
PHYSICAL REVIE%' 8 VOLUME 33, NUMBER 6 15 MARCH 19S6

Collective excitations of fractional Hall states and Wigner crystallization
in higher Landau levels

A. H. MacDonald
National Research Council of Canada, Ottawa Canada ICIA OR6

S. M. Girvin
Surface Science Diuision, National Bureau ofStandards, Gaithersburg, Maryland 20899

(Received 29 August 1985; revised manuscript received 2 December 1985)

An expression has been derived for the co11ective-excitation dispersion for fractional Hall states
which occur in higher orbital Landau levels in terms of the electron pair-correlation function in

these states. Explicit results for the n =1 Landau level have been obtained at fractional filling fac-

tors v= —,
' and v= —, based on Laughlin's trial wave functions for the ground state. The results at

v= 3 are qualitatively different from those in the lowest Landau level and are consistent with a

weak quantum Hall effect at this fraction for n =1. The results for v= —,
' are similar to those in the

n =0 Landau level but the collective excitations have a higher energy. %e associate this increase
with a decrease in the fractional filling factor at which %igner crystallization occurs. A moment

sum rule is derived for pair-correlation functions in higher Landau levels.

Recently Girvin et al. ' have suggested that a general-
ized single-mode approximation (SMA) ought to be valid
in calculating the collective excitation energies of the frac-
tional Hall states. i By fractional Hall states we mean the
highly correlated incompressible quantum fiuid states
which occur in the lowest Landau level when the
Landau-level filling factor, v, is 1/m or 1 —1/rn. In the
SMA it is assumed that the part of the oscillator strength
which is available within the lowest Landau level is nearly
exhausted by a single excited state
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In Eq. (1)
~ $0) is the ground state for one of the values of

v indicated above in the extreme strong magnetic field
limit where Landau-level mixing can be ignored, and pi,

'

is the Fourier component of the density operator projected
onto the lowest Landau level. Comparisons with calcula-
tions based on direct numerical diagonalization of the
Hamiltonian for systems with a small number of elec-
trons have indicated that this approach is extremely ac-
curate. In this article we report on a calculation which
generalizes these results to the fractional HaB states where
higher orbital Landau levels are partially occupied. The
existence of such states has been clearly established in
magnetotransport experiments and their ground-state
properties have been discussed previously from a theoreti-
cal ~oint of view. More recent experimental and theoret-
ical ' developments suggests that the sequence of frac-
tional Hall states may be somewhat different in higher or-
bital Landau levels. In particular, the Laughlin states in
higher orbital Landau levels ' approach exact ground
states as the range of a repulsive interaction is reduced
only when the inverse fractional filling factor, v ', satis-
fies v ') 3+2n (Here n .is the orbital Landau level in-

dex. ) For example, numerical calculations for v= —,
' and

n =1 suggest that with a Coulombic electron-electron in-

teraction the ground state is not well approximated by
Laughlin's state and may, in fact, not be incompressible.

It will be an important simplification in what follows
that a plane-wave function of any electron coordinate,
when expressed in terms of inter-Landau-level and intra-
Landau-level ladder operators, can be factored as
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where a; and a; are the inter-Landau-level ladder opera-
tors and b; and b; are the intra-Landau-level operators
and k is a complex number representation of the wave
vector. All lengths will be expressed in units of
l =—(iric/e8)'~ and all energies in units of e /el. Follow-
ing earlier work, 5 we define a higher Landau-level general-
ization of the Laughlin states by

( t)n
(3)

n!

i.e., in the expansion of these states as sums over products
of single-particle states the only change is to raise the
Landau-level index of each single-particle state from 0 to
n Actually. the approximate ground state is not

~
Po),

which only has states in the nth Landau level occupied
but

~ Po) which differs by having the lower Landau levels
completely filled as well. Since the lower Landau levels
are completely frozen out in the strong magnetic field
limit which we consider here, this complication can be ig-
nored in discussing the intra-Landau-level part of the ex-
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citation spectrum but we shall return to it later in discuss-

ing the pair correlation function. Throughout we will use

v to refer to the fractional part of the Landau-level filling
factors. For Laughlin states v '=3,5,7, . . . and as rnen-

tioned above, they become exact ground states in the limit
of short-range repulsive interactions for v '&3+2n.
Based on experience for n =0 we expect them to be accu-
rate for realistic interactions whenever this inequality is
satisfied. Their reliability for v &3+2n remains uncer-
tain.

In analogy with Eq. (1) we approximate the many-body
states describing collective excitations in higher Landau
levels by
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Note than when Eq. (3) is used to estimate ground states
in higher Landau levels, s(k) is independent of Landau
level because pk involves only intra-I. andau-level opera-
tors.

Similarly
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is the projection of the density operator onto the nth Lan-
dau level, L„(x) is the Laguerre polynomial, and

I
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projects the ith particle onto the nth Landau
level. Therefore,
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The second form of Eq. (7b) follows from the first by noting that, within the subspace associated with the nth Landau
1evel,

2
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and using
k1 k2/2 k1kg /2

[Pk, Pk ]=« —e }Pk,+k, . (7d}

[V (q) is the Fourier transform of the effective electron-
electron interaction in the two-dimensional (2D} system. ]
The factor [L„(I k

I
/2)] cancels between the numerator

and denominator of Eq. (7b) so that the expression for the
excitation energy differs from the corresponding expres-
sion for n =0, which was derived in Ref. 1, only through
the appearance of the factor [L„(I q I

/2)] in the wave-
vector integral.

In Fig. 1 we compare the results obtained previously for
b, (k) at v= —,

' with b, '(k) obtained by evaluating Eq. (7b)
with the same s(k) but with n =1. Taking into account
the spin degeneracy and particle-hole symmetry, we see
that the latter curve describes the strong-field limit of the
collective excitation spectrum for total filling factor
+t 3 s 3 ~ 3 ~ and 3 . For pl = 1 we see thatthe collec7 S 10 11

tive excitation energies are smaller than for n =0. In
fact, the small k region of this curve (kaz &0.5) is ex-
tremely sensitive to the behavior of s(k) at large k

(kat, &4), where its value for the Laughlin states is less
accurately known. [s{k) is simply related to the Fourier
transform of the electron pair-correlation function (see
below). ] Unlike the n =0 case, 5'(k) becomes negative
for kaL &0.5 with very small changes in s(k). Recent ex-
perimental and theoretical ' work is consistent with the
notion that this sensitivity reflects the fact that for n =1
the incompressible fluid state at v= —,

' is only weakly
stable, if it is stable at all. The results at v= —,

' for the
n = 1 Landau level are entirely different as we see in Fig.
2. At this fractional filling factor the nature of the excita-
tion spectrum is similar to that for the n =0 Landau level
except that the excitation energies are increased. [The ex-
treme sensitivity in the small k values of 6'{k) found for
v= —, is not present at v= —,'.] We believe that the in-
crease in the excitation energies reflects the fact that at
v= —, we are farther from the Wigner crystallization tran-
sition for the higher Landau level. ' We will see below
that this idea is corroborated by comparisons of the
ground-state energies of liquid and crystalline states.

From Eq. (6) it can be shown that for the higher
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tion of the centers of the Gaussian charge distributions
which describe a localized electron in the nth Landau lev-
el. Equation {&) can also be used to simply evaluate the
energy of

I go) using
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FIG, 1. Collective excitation dispersion for a fractional fil-

ling, v= 3, of the n =0 Landau level (solid line) and the n = 1

Landau level (dashed line). 5 is in units of e2el0.

Landau-level Laughlin states '
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where h(r') is a common auxiliary correlation function
which is defined in terms of h (r) by this equation. h(r)
may be interpreted as representing the correlation func-

0. 10

0.08—

0.04

0.02

0 I I I I I I I I I I I I I I I I I I

0.0 0.5 5. 0

g c3L

FIG. 2. As in Fig. 1 but for fractional filling v= —,.

o is the areal density of electrons and g "(r) is the pair-
correlation function when the electrons are in the state

I $0 ). Thus the relation between pair-correlation func-
tions in different Landau levels is much simpler in re-
ciprocal space [h "(k)] than that in direct space
[h "(r)=g"(r)—1], which was discussed earlier. Equation
(&) suggests an alternate form for the direct space relation-
ship. For every n

2 I

h "(r( 1"h(r')xx=p( —(r—r' i (x2(
(2m)

In Table I we list Laughlin state energies for v ' =3, 5, 7,
and 9 and n =0, 1, and 2. These were evaluated from Eq.
(10) using pair-distribution functions calculated in a
modified hypernetted chain (MHNC) approximation. "'2
They differ by less than 0.002e /lq from the values re-
ported previously for v '=3 and 5 calculated from
Monte Carlo correlation functions'2 using a different ap-
proach. Also listed in Table I are charge-density-wave
(CDW) state energies for partially occupied higher Lan-
dau levels calculated self-consistently in the Hartree-Fock
approximation. ' For n =0, the two states are quite close
in energy indicating that the transition to a Wigner crystal
state is likely to occur' for v=v~, where v '-10. For
the higher Landau levels, however, there is na indication
that the transition is near at the lawest values of v con-
sidered. This is expected on physical grounds since
Wigner crystallization should occur when the size of the
most localized wave function available within a Landau
level becomes small compared to the average separation
between electrons. The most localized wave function in
the nth Landau levels is (up to a translation and a corre-
sponding phase factor) the ni =0 symmetric gauge eigen-
function for which nn (r )„=v(n +1). Thus the n depen-
dence of the critical filling factor for Wigner crystalliza-
tion should be given approximately by v" =v((/(n +1).
For example if v ——,'0 then v~ ——,'0 and v2 ——,'0. This
suggests that it may be possible to observe the fractional
Hall effect at smaller fractional filling factors in higher
orbital Landau levels. 's We also remark that for a given
value of v ' the energy preference for the fiuid state over
the Wigner crystal state decreases where the inequality
v ' & 3+2n is not satisfied. In fact, v ' =5 and n =2 we
find the CDW state to be lower in energy than Laughlin's
state. This probably is an indication that in this case the
Laughlin state is not a good approximation to the ground
state.

In closing we mention a mament sum rule far the pair-
correlation function which holds for any electronic state
of uniform density constructed entirely within the nth
Landau level,

I g„).It is most easily established by using
Eq. (&) to generalize its n =0 form, '

f drr h (r)= —2v (11)

to positive values of n. When combined with the charge
neutrality sum rule,

0 ~~
}

~ ~

tdrrh (r)= —v
0

Eq. {11)implies that
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TABLE I. Energies per electron for Laughlin and charge-density-wave (CD%) states in nth Landau

level at filling factor v= 1/m. For m =1 both states reduce to the full Landau-level state. The energies

are in units of e /I.

Laughlin

—0.627
—0.409
—0.327
—0.280
—0.250

CD%'

—0.627
—0.388
—0.322
—0.279
—0.250

Laughlin

—0.470
—0.325
—0.294
—0.264
—0.244

CD%'

—0.470
—0.316
—0.289
—0.261
—0.238

Laughlin

—0.401
—0.265
—0.247
—0.252
—0.233

CD%

—0.401
—0.256
—0.250
—0.240
—0.225

h'(k) = —1+k'/2+
Expanding the Laquarre polynomial in Eq. (8) gives

h "(k)= —1+(2n + 1)k /2+
or in direct space

I dr r h "(r)= —2(2n + l)v (12)

The pair-correlation function for l((}„)which differs

from
l g„)only by completely filling all the lower Lan-

dau levels is related to h "(r) by

n —1
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and the expression for pk given in Ref. 9.
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Contributions to h(k) from full Landau levels involve
only terms where the particle indices in the pk and p
factors are identical, i.e., there are no correlations involv-
ing full Landau levels. Using Eq. (13) we can verify that
this full pair-correlation function which describes correla-
tions among all the electrons when the nth Landau level is
partially full obeys Eq. (11). This sum rule whose funda-
mental importance for the fractional Hall effect has been
emphasized previously, ' also holds for the classical two-
dimensional one-component plasma' (2D OCP}, where it
reflects the inhibition of long-wavelength density fluctua-

Equation (13) follows from the expression for h(k) in
terms of density operators

h(k)—=N '&P. lp kpklf. ) —1

tions by the long-range ln(r) interaction. Thus it seems
that the connection between the 20 OCP and the two-
dimensional electron gas (2D EG) in a strong magnetic
field, which was first made by Laughlin for v= 1/m and
later extended' to fractional values of v on the basis of
Eq. (11),persists for v & 1.

To summarize, we have derived and evaluated an ex-
pression for the collective excitation dispersion of frac-
tional quantum Hall states in higher orbital Landau lev-
els. For v= —,

' and n =1 we find that: (i) the collective
excitation energy is reduced compared to n =0, (ii) the
pronounced minimum in the dispersion which occurs for
wave vectors near the Wigner crystal's primitive
reciprocal-lattice vector for n =0 is absent for n =1, and
(iii) the dispersion at long wavelength, qadi (0.5, is ex-
tremely sensitive to the approximation used for the
ground-state pair-correlation function. On the other
hand, for v= —,', we find that the collective excitation
dispersion is qualitatively similar for n =0 and n =1 ex-
cept that the excitation energies are higher for n =1
Based on comparisons of Wigner crystal and Laughlin
state energies for v ' =3, 5, 7, and 9 and n =0, n =1, and
n =2 we conclude that these changes occur because (i) the
transition to a Wigner crystal ground state occurs at
smaller fractional filling factors in higher orbital Landau
levels and (ii} the incompressible fluid ground state, which
we approximate by Laughlin states, is only marginally
stable, or possibly unstable, where the inequality
v ' & 3+2n is not satisfied. This inequality is associated
with a qualitative change is small distance correlations for
uniform states which occurs at v '=3+2n. The de-
crease of the excitation energy at v= —,

' reflects the mar-

ginal stability of the incompressible state at this fraction
for n =1. The increase at v= —,

' on going from n =0 to
n =1 reflects the decrease in the filling factor at which
Wigner crystallization should occur. Both these changes
are in accord with previous work on the energies of local-
ized quasiparticle excitations and the marginal stability
of the v= —,

' state for n = 1 is in accord with recent small

system calculations. %'e must emphasize, however, that
all the theoretical results presented here refer to the strong
magnetic field limit where Landau-level mixing can be ig-
nored. For a given 20 electron density, higher orbital
Landau levels are partially filled at lower magnetic field
making the strong field limit more difficult to achieve ex-
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perimeotally. Furthermore, a higher 2D electroII density

is often achieved with a reduced set-back distance for the
remote ionized donors, making disorder effects stronger
and, at least partially, destroying the fractional quantum

Hall effect. Our study suggests that some interesting

physics can be probed if these obstacles can be overcome
to allow the effect to be studied for n = 1 in conditions
comparable to those which have been achieved for n =0.
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