that

susceptibilities, respectively. Thus, one can find out the
intensity-dependent optical susceptibility of the crystal by
using Eqs. (23) and (24). Because of inversion symmetry,
X' ', X'"', etc., are all zero; moreover, we are not interested
in these components as they are responsible for various
passive optical properties, such as, parametric amplifica-
tion, second-harmonic generation, etc., X"', X' ', X(s), etc.,
account the linear as well as nonlinear refraction and ab-
sarption processes in semiconductors. We have neglected
the contributions of X' ', X' ', etc, to the active nonlinear
optical processes owing to X

Equating the expressions corresponding to the same
powers of E(t) in Eqs. (23) and (24), we find

X(i)(i) e&o I ep b I

'
(25)

217 R~Eo mo c0 c0)r+l} r 0 c0

The higher-order terms can be neglected in this conver-

gent expansion series and consequently, Eq. (20) reduces
to

X(s)
21T A Eo

lope I'
Pago CO —6)) +lP„

e8
I ep, I

E(t)
I t(,(0)

I

P(c)=
2n ))1 m() c0—cL))r+&'Yr

I) Eo»&I'I@)(0}I'
(c0—o)) ) +}r

J~ dk,

Nk
g

We can also express the induced polarization in a crystal
possessing the property of inversion symmetry in the form
of an expansion series

P(r) =AXE(r) = (Xe'"+X"'
I
E

I
'+. . .}E(r), (24)

where X'" and X' ' are the first- and third-order optical

Iv~))il'
(26)

o)k (oi —(r ) +7'r

Fram Eqs. (25) and (26), one notices that both X'" and
X' ' are complex. The real part of X'" is responsible for
the hnear refraction of the laser beam while the imaginary
part takes account of the linear absorption process within
the crystal. The optical nonlinearities are explained by the
finite real and imaginary parts of X' ' considering that the
higher-order nonlinear susceptibilities contribute negligi-
bly. In the following sections, we have restricted our-
selves only to the absorption processes. %'e have dis-
cussed the refraction phenomena elsewhere. 9
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e~o

21K flap

I es.b I'
I it i(0) I'
2Pl 0 (pi —pii, ) +y,2 2

From the imaginary part of X"' in Eq. (25), one can

study the phenomenon of linear magnetoabsorption in the
III-V semiconductors. %e write g' '=7',"—iJ,'" and ob-

tain from Eq. (25),

present formulation, we consider (k,
I

U
I
k,

' }=0 and

I
fi(0)

I
=1, it can be shown without much difficulty

that coi„gets replaced by cok for Q

(=Q, +iQ;) «co, co&,y. Also, the dependence of the in-

duced dipole moment on k, is neglected such that in the
near-resonant band-to-band transitions, one can replace
the expression

I ep b/mppik, I by I cpu/mph I
«r p .

Under these assumptions, the present formulations yield

x I,
"

(27)

Using Eq. (2) and performing the integration, one finds

Assuming (pi —peak )»y, the properties of the 5 func-
g

tion can be applied such that on using Eqs. (29) and (31},
the linear magnetoabsorption can be found to be

eBp
I epact I

'
I
@i(0) I

'
4~epm p (~—i„) +y,

a""(Bp)=
z J dk, 5(co —rok )

e Bple.b I

2 rlpepciri~m oai
(32)

1
X (28)

where

pcs(Bp) =pis+Qq/2+(g —gq )PBpM~/A .

The linear magnetoabsorption coefficient is defined as

alin(B
e80 eP,b

rtpc 2~ep
" 1/2

X [pi —cos(Bp)]
2A'

which on integration becomes

(33)

a"'(B )= X'"
/AC

(29)

with gp being the crystal background refractive index.
On using Eq. (28}, this yields

p) e'Bp lax I

'
I
|('i(0) I

'
a""(Bp)=

'/pc 41pR Gpm p
' 1/2

Vr

(pi —coi„) +y„

[rp (B )] '~' (30)

The linear magnetoabsorption coefficient given by Eq.
(30} is, thus, seen to incorporate a few additional effects
which are present during the laser-semiconductor interac-
tion in the near-resonant transition regime. These effects
are the following: (a} the finite electron-hole Coulomb in-

teraction which contributes a factor of
I
Pi(0) I

to the
linear absorption coefficient as well as modifies the energy
band gap from iricoz to Aevi ——eicos —e,„(0); (b) the finite
dynamic Stark effect resulting in the renormalization of
the excitonic-effect-modified band gap Re i to
iiicoi, ——Acoi —AQ, in addition to a contribution towards the
damping parameter y changing it to y, =@+0;. It
should also be noted that the effect (b) is very small for
the range of laser intensity that allows the excitons to ex-
ist.

%e now try to make a comparison between the results
presented above with those already accepted as the stan-
dard representation of magnetoabsorption phenomena in
solids. Elliott et a/. ,

' while studying magnetoabsorption,
followed a completely different approach with no proper
attention being paid to the finite Coulomb interaction be-
tween the electron-hole pairs as well as the nature of the
exciton wave function and its contribution. If in the

The corresponding equation obtained by Elliott et al.
[Eqs. (3.9) of Ref. 12] for n=0 can be expressed as

co 2e&o epcb
a""(Bp)=

PION

1/2
m„

[pi —~,(Bp)] '". (34)

While comparing Eqs. (33) and (34), one should also note
that the former is in SI units and the latter is in cgs units.

These equations agree remarkably and prove the validi-

ty of the present model in explaining magnetoabsorption
in III-V semiconductors due to direct allowed transitions
in the near-resonant transition regime.

V. NONLINEAR LANDAU ABSORPTION

4
e80 Put

217 1% e'p mp[(co —
cubi ) +y ]

~ dk,x
I A(0) I'y, I0

Qpk
g

» this section, we deal with the phenomenon of non-
»near Landau absorption in the crystals in presence of the
near-resonant pump laser and a very large magnetostatic
field. We represent the nonlinear phenomena in terms of
the third-order optical susceptibility. This may reason-
ably be termed as the effective nonlinearity due to the fact
that the contributions from the higher-order terms are
very small. To study the effective nonlinear Landau ab-
sorption, we consider the imaginary part af 7' ' from Eq.
(26) given by
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nonlin(g )
co y(3)

/AC

Using Eqs. (35) and (36), one can finally obtain
3/2

5ca)
&nanlin(g

128mec~A

2mr

fi

(36)

We define the effective nonlinear absorption coefficient
in presence of the magnetostatic field in SI units as

ct"' "(Bo) and in the true continuum near the crystal ab-
sorption edge with A'(co —cos ) & e,„(0), we find

~
P(0)

~
&& l. Although no mention has been made of the

specific nature of the exciton wave function its nature can
be studied by comparing it with the hydrogemc wave
function under the influence of a magnetostatic field. The
condition (co —coi„) »y, is satisfied if one considers off-
resonant interband transitions when the nonlinearity
reduces to an infinitesimally small constant value with

~
itt(0)

~

-1 such that the exciton wave function does not
play any significant role. It may also be noted from Eq.
(37) that the crystal band-gap frequency cog appears in the
modified form

epab

rrto[(co —coir) +Fr]

(37)

co (go) and Q, being defined earlier. Since Q,
(=co„+co ) is negative for the crystals, the role of the
effective nonlinear Landau absorption is to reduce the to-
tal magnetoabsorption.

Equation (37) shows that the finite Coulomb interaction
plays a very important role in producing a giant non-
linearity in the magnetoabsorption processes in III-V crys-
tals near the fundamental absorption edge. The role of
the exciton wave function is to enhance the nonlinearity to
a considerable extent particularly when A(co coe ) & «—,„(0).
This is because the Wannier-Mott exciton wave function
occurs in the fourth power in the expression for

coi, c——oe e,„(0—)/A'+ 0„
in the discrete ls state and the phenomenological damp-
ing term y ~s replaced by y, =y+ 0;. For laser intenstt~es
that do not cause complete screening of the excitons, and
the terms 0, and 0; are very small and do not effectively
produce any modification. But the excitonic renormaliza-
tion of the crystal band gap must be recognized when one
considers the phenomenon of nonlinear Landau absorp-
tion in the crystals due to the near-band-gap resonant
laser excitation in the discrete exciton spectrum, co &coe
with A~ co—cos

~
&e,„(0).
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