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Disorder and the fractional quantum Hall effect: Activation energies
and the collapse of the gap
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We examine the broadening of the collective excitations of a fractional quantum Hall state due to
disorder. Because of the absence of screening at long wavelength in this regime, we believe that the
broadening depends mostly on the ionized impurity contribution to the disorder potential. The
broadening of the collective excitation spectrum reduces the minimum excitation energy and eventu-

ally the gap required for the occurrence of the fractional quantum Hall effect collapses. We present
some results on the necessary conditions for the gap to remain finite. These depend on some exact
sum rules for three-point correlation functions of isotropic states constructed entirely within the
lowest Landau level. Finally the relationship between our results and the activation energies seen in

the magnetotransport coefficients is discussed.

I. INTRODUCTION

Recently Girvin et a/. ' presented a theory of the collec-
tive excitation spectrmn in the fractional quantum Hall
regime. The theory is based on the expectation that a sin-
gle mode will exhaust most of the oscillator strength
available within the lowest Landau level and is supported
by small system numerical calculations. The wave func-
tion for the collective mode at wave vector k is

disorder potential which exists in the modulation-doped
GaAs-Al„Ga~ „As semiconductor heterojunction systems
where the fractional quantum Hall effect is observed. An
expression is derived relating the minimum magnetic field
required to see the fractional Hall effect to the set-back
distance of the doped Al„Gai, As and the ideal system
magnetoroton energy gap. Finally a qualitative connec-
tion is made with the activation energies seen in the mag-
netotransport coefficients.
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where $0[z] is an incompressible liquid ground-state
wave function and the derivatives operate only on the po-
lynomial part of the wave function. In Eq. (1) pk is the
projection of the density operator

p~ = g exp[ i (k~z;+kz —)/2],
k

onto the lowest Landau level, the two-dimensional wave
vectors and positions are given in complex notation and
Nk is a normalization constant (see below). [Lengths
throughout are in units of aL (Ac jeB)' and w——e let
1=1]. Physically Pt, |lto[z] represents a state analogous to
the transverse magnetophonon state of a Wigner crystal
but its excitation does not vanish as

~
k

~

—+0. instead it
exhibits a "magnetoroton" minimum when

~

k
~

is near
the magnitude of the Wigner crystal's primitive
reciprocal-lattice vector. In this article we study the
broadening of this band of collective excitations due to the

II. SCREENING CONSIDERATIONS

Our theory for the magnetoroton broadening starts
from an observation about the screening of the electron-
ionized dopant interaction. In Fig. 1 we compare the
dielectric functions describing the screening of a static
external potential for the zero magnetic field and fraction-
al quantum Hall cases. We have used the random phase
approximation (RPA) for the zero magnetic field static
polarizability. In the strong magnetic field limit we have
used the theory of Ref. 1 for the contributions to the stat-
ic polarizability from within the lowest Landau level. 6

Note that in the latter case the strong scattering from the
long-wavelength part of the Coulomb interaction remains
unscreened while larger angle scattering may be screened
more strongly than at zero field. This conclusion applies
only when the ground state is a fractional quantum Hall
state and additional screening from loca1ized quasiparti-
cles, proportional to the departure of the filling factor
from a fraction with an odd denominator, should occur as
a fractional quantum Hall plateau is traversed. For high
mobility samples with large set-back distances, the zero-
field mobility may be limited by other scattering mecha-
nisms, possibly by accidental doping in the GaAs or the
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and v/2n is the electron density. The bare excitation en-
ergies of the magnetoroton states, b,o(k), are given as a
functional of s(k) and the electron-electron interaction,
V„(q), in Ref. 1,
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FIG. 1. Static dielectric function of a two-dimensional elec-

tron gas with v= 3 vs qaL, (dashed line) compared with the

random-phase-approximation static dielectric function in zero
magnetic field at the same electron density (solid line:

kraL ——v v).

nominally undoped Al„Ga&, As spacer layer. Because of
the absence of screening at long wavelength in the middle
of a plateau, however, the dominant scattering mechanism
in the fractional quantum Hall regime, except at extreme-
ly strong magnetic fields, is likely to continue to be
Coulomb scattering from the remote ionized donors in the
doped Al Gai, As. The theory outhned below is based
on this assumption.

D '(k, a)) =co —ho(k) —11(k,a)),

where the magnetoroton self-energy is

(6a)

Because of the extremum in b,o(k), the broadening of
these modes must be treated self-consistently even for ar-
bitrarily weak disorder. Since the excited states are la-
beled by wave vector the problem is formally identical to
the broadening of single-particle states by disorder, except
that the bare dispersion relation is different and the effec-
tive potential is nonlocal [see Eq. (2)]. We treat the
broadening in a self-consistent Born approximation. Our
approach, then, is entirely analogous to that adopted by
Kallin and Halperin in discussing the magnetoplasmon
excitations which occur near fico„and to facilitate com-
parison we adopt their notation. The Dyson equation for
the configuration averaged magnetoroton propagator is

III. EXCITATIONS IN THE PRESENCE OP DISORDER

In the presence of disorder the magnetoroton states at
different wave ve:tors are coupled. Expanding the exter-
nal potential into its Fourier components gives

de
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and ( ), denotes a configuration average over the po-
sition of the ionized impurities in the Al, Gai As.
Equation (6b} is readily solved once we prescribe a model
for the ionized impurity potential and an approximate ex-
pression is derived for M(k+q, k). We treat these two
points in turn in the following sections.

= V(k' —k)M(k', k), (2)

IV. THE DISORDER POTENTIAL
where M (k', k ) is defined by

=(2m) 5 (k' ——k)M(k' k)
[s(k )s(k)]'"

(3)

and, as discussed below, is related to the three-point corre-
lation function of the isotropic ground state. The factor
in the denominator on the left-hand side of Eq. (3}comes
from normalizing the magnetoroton wave functions

(k)=N '(g ~p „p„~ i&( )

=s(k) —1+exp( —ik i
/2),

where s(k) is the static structure factor for the ground
state; s(k} is related to the pair-distribution function,
g(r), by

The position of the ith ionized donor may be specified
by its coordinate projected onto the plane of the two-
dimensional electron gas (R;) and a set-back distance d;.
The two-dimensional Fourier transform of the effective
interaction between an electron in the gas and a single-
impurity is

2~e'
Uj(q)=exp( —iq R, ) 'Iq I [1+( lq lzo/3)]'

where e is the dielectric function of the medium, which is
taken to be uniform and zo is the average penetration of
the interface electrons into the GaAs. If we assume that
the ionized donors in the Al„Ga~ „As are set back by a
minimum distance a and are distributed randomly in a
volume of thickness t then
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where nl is the areal density of the ionized donors. Actu-
ally there must be some correlation in the projected posi-
tions of the ionized donors, at least sufficient to prevent
oscillations in their density on a macroscopic scale. These

I

may be incorporated phenomenologically by multiplying
(9) by a factor Sl (q), where Sl(q) is a two-

dimensional static structure factor corresponding to the
projection of ionized donor positions onto the x-y plane.

V. THREE-POINT CORRELATIONS

Finally we must consider the matrix element which de-
fines M(k', k):
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Here h (k) =s(k) —1. Equation (9) follows from the defi-
nition for pk implicit in Eq. (1) by separating terms where
one, two, and three of the indices in the sums over parti-
cles are distinct. The prime on the sum in Eq. (9) means
it is restricted to distinct points and this has allowed us to
drop the projection onto the lowest Landau level. The
first four terms on the right-hand side arise from the cases
where either all the points or pairs of points are identical.
These depend only on s(k} and, at least for v= 1/m or
v= 1 —1/m, where m is an odd integer, accurate approxi-
mations are available. s'q The last term is directly related
to the ternary correlation function of the ground state,
about which less is known. Fortunately, to describe the
Coulomb scattering from remote ionized donors the ex-
ponential factor, e ~q ~, in Eq. (8) allows us to use an
approximation which need be valid only at long wave-
length. Such an approximation is available from exact
sum rules obeyed by the ternary correlation functions. As
shown in the Appendix, to lowest order in q&0

M(k+q, k) =i(qXlt),

for any isotropic state formed entirely in the lowest Lan-
dau level. The conclusions we reach below follow directly
from this simple result.

VI. RESULTS AND DISCUSSION

We have performed numerical calculations for the ef-
fect of remote ionized donor scattering on the collective
excitations of the v= —,

' and v= —', fractional quantum
Hall states using Eq. (10) for M(k+q, q). ' The Dyson
equations [Eqs. (6}] were solved self-consistently for a
variety of circumstances and compared with the approxi-
mate solutions which are obtained by setting
D(k+q, co}=D(k,co) in Eq. (6b). The approximate solu-
tion may be written in the form

j da) p(kgb }
/ ~

6)—63 —l 'g

where p(k, co), the spectral density of the magnetoroton
propagator at wave vector k, is given by

p(k, a)) = 1—

(12a)

I'„(k)=, g (U( —q)U(q)),
~
M(k+q, k)

~

2 .
L

(12b)

In all the cases we have studied Eq. (12}provide an excel-
lent approximation to the numerical solutions to the
Dyson equation. This was expected because of the impor-
tance of small-angle scattering and the remaining discus-
sion wiB be in terms of these expressions. We should re-
mark that our approach can be formally justified only in
the weak scattering limit, i.e., only when I"„(k)«b(k).
In examining its predictions for the strong scattering limit
below, we do not expect numerical accuracy but rather a
qualitative indication of the significance of set-back dis-
tances and magnetic fields for the occurrence of the frac
tional quantum Hall effect.

When I „(k}& Q(k) in Eqs. (12) p(k, co) remains
nonzero for co&0. This implies that the incompressible
liquid ground state is no longer stable and the true ground
state is probably of the nature of a Wigner glass. " Since
the fractional quantum Hall effect will not occur in that
regime the condition I „(k)& bo(k} is a necessary one for
the occurrence of the fractional quantum Hall effect.
From Eqs. (12), (10), and (8) we have that for a & aL,

I „(k)=C (13)
2 a

In Eq. (13) and below energies are in units of e /eaL ex-
cept where noted and C is a correction factor, which must
be smaller than one to account for the weakening of the
scattering due to correlations in ion positions, finite
donor-layer thickness, and finite electron-layer thickness.
Since kaL —v'2n. v at the magnetoroton minimum
(k =k~), we have, by requiring a)0(k~) &1 „(k*) the fol-
lowing condition for the occurrence of the fractional
Quantum Hall effect

a Cvmv
a2 b,(k~)

For a given filling factor Eq. (14) may be interpreted as
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providing either a minimum set-back distance or, alter-

nately a threshold magnetic field (aL, ——256.6 A/v H for
H expressed in tesla). Detailed calculations, assuming

zp —100 A, t —100 A and a model for the density fluctua-
tions of the remote donors typically give C- —„'. Using

this value, taking as an example a=300 A and recalling
that h(k~) in units of (e /eaL ) equals' 0.079, 0.018, and
0.006 gives threshold inagnetic fields of 7.7, 89, and 570 T
for v= —,', —,', and —,', respectively. Thus the absence of
plateaus near v= —,

' and v= —,
' at available fields would

not necessarily imply a Wigner crystal ~round state at
these filling factors in the ideal system. '2'

It is interesting to consider what connections might ex-
ist between Eq. (12b) and the Landau-level broading pa-
rameters which appear in the self-consistent Born approx-
imation theory of magnetotransport. ' In that theory the
maximum value of cr as the chemical potential passes
through the ¹hLandau level is

XX

xx = e (15a)
n'h
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FIG. 2. 5 in temperature units versus 8. The experimental

data are from Ref. 16 and the solid line is the theory [Eq. {17)]
which has been adjusted to give the correct threshold fold. This
curve was calculated with zo ——150 A.

where, in our notation and for N =0

(I.,")'=,g (U(-q)U(q)), q„'exp(-
~ q ~

'/2)
L 2

(15b)

and I p, which is directly related to the Landau-level

width, is given by

(I p)'=
z g (U( q)U(—q)), exp( —

~ q ~

'/2) . (15c)
q

It follows that for a& 1, I'„(k)=kl p . If there is a re-

gime of temperature where the self-consistent Born ap-
proximation is valid and I p could be estimated indepen-

dently, ' Eq. (15a) could be combined with magneto-
transport data to give an experimental estimate of I „(k).
It would be useful to correlate such estimates with the oc-
currence of the fractional quantum Hall effect.

Finally, we make connection with the recent experi-
ments of Boebinger et al. '6 on the temperature and mag-
netic field dependence of the fractional quantum Hall ef-
fect. These authors find a temperature dependence which,
except at extremely low temperatures, indicates activated
behavior. When the influence of impurities on the con-
ductivity is treated is the lowest order of perturbation
theory via a memory-function approach' one finds that
the low-temperature conductivity is activated with an ac-
tivation energy which is b(k~) =hp(k~ }—I „(k~}. Below,
we associate the experimental activation energy with the
minimum energy of the disorder broadened band of mag-
netoroton excitations. In this description the thermally
populated gas of magnetorotons is providing a channel for
dissipation. The results must be interpreted with soxne

caution, however. For example, it has been suggested to
us' that the magnetorotons may ultimately not provide a
channel for dissipation but rather act in a manner similar
to that of phonons in superfluid He. The resolution of
this issue may well involve an understanding of some
properties of the fractional quantum Hall states which has
still not been achieved.

In Fig. 2 we have reproduced the experimental results

h=h~(H) h~(H )— (17}

where b,;~(H) is evaluated including finite electron-layer
thickness but neglecting disorder. %e see in Fig. 2 that
Eq. (17) is in remarkably good agreement with experi-
ment.

from Ref. 16. (Note that their definition differs from
ours by a factor of 2.) These data were taken on a series
of v= —,

' and v= —', plateaus on similar samples where the
magnetic field was varied without changing the disorder
potential by applying a gate voltage. In temperature
units, using parameters appropriate to GaAs,

(16)

where bp(k~) and I „(k~) are in units of e /eai, and 8 is
in tesla. When the known parameters (a, t, . . .) of the ex-

perimental samples are used the theory, which by
particle-hole symmetry gives the same results for v= —,',
and v= —,', gives I'„(k~) & hp(k ) (i.e., no fractional quan-

tum Hall effect) through most of the range of magnetic
fields studied experimentally. We interpret this as indi-
cating that the estimated values of I „should be reduced
by about 40% as a result of corrections to our model po-
tential and strong scattering effects. Indeed it would have
been quite surprising if the theory were able to predict
a priori detailed results for a given series of samples and
we aim only to describe the magnetic field dependence h.
The main result of our theory is that I'„(k*) should vary
approximately as 8 '~ [see Eq. (13)] as a consequence of
Eq. (10). In fact I „(k~)8' will decrease slowly with 8
house of the increasing importance of a finite electron-
layer thickness' ' but this may be compensated for if
some short-range scattereis are present. [A dimensional
analysis of Eq. (12b) suggests that I „(k~)-B'~ for
short-range scatterers. ] Taking a 8 '~2 dependence for
1 „(k~) and adjusting the constant to agree with the exper-
imental threshold field, H, gives (in teinperature units)
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VII. SUMMARY AND CONCLUSIONS

We have examined the influence of disorder on the col-
lective excitations of a two-dimensional electron gas in the
fractional quantum Hall regime. In the absence of disor-

der the collective excitation dispersion shows a deep
minimum at a wave vector near the reciprocal-lattice vec-
tor of the Wigner crystal state of the electrons. The
broadening of the collective excitation spectrum by disor-
der will cause this gap to collapse; correspondingly the
ground state will become a Wigner glass" rather than an
incompressible fluid~ and the fractional quantum Hall ef-
fect will no longer occur. Based on some observations
concerning screening in strong magnetic fields and on a
moment sum rule for the three-point correlation function
of the fluid state we have derived an approximate expres-
sion for the minimum ratio of the set-back distance to
magnetic length required for the fractional Hail effect to
occur. For example, for the v= —,

' case the remote ionized
donors must be set back by a distance about 3 times
greater than the magnetic length (ai ——256.6A/'v 8 with
8 in teslas).

At the moment, there is no complete theory of magne-
totransport at finite temperatures in the fractional quan-
tum Hall regime. We have presented values for the

minimum excitation energy in a disordered system for
comparison with activation energies extracted from mag-
netotransport experiments. %hen treated naively with a
memory-function approach' these two quantities should
be identical. Our results seem to demonstrate at least a
qualitative connection but a final resolution must await a
deeper understanding.
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APPENDIX

The last term in Eq. (9) is related to three-point correla-
tions in the ground state. For q, k, and k+q not equal to
zero

N
/

g' (P, I&
+ "e ' '

e
'"

I
go)=h' '(q, k)=v f f exp( —ik r2)exp( —iq r3)g(z] 0 zi z3) .

2m 2i

(A 1)

In Eq. (Al} g(z],zz,zi) is the three-point distribution function which may be conveniently expressed in the symmetric
gauge occupation number representation

3
2m

g(z] ——O,z2, z& }= 0 Z —Zl Z' Zi Zk Z3 0
V i,j,k

(zz )' (zi )'z2z'iexp( —
I
zi

I
/'2)exp( —

I
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I
/2)

2$+$[ ]t]( &)f(t&)]]]/2
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One possible approximation for g (z],zz, z& ) is the convolution approximation which has been useful in other contexts, '

d Z4
h(z], z2,z3)=h(z],z2)h(zi, zi)+h( zzz)hi(zi, z])+h(zi, z])h(zi, z2)+v h(z],z4)h(zi, z4)h(z3pz4),

2m
(A3)

—jZI —Z2 j /22

h (z],zz) = —e

(A4)—jZI j /2 —jZ2 j /2 —jZ3 j /2$ (ZIZ2 +ZQZ3 +Z3Zf )/2 (Z] Z2+Z2Z3+Z3ZI]/2

where h (z] —z2) =g(
I
z] —z2

I
) —1 and h (z],z2,z&)=g(z],zz, zi) —1 —h (z],zi) —h (z],z2) —h (z2,z&) are, respectively,

the two- and three-point correlation functions. This approximation must be used with caution in the present context,
however, since it manifestly violates particle-hole symmetry in the lowest Landau level which plays an important role in
the fractional quantum Hall effect. For example, in the case of v= 1, where

I $0) is the fully occupied state, we have
from Eq. (A2) (Ref. 23)

which can be Fourier transformed to give

h ]3)(q k) e
—~k

~ /2e —~q ~ /2(e —q'k/2+e —qk'/2)

The reciprocal space form of the convolution approxima-
tion takes the form

h '" (q k) =h (
I
k

I
)h (

I
e+k)+h(

I e+k
I

)h(
I e I

}

+h(Iq I)h(Ik I)
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where

h(k)= d zzh(zi ——O,zz)exp( i—k r} .
2%'

Note that in the case of v=1 [h(
I
k

I
)=—e ~" ~ /],

h "' (q, k) when substituted into Eq. (9), fails to give the
correct result that

This is a serious deficiency in the current context and it is
fortunate that, as mentioned in the text, we require an ex-
pression for M(k+q, k) only for q « l.

To consider the small-angle scattering limit of
M(k+q, k) we expand the factor

l
exp( iq—r3) =exp ——(qszs+qz3 )

2

in Eq. (Al) and use the following sum rule valid for any
I

isotropic state in the lowest Landau level for m =0 or
Pl =I:

d z3
v z& [g(zi,zz, z3) —g(zi, zz)]

2m

=—g(zi, zz)(zi +zz ) . (A7)

Equation (A7) follows from Eq. (9) and Eq. (Al) for
m =0 and m =1, respectively, using the facts that the
number of electrons, N = g, c, c„and the center of mass,

z, =X-'g c++, c,~2( t+1},
t

are the constants of the motion. Actually, Eq. (A7) holds
for all m when Laughlin's approximation is used for the
ground state. Using Eq. (A7) for m=0, 1,2 and another
sum rule which follows from Eq. (9) and the fact that
L= g, tc, c, is a constant of the motion gives, up to
second order in

I q I,

2 2

h"'(q, k)= —2h(k) —q Vkh( IkI ) ——gq;q; h(k) ——,
' IqI'k V„h( IkI ) I+ q h(k)+2, ,

' 'ak, ak, 2
(AS)

M(k +q, q) =i (qXk), —

Substituting Eq. (AS) into Eqs. (9) and (3}gives

(qXk), (q.k}z; 1 Ik Vks(k)
I+ +—(q k)(qXk),+, [(q k)' —(qXk),']+ . (A9)

4Ik I' s(k)

In Eqs. (AS) and (A9) the result given for the leading-order term is a general property of isotropic states in the lowest
Landau level, but the second-order term applies only when v ' is an odd integer and depends on Laughlin's approxi-
mate ground-state wave function.
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