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Instead of expressing the total energy of an interacting electron system as a functional of the one-

particle density as in the Hohenberg-Kohn-Sham theory, we use a conventional approach in deter-

mining tota1 energies by forming the expectation value (8 ) of the N-electron Hamiltonian with

the true wave function 4'(q&, q2, . . . , qN ). %e introduce a new concept of partitioning
%'(ql, qq, . . . , q~) into two components such that the one-particle density is connected with the first
component only. If one requires (A ) to be stationary against variation of 4(q~, qi, . . . , q~), this
first component turns out to be one Slater determinant in terms of one-particle states which obey
Kohn-Sham —type one-particle equations. Hence, the expression for the one-particle density be-

comes identical to that of the Kohn-Sham theory. The virtues of the new approach, particularly its
capability of describing thermal excitation in solids, optical transitions, etc., are discussed in detail.
%e also address the so-called gap problem which has recently been an extensively debated subject
within the one-particle description of N-electron systems.

I. INTRODUCTION

Despite the considerable success of the theory of Kohn
and Sham in quantitatively describing the ground-state
properties of N-electron systems, there has as yet been lit-
tle progress in extending this relatively simple computa-
tional scheme to excited states. As has been pointed out
by Hedin, 3 it is possible to cast the Dyson equation in the
form of an effective one-particle equation. The calcula-
tion of excitation energies by self-consistently solving this
equation has proved, however, to be extremely demanding
in terms of the computational effort involved. Recent at-
tempts made by Louie and associates to calculate the
band gaps of Si and Ge have clearly demonstrated that ex-
citation energies can, in fact, very accurately be deter-
mined within that scheme. However, the authors had to
include in their calculations up to 200 excited bands in or-
der to arrive at sufficiently converged values of the band
gaps of these semiconductors.

We undertake in the present paper to tackle the excita-
tion problem of N-electron systems from a completely
different angle by trying to retain essential features of the
Kohn-Sham theory, but sacrificing the theorem of Hohen-
berg and Kohn as a guiding principle. Instead, we take
advantage of the fact that electronic excitations do not
pose a conceptual problem in quantum chemistry where
excited states are determined by extremizing the expecta-
tion value (P ) of the Hamiltonian operator formed with
the N-electron wave function. Optical transitions, for ex-
ample, can very reliably be treated within golden-
rule —type calculations involving these stationary states.
We use as a starting point a particular form of the total
electronic energy E of the N-electron system under study.
This expression has been derived by Langreth and Per-
dew, for example, and reads

E=(TO)+ fp(r)U, „,(r)d r+{U, , ), (1)

1

f(r', r)=1 —f gi(r', r)dA, .

The one-particle density may be written

p(r) = X I v (r)
I

'

(3)

(4)

where the (p s relate to one-particle states of the nonin-
teracting system. Requiring E [p) to be stationary against
variation of these states, one arrives at Schrodinger-type
one-particle equations to be satisfied by the y s. Hence,
these states will, in general, form a complete orthonormal
set Iy;(r)J. We may construct a Slater determinant
Po(ri, rz, . . . , rN ) from X states out of this set which be-

long to X consecutive lowest-lying one-particle energies
e;. By definition, $0(r, ,ri, . . . , r~) is normalized to uni-
ty.

The following points concern a particular consequence
of the Kohn-Sham theory which has as yet not been dis-
cussed in the literature. The total wave function
+(ri, r2, . . . , r~) of the interacting system may be expand-
ed in a configuration-interaction (CI) series,

where (To ) is the kinetic energy of a noninteracting N-

electron system having the same one-particle density p(r)
as the present one. The external potential is denoted by

U,„,(r), and (U, ) represents the Coulombic electron-
electron interaction energy averaged over the coupling
strength A,. The latter ranges from 0 to 1. If one intro-
duces the pair correlation function gi(r', r) at coupling
strength A, , one may rewrite ( U, , ) in the form

p(r')p(r) dp, dg„
~ Ue-e~= 2

l

r' —r

pr pr r, r

where the so-called correlation factor f(r', r) is defined

by
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%(r„r, . . . , r }=gc P (r, ,r, . . . , r )
EC

CK
c» for KQEp,
c» —1 for K=Kp .

Here, 3:p denotes the configuration referring to
yp(ri, rz, , r/). Obviously, (tp(ri, rz, . . . , r/) arid

%(ri, rz, . . . , rz) are nonorthogonal to one another. The
two-particle density resulting from (6) can be cast in the
orm

pz(r', r) =pz '(r', r)+pq(r', r), (7)

where pz '(r', r) is the contribution of Pp(ri, rz, . . . , r~).
Hence, p&(r', r) is defined by

pz(r', r)=N(N —1)f (Pp%'+Pp%''+%'0'')d rz d r~.

Because of the general property of pz(r', r),

p2 r'r 3r'= X—1 r

and since by definition

2
' r', r r'= N —1 p r

we have

p& r, r r =0 orallr.

(8)

(9)

Equations (5)—(9) state an important ground-state prop-
erty of N-electron systems: It is obviously possible to par-
tition the wave function of the interacting N-electron sys-
tem into two parts, (tp(ri, rz, . . . , r~) and %'(r, rz, . . . , r~),
such that the two-particle density associated with

Pp(ri, rz, . . . , r~) integrates (apart from a factor N —1}to
the total one-particle density. By definition, pz '(r', r) con-
tains exchange only, and this is reflected in the occurrence
of an exchange hole around r in the real space of positions
r'. Thus, in terms of this picture pz(r', r) provides the
correlation hole around r and, in addition, a "fine tuning"
around the exchange hole connected with the interaction
of electrons of like spins. This will become more evident
in the following section, where spin-dependent properties
of pz(r', r} will be expressed explicitly.

We have arrived at the conclusion then that all many-
body effects beyond the Hartree-Fock —type exchange can
be absorbed into a two-particle density which does not
contribute to the one-particle density.

The objective of the following section is to show that
this subdivision of the total wave function

p(ri~rz, rg )= $ c»((t»(rl, rz, ~ . ~, rx ),
E

where P»'s denote Slater determinants formed by selecting
different subsets of N states y;(r) out of the complete set

;(r)J.
The above expansion may be rewritten

p(rl rz riv) A(rl rz . tv)

+%(ri, rz, . . . , r~},

%(ri, rz, . . . , rN) into two parts (tp(r„rz, . . . , rz) and

+(ri, rz, . . . , r~ ) can be generalized by forming

Pp(ri, rz, . . . , rN ) from a complete orthonormal set

tP;(r}) different, in general, from tg;(r)J such that the

(correspondingly alter~) components p(20)(r, r) and

pq(r, r) of the two-particle density retain the decisive
properties (8) and (9). The method of generating the orbi-
tal set Ig;(r) J will be based on the requirement that the
expectation value of the total N-electron Hamiltonian be
stationary against variation of 4(ri, rz, . . . , r~) subdivid-
ed into two segments according to (6). Since wave func-
tions of this property represent eigenfunctions of the N-
electron Schrodinger equation, the results obtained apply
to the ground state as well as to any other eigenstate of
the N-electron system. Still, the equations defining the
orbitals P;(r) will turn out to have the Kohn-Sham form.

In addition, the one-particle density will be given by (4),
as before, but with f;(r) standing in place of p;(r). This
applies likewise to the total energy (1), except that the
correlation factor f(r', r) has to be replaced by its
nonaveraged counterpart f(r', r) and that there is now an
additional kinetic-energy term ( T, , ). In an excited state
the g s contained in (()p(ri, rz, . . . , rz) and E do no longer
correspond to a subsequent filling of N one-particle levels

s;, but rather they refer to an occupancy distribution in-

volving at least one electron-hole pair excitation.
In Sec. III we briefiy discuss the problem of finding

simple approximations to the correlation factor f(r', r).
Section IV will be devoted to excitations. We shall, in
particular, be concerned with thermal excitations in solids
and with optical transitions. Energy gaps of semiconduct-
ors are known to be severely underestimated within the
Kahn-Sham theory if U„,(r) is approximated by "local"
expressions which solely depend on p(r). From the point
of view consistent with our approach, the energy gap of a
semiconductor represents the minimum excitation energy
bE. It turns out that hE consists of two contributions,

b E =(s~ s)+b, , —

where the first term (in parentheses) refers to the
minimum band-energy difference between occupied and
unoccupied bands. This term proves to be only slightly
affected by nonlocal corrections to U„,(r) (see Manghi
et al. and Hybertsen and Louie ). The second term, b„ is
connected with the occurrence of ( T, , ). The primary
one-particle density change Ap(r) that occurs in the pro-
cess of an electronic transition is generally modified by
the response of the entire system to the perturbing poten-
tial connected with bp(r). General experience appears to
suggest that metals respond in a way that leaves (T, , )
practically unchanged. The response in insulators and
semiconductors will, of course, be severely affected by the
presence of an energy gap above the majority of occupied
levels. Hence, one may in this case expect a sizable con-
tribution of the change of (T, , ). Sham and Schluter, '

and, independently, Perdew and Levy, " have discussed
the gap problem within the density-functional theory,
where &E is defined as the difference between the ioniza-
tion potential I and the affinity energy A of the solid in
question. Hence, b,E can only be determined from total-
energy differences between ground states referring to
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N —1, X, and N+ 1 electrons, respectively. Excitation
energies dE which would, for example, refer to optical
transitions across the direct gap in semiconductors with
an indirect gap are not accessible within this approach.
Since our treatment rests on the N-electron Schrodinger
equation rather than on the ground-state theorem of
Hohenberg and Kohn essential to the density-functional
theory, excitations are fully accounted for, including, of
course, the one of lowest energy which defines the energy

gap of non-metallic solids.
In Sec. V we will summarize the relative merits of our

approach.

$(ql, q2, . . . , q~) and 4(qi, q2, . . . , qN) in any of the
eigenstates lp„(q I „q2, . . . , qz ).

We now expand P(ql, q2, . . . , qz ) in a CI series,

4(ql 'q2 'QN) g+E'4(ql 'q2
K

(13)

(14a)

where the 4x's denote Slater determinants formed from a
complete orthonormal set [g„(r)) to be specified later. If
we write the N-electron Hamiltonian (in hartree units)

II. GENERALIZATION
OF THE KOHN-SHAM THEORY

As indicated in the preceding section, we subdivide the
wave function of an interacting E-electron system within
an infinitesimal vicinity of an eigenstate
4'„(qi, q2, . . . , q~ ) 11lto two COIIlpoI1CIlts,

+('ql q2, ' ~, q~)=0(ql 'q2 q!V)

where

N

~0= g [—
&

~', +U.*«r )l

the expectation value of 4'0 can be written

(4 ) = g D,&"f f„'(r)[——,
'

V + U,„,(r)]
i,j,s

(14b)

++(ql~q2~ ~qiv) ~ (10) X QJ, (r)d'&+ ( T, , )

Xd Qid A'''d 9N (12a)

and

pq(q', q) =N(E —1)f [P'4'+f4 '++ 4 ']
Xd /id gg'''d g~. (12b)

Here, f d q~ stands for real-space integration and

spin summation for the jth particle. The spin-dependent
one-particle density p, (r) is given by

p, (r)= g fp2"(q', q)d'r',
S

and hence

(12c)

where qj ——(rj,sj ) is shorthand notation for the real-space
coordinate rj of the jth particle and its spin orientation

sj = + 1. We have omitted the subscript 0 of
$(ql, q2, . . . , qiv) to indicate that this component of the
total wave function cannot, at the outset, be expected to
be representable by one Slater determinant. As before,
P(qi, q2, . . . , q~) and lP(ql, q2, . . . , q~) are chosen such
that

p2(q' q) =i 2
'(q' q)+p~(q' q»

where

~2 '(q' q) =&(&—1)f 10(q' q qi.q. . . , q ) I'

Here, ( T, , ) stands for the contribution to the kinetic en-

ergy not contained in $(qi, q2, . . . , qN ), and D~" denotes
the elements of the first-order density matrix in the orbi-
tal representation with respect to [g„(r)].

These elements are defined as

D,"= g g alraL. ,
X=X (i,s) L, =L, (j,s)

(16)

which follows from (12a), (12c), (13), and (16).
If we expand the total wave function %(qi, q2, . . . , q~)

in analogy to (13) using the same basis set, we can define
another density matrix whose elements 6,'J' are connected
with the expansion coefficients cx of %(q„q2, . . . , qz) in
complete analogy to (16). The kinetic-energy correction
( T, ) in (15) may therefore be expressed as

(&, )=gD,"fg'( )( —,'&')P,;( )d'—, (18 )

where the sum runs over all configurations K,L which
differ in just one orbital. That is to say, if K contains
g„(r), then L contains fz, (r) instead, but agrees in all
other orbitals present in K. In writing the contribution of
the external potential U,„,(r) to (A 0), we have already
made use of

p, (r) = g D,'J"P„(r)g,,(r),

p(r) = g p, (r) .

As a result of (12c) we have

(12d)
D (s) g(s) D (s)

As a consequence of (17) we have

(18b)

g fp2(q, q)d r'=0 for any r and s . (12e)

Consequently, p(qi, q2, . . . , q~) must be normalized to
unity as before. It will be shown below that the properties
(11) and (12a)—(12e) uniquely define the two components

g D ~J"Q„'(r)f),(r) =0, (18c)
1,J

which must hold for finite matrix elements D,'J', other-
wise the total wave function and g(q»q2, . . . , qN ) would
liavc ldclltlcal CI cxpaIislolls, l.c., % (qi, q2, . . . , qN ) wollld
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vanish identically. '

Since p(qi, qz, . . . , q(v) is normalized to unity, we have
+'(qi qz qN ) q'(ql 'qz qE)

+g 5%(q(,qz, . . . , qN ), (24a)

I &a I'=1 .

Thus, because of (16),

n &1,

(19)
where

5q (ql 'qz 'qÃ ) y +K 'It'E(ql 'qz
I(

(20a)
The 5cx's are subject to the constraint

(24b)

nis Ds(s) (20b)
g cx.5' ——0,
E

(24c)

nI, ——N, , (20c}

is customarily referred to as occupation number. If one
integrates (17) over the real space one obtains

which guarantees norm conservation of +(q„qz, . . . , q~)
to first order in z}. If the wave function represents an
eigenstate q(„(qi,qz, . . . , q~), the variation of (P & can-
nected with 5%(qi, qz, qN }must have the property

5&@ &=constxz} (25)
and because of (12d),

Hence,

$,5

The electronic interaction energy may be written as

(21)

We shall in the following show that this requirement can
only be met if (t}(qi,qz, . . . ,~) represents just one Slater
determinant in terms of specified orbitals I P;s(r) I.

To prove this we first cast the distortion (24b) in a con-
venient form by expanding it in terms of the complete set
of eigenfunctions %' (qi, qz, . . . , q(v) which belong to A .
We then have

5+n('ql 'qz, q~ }= g a.m q ~(qi, qz 'qÃ }
m

(m+n)

represents the expectation value of A .
We consider the CI expansion of the total wave func-

tion,

q'(qi qz " qN)=gcxkx(qi, qz ' qQ),
EC

where m&n (i.e., a~ =0) ensures norm conservation of
%„(qi,qz, . . . , q(v) to first order in the expansion coeffi-
cients a„. Using (24a) we obtain new first-order densi-
ties

p,'(r) =p, (r)+5p, (r),
where 5p, (r) is given by

and subject it to a distortion by replacing cx~cx while
keeping the set [(t}xI fixed. We give cx the form

5p, (r) =rl g a S (r)+c.c. ,

(m/n)

(26)

cx cx+ IRK q

where z} denotes some real parameter.
Hence we have

which holds to first order in a„
The functions S~(r) are independent of a„and are

defined as

S~( )=N 0'„'(q, qz&qz, . . . , qN) ~(q, qz, qz, . . . , qiv)d qzd qz d q(v .4 4

Likewise we get

5p(z"(r', r)=z} g a S„;(r',r}+c.c. ,
m

(m+g)

(27)

where we have omitted the index n on the left-hand side to simplify the notation somewhat. The functions on the right-
hand side are defined

S'~s(r'r)=&(& 1}fq'(—q'qqz q. . q )'P (q'q qz q. qN)d'ezd'q~ . d'e~.

As will be shown in the Appendix, there exists for any
'p„(qi, qz, . . . , qn) a function I'„""(r",r', r) having the
property

f I ',"(r",r', r)5p, (r")13r"=5p'z'"(r', r) . (28)

This function is umquely defined by the complete set of

I

eigenstates associated with A . It is invariant against in-

terchange of (r',s') and (r,s).
%e now introduce a potential

(29)
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by means of which the variation of {U, , ),
{s's)

5( U, , ) = —,
' g fJ, ' d'r'd'r,

/r', r/

may be written

5(U, )= g f5p, (r")U„"(r")d r", (30)

where we have used (28). As follows from the proof in
the Appendix, U„"(r") is dependent on the particular N-
electron eigenstate. We want to emphasize, however, that
it does not depend on any of the one-particle states P{,(r)
and nor does it depend on the one-particle energies e„ to
be defined later [see Eq. (34)]. In the parlance of
Hartree-Fock theory U„"'(r) must hence be referred to as
a local (energy-independent) potential.

Since we require the subdivision (10) of the total wave
function to be possible within an infinitesimal environ-
ment of any eigenstate, the respective functions
{p„'(q),qi, . . . , q)v ) and {t)„'(q),q2, . . . , qN ) must give iden-
tical one-particle densities. This is guaranteed if the asso-
ciated density matrix elements b,,'J' and DJ" have the
property

{sY =~{s)+5D~{is)

and
(s)' (s) (s)D,J

——D,i +5D,g
Because of (18b}we then have

Since the occupation numbers n„. sum up to the total
number of electrons [cf. Eqs. (20c) and (20d)], the varia-
tion is subject to the constraint

+5n„=. o .
l)$

(35b)

we now distort the total wave function
q'(q), q2, . . . , qN ), the associated new a»'s may be written
as

a» for K=I{:0 where ~a», ~
~1,

ri5a» for K&Eo .

Because of the normalization (19) we have

I a», I'+ri' g I5a» I'=I,
(K~ED)

%e shall use the latter two equations to prove that the
component $(q), q2, . . . , q)v) in (10) represents just one
Slater determinant if {I'(qi,q2, . . . , q)v ) is an eigenstate.

We start by assuming that P(q), q2, . . . , q)v) has, in
fact, the form of a Slater determinant. In that case we
have, for the coefficients in the CI expansion (13),

1 for E =ED,
0 for E&EO . (36)

5D,'i"=0 for any i,j and s,
arid hence'

5&T, , )=0.
From (15) and (17) we thus obtain (again omitting the in-
dex n)

which we rewrite as

X
{K~KO)

The quantity

5no= ~a», I' —1

(37)

5(~.) = g 5D,", fy„'(r)[ ——,
' V'+ U,„,(r)]

L,JsS

x tl);, (r)d'r (31)

5p, (r) = g 5D,"sti„'(r)g,,(r) . (32)

Hence, because of (30)—(32) the variation of the total en-
ergy (22) takes the form

5E = g 5Di"Jg,', (r)[ ——,
' V'+ U,„,(r)+ U„"(r)]

describes a uniform lowering of the occupation numbers
referring to all states contained in P» (q), q2, . . . , q)v).
According to our assumption (36) on the undistorted form
of P(q), q2, . . . , q)v), these occupation numbers are origi-
nally all equal to one. On the other hand, there is an in-
crease, 5n„, of the occupation number of a formerly occu-
pied state P„(r} because —as a result of distorting
q{(q),q2, . . . , q)v)—it now appears also in configurations
E+Eo whose coefficients were formerly zero. The net
change 5n„of the occupation number n„ is therefore
given by

&sJ&S

Xfis(r)d r .
5no+5n;, for formerly occupied states,

5n;, =
5n;, for formerly unoccupied states,

If we now specify the functions P„(r) by requiring that
they satisfy a Schrodinger equation where

[——, V + U,„,(r)+ U„"(r)]|i)„(r)=e„f(r),
Eq. (33) attains the simple form

5E= ge„5n„
l,S

(34)

(35a)

5n„=ri' g ~

5a» ('.
E =(i,s)
{E~Ko)

Inserting this net change into (35a} and using (37} we are
led to
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5E —9 g P»'»~»'&» ~
(38a) thus led to

where

K,K' {i,s)

g e„. Q a» 5a»+c.c. &0,
is K

13»'»=(1 5»—», ) g eN5»»ii, si
—eN5»»

l,S

(38b)

1

+ i,s (Kp)

denotes the arithmetic mean of energies e„which belong
to states i}(;,(r) contained in ((t»,(qi, q2, . . . , q~).

We have thus established the validity of (25), which
means that (36) describes the contribution

p(qi, q2, . . . , qz) to the total wave function in an eigen-
state. If the expansion coefficients a» had been assumed

to be all finite, i.e., different from (36), the new coeffi-
cients a» obtained after distortion of %„(qi,q2, . . . , qz)
would all have had the form

+q'. (qi q2 e ) (43)

The spin-dependent one-particle density is thus given by

p, (r)= g ( P„(r) ~', (44a)

so that

which means that the first expression in (41) does not van-
ish as it should if the wave function considered was an
eigenstate.

%e may summarize the above results by stating that the
decomposition (10) of any eigenstate yields a component
(()(qi,q2, . . . ,qz) which represents just one Slater deter-
minant. We denote the latter by p„(qi, q2, . . . , q~ ):

q'. (qi q2 q~) =0.(qi q2

a» a»+r——)5a» . (39)
p(r)= gp, (r) . (44b)

Because of (17) and (20b) we then have
(l',s)

n, = g fa» )2,

where

na =12a +5na (40)

The sum in (44a) runs over N, terms.
The above considerations apply to closed-shell —type

states. There is no problem, however, in extending our
conclusions to multiplet states. In this case one merely
has to reinterpret a» in (13) as the expansion coefficient

0

in front of a suitably chosen linear combination of Slater
determinants,

Hence, in the case considered we obtain, upon insertion of
(39) into (40),

(i,s) (i,s)

5n„=rig(a»5a»+c c )+rl . +. 5a»5a» .
K K

When this is substituted into (35a), we arrive at

(i,s)
5E=g g „ey„a5»a„+cc. faL (2=1. (46)

((l», (qi q2 qN) gczLNL(ql q2 ' ' ' qÃ» (4»
I.

which ensures the proper symmetry of the multiplet state
in question. The above sum runs over a finite set of con-
figurations L and the aL's are normalized,

l, s
nis s

l,s K

(i,s)

+rl ge„+5a»5a» .
i,s K

On the other hand, we have

(41)

The remaining infinite number of expansion terms in (13),
which have to be included at the beginning of the con-
sideration, consist of Slater determinants differing from
those contained in (45) by at least one state. Hence, one
has, as before,

la» I'=I,

that is,
{i,s)

gg [a ['=N.
i,s K

Since the distortion of %„(qi,q2, . . . ,qz) has to be per-
formed under the constraint that X be constant, the latter
equation leads to

(i,s)

g a»5a» +c.c. =0, (42}
is K

where the expression in large parentheses is, in general,
nonzero. The one-particle energies c„. are, of course, in no
way correlated with the 5a»'s. Because of (42) we are

and going through an analogous discussion starting with
(36) we are again led to the conclusion that (13) reduces to
one term, (()» (q, ,q2, . . . , qN), whose form, however, is

now given by (45). The functions QL(qi, q2, . . . , qy)
under the sum in (45) differ only in those states g„(r)
which are involved in forming the rnultiplet state. The as-
sociated occupations numbers n;, now have fractional
values between one and zero because each

~
aL

~

is less
than unity due to (46). Hence, expression (44a} for p, (r}
has to be modified accordingly. For simplicity we shall in
the following always refer to the case where

p» (qi, q2, . . . , ~) is just one Slater determinant.

In order to make our one-particle equations readily
comparable with the Kohn-Sham form used in the litera-
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ture (see, e.g., Kriiger et al. ' ), we introduce the
exchange-correlation energy per particle s'„",(r }by setting

f5p, (r)U„'"(r)d r =f5p, (r)UH(r)d r

+ fg[p, (r)s'„",(r)]d'r, (47a}

where

UH(r)= f, d r' (47b)fr' —r
f

is the Hartree potential. Equation (47a) can be put in the

g f5p, (r)U„'"(r)d r =f5p{r)UH(r)d r

+5+ fp, (r)s'„",(r)der,
S

and hence (30) may be rewritten as
r

and

g (r', r)=0 for all r'=r and s=+1 . (501)

The latter equation reflects the existence of an exchange
hole in the space of positions r' around r.

If we, further, introduce the correlation factors f;,(r', r)
by setting

f, ,(r', r) = 1 —g, ,(r', r), (51)

the elietron-electron interaction energy (21) may be cast in
the form

(U )=-'f f P"'P"d'r'd'r
/r' —r/

p, (r')p, (r)f, ,(r', r)
d p d p,

/r' —rf

(52}

5(U )=5 'f -f P"'P'"d"'d"
[r' —r[

+ g fp, (r) „"s,(r)d'r (48)

where we have used Eqs. (49} and (51). Upon comparing
(52) with the term in large parentheses in (48}we find that
the exchange-correlation energy E„,may be expressed as

E„,= g f p, (r) s„",'(r) dr, (53a)

where the term in large parentheses represents an alterna-
tive expression for (U, , ). The second term in large
parentheses may be referred to as the exchange-correlation
energy. To make this evident we introduce the pair corre-
lation functions g, ;(r', r) defined by

(,), p, (r'}f,,(r', r)
s„',(r)= ——, , d r'.

/r' —r/
(53b)

where the exchange-correlation energy per particle is
given by

p,"'(r', r) =p, (r')p, (r)g, ,(r', r) .

Because of the properties of p&'"(r', r) we have

g, ,(r', r) g~ (r, r')

(49)

(50a)

Obviously, the form of (52) is identical with the respective
expression (2) of the Kohn-Sham theory, except that (2)
contains the correlation factor averaged over the coupling
strength A, . Furthermore, if we insert (53b) into (47a) our
one-particle equations (34}attain the Kohn-Sham form

[——,V + U,„,(r}+U&(r)+ U„",(r)], „.(r) =s„g„(r),
where

p,(r'), 5f„-(r',r)
U„",'(r)= —g f, f, ,(r', r)+-,' g p, -(r) d r' .

(54a)

(541)

We want to emphasize again that U„",'(r) is a strictly local
potential for any eigenstate %„(qi,qi, . . . ,~) under con-
sideration. Furthermore, since U„"(r) depends on the
particular eigenstate in question (indicated by the index
n), it follows from our definitions (47a), (49), and (51) that
s'„",(r) and f;,(r', r) are state dependent also. We omit,
however, expressing this property explicitly.

The kinetic-energy correction (18a) can be cast in a
more convenient form. If we rewrite (34) as

—
~ ~'Wp«) = [&Js —Ue.«r) —Un'(r)]fp(r»

and multiply this equation by D I 'P1(r~), we obtain, after
real-space integration and summation over all states,

ences defined by

(s)a ff —big —1lgg

have the property

g n„=0.

(56a)

(561)

Because of (55) and (56a} and (561), one can immediately
show that (T, , ) must, in the ground state, always be
positive. The latter case is characterized by a consecutive
filling of levels s;, up to a highest level e~, for either spin
orientation. If we multiply (56b) by Ez„sum with respect
to s, and subtract the result from (55), we obtain

(T, , ) = gn„s„ (55) (T, )= g(s;, Ep, )n;, . —

where we have used (18c}. The occupation-number differ- In the ground state we have
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+ x Jp, (r?[a,'*,'(r( —U,",'(ri]d'r+(?', , '(, (57)

where we have eliminated expressions containing ——,
'

V

by means of (54a). The one-particle density is given by

p(r)= gp, (r), (58a)

where

The summation index ( i,s) runs over N terms if
(I)„(qi,q2, . . . , qz) represents a closed-shell —type state, ir-
respective of whether it refers to an excited state or to the
ground state. We again observe that, apart from the oc-
currence of & T, & in E, expressions (57) and (58a) and
(58b) are for non-spin-polarized systems identical to those
of the Kohn-Sham theory, except that the latter defines
e,'„",(r) and U'„", (r) by means of the A,-averaged correlation
factors (3). Of course, the two alternative approaches can-
not lead to different results for E and p{r) in the ground
state. This case deserves a more detailed discussion.

Equation (54a) and the corresponding Kohn-Sham
equations may be interpreted as one-particle equations for
noninteracting electrons which move in an external poten-
tial,

U,'„,(r)= U,„,(r)+ U (r)+ U„,(r)

(here we have dropped the spin index for simplicity. )

Since the one-particle densities emerging from our
theory and from that of Kohn and Sham must agree, it
follows from invoking the Hohenberg-Kohn theorem that
the associated two potentials U,'„,(r) must be identical. If
we rewrite (54b) as

U„,(r) =2s„,(r)+ s„,(r), (58c)

where e„,(r} is derived from the second term in (54b), the
two potentials may be interrelated:

U,'„,(r) =U,'„,(r)+2[e„,(r) —s„,(r)]+[a„,(r) —e„,(r)] .

Here we have characterized the Kohn-Sham quantities by
an overbar. Since e„,(r) and (re) are certainly not identi-
cal, because the 1atter is connected with the A.-averaged
correlation factor, their difference must obviously cancel
with the respective difference of e„,(r) and e„,(r}. On the
other hand, the total energies must agree, which means
that

& T, , & = Jp{r)[e„,(r) —e„,(r)]d r .

b,I,
"—1&0 for levels e„&sp, ,

Pl~

5,",. '& 0 for levels s„&sF, .

Hence & T, & must be positive because all terms under the
above sum are non-negative.

%e are now in the position to write the total electronic
energy of the system in any of the eigenstates,

( J I P(r')P(r) di„ggi
[r' —r[

The above scheme provides a one-to-one correspon-
dence between %„(qi,qz, . . . , q~) and P„(qi,qz, . . . , qN ).
Hence, the degeneracy of an energy level E may be deter-
mined just by finding the number of different Slater deter-
minants $„(qi,q2, . . . , q~) which lead to the same total
energy E. In connection with thermal excitations (Sec.
IV), the case of near degeneracy will be of importance,
where one disregards the relaxation energy between con-
figurations which differ in degenerate one-particle states.
It will then be possible to define the entropy of the system
and to consistently derive the Fermi distribution function
for an ensemble of interacting electrons whose number is
fixed.

III. SIMPLE APPROXIMATE FORMS
OF THE CORRELATION FACTORS

As a consequence of definitions (49) and {51),f, ,(r', r)
has the following properties (cf. e.g., McWeeny ):

f (r, r) =1 for any r and s, (59a)

f, ,(r', r) p 1 for any r', r and s',s,
(=)

where the equality sign in parentheses in (59b) refers to
the case described by (59a}. Moreover, if the system under
study has a finite extension the correlation factors exhibit
a well-defined asymptotic behavior:

1
lim f, ,(r', r) =5, ,

t
r' —r I

(59c)

where r' (or alternatively r) is some internal point of the
system.

The two-particle density has the property

p2q, qd f = Pfg —
gg p g

which, after summation with respect to s', attains the
familiar form (12c),

g Jp (q', q)&'r'=(X —1)p, (r) .

Substituting (49) into (60) and replacing g, ,(r', r) by
means of (5 1},we arrive at the well-known sum rules

fp, (r')f;, (r', r)d r =5;, for any r . (61)

In practice, it has proved surprisingly successful to use
the following relatively crude approximation to f;,(r', r):

At first sight, the occurrence of & T, , & in the present
theory appears to introduce an undesirable uncertainty be-
cause the occupation-number differences n„.contained in
the expression (55) for & T, , & are unknown. However, the
total potential energy

& U&=&U...&+&U. , &

is completely known once p, (r) and e„",'(r) have been cal-
culated by self-consistently solving Eq. (54a} and by using
(58b) and (54b). Since & U & thus determined refers to the
potential energy in an eigenstate, we may invoke the virial
theorem, which yields

E=-'&U& .
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f (r', r) =f, (r, (r),
I

r' —r
I ) (62a)

f„(r,r)=Q for s'+s, {62b)

fs(r {r)
I

r' —r
I

)=[3j](»«]' (64a)

x =(2/9n)]~'
I

r' —r
I Ir, (r), (64b)

and j,(x) denotes the spherical Bessel function of index 1.
If p(r) is a constant, r, represents the familiar Wigner-
Seitz radius; otherwise r, (r) is determined via the sum
rule (61). Expression (64a) has been successfully applied
to electronic structure calculations on metals by Przybyl-
ski and Borstel. The present author and eo-workers' '
have intensively studied another type of correlation factor
which represents expression (63) to the —,

'
power. The re-

sults obtained for a series of free atoms are, by and large,
very satisfactory. Apart from the total energies, and first
and second ionization potentials, arrived at, there is also a
noticeable gain in accuracy regarding the electron affini-
ties and the s-d transfer energies for transition metals.
Moreover, certain types of excited states are well
described. '

Obviously, all the expressions for f (r', r) that have so
far been used in practical calculations suffer from a fun-
damental deficiency in that they have the common form

the latter implying the complete neglect of correlation for
electrons of unlike spina. The function on the right-hand
side of (62a) has to be chosen such as to meet the require-
ments (59a)—(59c) and (61), which, of course, leave con-
siderable latitude as to the analytical form of f (r', r).
Nevertheless, the electronic properties obtained from self-
consistently solving Eq. (54a) turn out to be not severely
affected by differnet assumptions on the shape of the

correlation factor (62a}. This has recently been studied in

detail by Gollisch et al. ,
' who performed their calcula-

tions within the present theoretical framework. The con-
ditions (59a)—(59c) and, in particular, the sum rule (61)
represent obviously so strong a constraint that the remain-

ing arbitrariness in the choice of f~(r', r) has relatively lit-
tle influence on key quantities such as the total energy or
the one-particle density.

Within the above approximation [(62a)], the dependence
of f;,(r', r) on the eigenstate becomes particularly trans-
parent. Since p, (r} depends on the eigenstate in question,
the sum rule (61}forces f (r', r) to adjust accordingly.

A possible choice of the analytical form of
f,(r, (r),

I

r' —r
I ) is, for example, a Lorentzian,

f, (r, (r)
I

r' —r
I
)= I 1+[ I

r —r
I
/r, (r)]') ' (63)

which conforms to conditions (59a} and (59c}. Its width

r, (r) is, for any r, uniquely determined by the sum rule
(61}. Another expression of similar properties is due to
Gunnarsson and Jones. ' These authors suggest a non-
spin-dependent form of the correlation factor whose use-
fulness for electronic structure calculations of semicon-
ductors has been tested by several groups. 's The expres-

sion put forward by Alonso and Girifalco' is identical to
that obtained for the homogeneous electron gas, viz. ,

(62a), which is obviously not symmetric with respect to r'
and r. This conflicts with the general property off (r', r)
as established by (50a) and (51). Curiously, the numerical
results appear to indicate that this inconsistency gives rise
to only minor effects, which at the present level of ap-
proximation are still far from being relevant. On the oth-
er hand, the characteristic asymmetry of (62a) renders this
class of correlation factors readily accessible to finding
the functional derivative 5f, /5p, (see Gollisch et al. '

and Gunnarsson et al. '}. Once the analytical form of
f,(r, (r), I

r' —r
I ) has been chosen, the expressions

P, (r', r)=5f, (r, (r),
I

r' —r
I
)/5r, (r)

and

p, (r)= Jp, (r')P, (r', r)d r'

are known functions. By employing the sum rule (61}it is
easy to show then that e'„",(r) in (58c) can be cast in the
form

E',*,'(r)= Jp, (r')C, (r')[f, (r, (r),
(

r' —r
( )/p, (r')]d r',

where

p, (r')P, (r', r)
C, (r) = ——,', d'r' .

I

r' —r
I

Since '„e", (r) only depends on f, (r, (r),
I

r' —r
I ), the

exchange-correlation potential (58c) is obviously com-
pletely determined. Potentials thus constructed have the
important property that

lim U[„;]{r)= (65)
( r—r'

)
~ co

if r' and r=O are internal points of an atom, a molecule,
or a cluster. The relatively satisfactory results on
electron-affinity energies' are directly connected with
this asymptotic behavior of U,",'(r). On the other hand,
the long-tail form of U'„", (r) is a consequence of the
asymptotic behavior of f„(r',r). If one inserts (59e) into
(54b), one immediately arrives at (65).

It is interesting to consider the analogous ease of a met-
al which fills a semispace with a planar surface perpendic-
ular to the z direction. %e again choose r' to be an inter-
nal point and r=0 a point at the surface. If one moves r
along the z direction away from the surface, one may-
for sufficiently large distances —use the asymptotic form
(59c} for f (r', r). The quantity p, (r)f (r', r), which
represents the exchange-hole charge density, becomes pro-
portional, then, to p, (r'), which means that the exchange
hole spreads out over the entire metal. Hence, U'„", (r)
tends, outside the metal, to a constant, and cannot exhibit
any image-potential behavior. This clearly reflects the
limited applicability of assumption (62b). If we allow

f;,(r', r) for s'&s to be finite, the associated correlation
hole charge density p;(r')f;, (r', r) integrates the zero ac-
cording to (61), and hence gives rise to a dipolelike contri-
bution to U„",'(r), which just constitutes the image poten-
tial. This interrelationship between electron correlation
and image potential has recently been studied in detail by
Mohammed and Sahni. Similar considerations apply to
atoms, molecules, and clusters regarding the occurence of
an additional term proportional to r emerging from
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An approximation to U„",(r) which is even cruder than
that based on (62a) and (62b) consists of the following as-

sumption: If p, (r') does not vary too strongly within a
sphere of radius r, (r) around r, it will be sufficient to re-

place it by a first-order Taylor polynomial,

p, (r') =p, (r)+ Vp, (r) ~ (r' —r) .

If this is inserted into the sum rule (61) one obtains, by
employing (62a) and (62b) and (64a) and (64b),

$r, (r)p, (r) =1 .

Using the same approximation in evaluating (54b}, one ar-
rives at

to closed-shell —type states which can be described

by a single-configuration wave-function component

P(q, ,q2, . . . , qN). We shall use the subscript 0 for quan-
tities referring to the ground state and subscript 1 for
denoting excited eigenstates. Excitation energies
&R =Ei Eo—for atoms, molecules, and clusters may be
obtained by performing standard rNCF calculations (SCF
denotes self-consistent field} within the framework of Eqs.
(54a) and (68a) and (68b). In the case of extended periodic
systems the total energies Eo and Ei can, of course, no
longer be calculated individually. A possible way of
directly determining ~& follows.

The primary charge-density change characterizing the
transition is given by

U'„", (r) = ——,
' u(3/n )

'~ [2p, (r)]', a =—', . +,(r)= I1tf, (r) I'- If„(r)I', (69a)

This expression is familiar from the theory of the homo-
geneous electron gas and is usually referred to as a "local"
approximation to U„",'(r) since it depends solely on the lo-
cal value of p, attained at r. It should be noted that the
above derivation explicitly accounts for inhomogeneity
which, in fact, is far from being weak in realistic systems.
Nevertheless, the gradient term in (66) does not give any
contribution within the present approximation. This is
one of the major reasons for the unexpected success of the
above "local" potential and other forms containing correc-
tions to (67}. (Widely used versions of the latter type are
due to von Barth and Hedin and to Gunnarsson and
Lundqvist. )

Clearly, the assumption underlying the above derivation
cannot possibly apply to few electron atoms, of which hy-

drogen represents an extreme example. In these cases
r, (r} is comparable to or larger than the respective atomic
radius and (66) can no longer hold. The same can be said
regarding the peripheral region of many-electron atoms,
molecules, and low-density regions of solids (predominate-
ly those with covalent bonds). As soon as the use of (66)
is no longer justified, "nonlocal" effects become impor-
tant, which are reflected in the (r', r} dependence of the
exchange and correlation hole density p, (r')f, ,(r';r). The
actual "nonlocality" of U„",'(r) in the sense defined gives
rise to interatomic correlation, which is known to be non-
negligible in many cases. Hence, the plethora of results
obtained in the past with the use of local potentials
U'„", (r} should generally be taken with some reservation.

&p, (r) =5, ,+,(r)+ [p, [bp, (r)]—p,'(r) j, (69b)

which, again, is a functional of 4p, (r). Within the limits
of a linear-response behavior of the electronic system, this
functional has the property

bp, [Arhp, (r)) =A+, [+,(r)],
where A, is some real number.

Using (68a) and (47a) we may cast hE in the form

b E = —,
' g f dP, (r) U, (r)d r,

S

where

U, (r) = U,„,(r)+ UH(r)+ U„', '(r),

(70)

(71a)

(71b)

where the subscripts f and i refer to the state which is
filled or depleted, respectively. For simplicity we disre-

gard transitions involving spin flip. If we recalculate
UH(r) + U'„", (r) for the new charge density,

p,'(r) =p, (r)++,(r),
and solve (54a), we obtain new, slightly distorted states

Pk, (r) and, according to (68b), a new density p, (r) which
is a functional of dy, (r). Hence, the modified change of
the charge density is given by

+,(r) =hp, (r)+ [p,[Q,(r)]—p,'(r}] .

Since the states for s'&s change as well, we have, in gen-

eral, for s'= + 1,

IV. EXCITATIONS

As already stated in Sec. II the total energy in any
eigenstate is equal to —,

' ( U); that is,

E= —,
' g fp, (r)[U,„,(r)+ ,

' UH(r)+s„", (r)]d r—. (68a)

The spin-dependent density is given by

p.(r)= X I 4~(r) I'.
k=&

(68b)

The ground state is associated saith one-particle states
gk, (r) whose energies si are the N, lowest consecutive
eigenvalues of (54a). In the following we limit ourselves

and +, (r) is given by (69a) and (69b). In forming AF we
have used (47a), setting 5p, (r) =+,(r). This implies that
the change hf;, (r', r) can be calculated as if it were
caused by a change hp, (r) resulting from a variation of
the ground-state wave function. We assume this to be ap-
proximately true. Hence, U, (r) refers to the ground state.

Equation (71a) holds to first order in hp, (r}. The in-

tegrals on the right-hand side extend over the volume of
the crystal under study. The integrands have lattice
periodicity, and hence we may rewrite (71a) in the forin

bE= ,' g f +,' '(r-)U;(r}d r, (72)

where 0 is the volume of the lattice cell and bp,' '(r) is
defined as
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h, '= ,' g f [p—,[hp,("'(r)]—p,'"'(r))U, (r)d'r .
S

From (54a) and (71b) we have

(73b}

k, r U, r r =eI —Tk, , (74)

where Tk, is the one-particle expectation value of the ki-
netic energy and fk, (r) is normalized to unity with respect
to the lattice cell. If we take (74) for (k,s)=i and

(k,s) =f, form the difference of the two equations, and in-

sert the result into (73a), we obtain

E =(sf —s;)+h,
where

h, = —,
' g f [hp,'l ~'(r) —5, ,hp,'"'(r)]

X U, (r)d r (Tf T,)— — (75)

is the gap correction and

hp
( r cd )

( r ) Ip [hp
( 0)

( r )] p
(0)

(r }

Unfortunately, expression (75) is not very illuminating. It
appears difficult to understand how the first term can sys-
tematically cancel Tf —T;, which —according to general
experienc(~is approximately true for many metals.

There is an alternative derivation of (75) which takes
advantage of (35a). If one wants to integrate this expres-
sion for 5E over a finite variation of two occupation num-
bers (n; and nf), starting the integration at E =ED and
ending it at the energy Ei of an excited eigenstate, one is
no longer justified in setting 5(T, ) equal to zero. We
thus have

5E =sf 5nf+e; 5n;+5(T, , ) .

In an extended system sf and e; do not depend on a fin-
ite variation of the occupation numbers. Moreover, since

nf +n; =1,we have

5n; = —5nf .

Hence, the integration of (76) with respect to nf from O to
1 yields

hp(")(r}=X,hp, (r),
with N, standing for the number of lattice cells.

As long as (70) holds, hp,' '(r} may be calculated from
(69b), where hP,' '(r) is given according to (69a), but with
the states it)f, (r) and g„(r) now renormalized to unity
with respect to the lattice cell. Since the magnitude of

'(r) is of the order of charge-density changes for
intra-atomic transitions, there should be no problem in
calculating the associated new charge density p,' '(r)
needed to determine hp,' '(r) in (72). Work in this direc-
tion is under way.

In order to find a relation between && and ef —e;, we

rewrite (71a) using (69b),

hE= —, f hp,' '(r)U, (r)d r+h', (73a)

where

hE =(sf —e;}+h,

h=h(T„& .
This result, together with (75}, confirms our previous
statement that the kinetic correction reflects the specific
way in which a solid responds to the density change
hp, (r) occurring in a transition. It should be noticed,
however, that [p, (r) —p,

' '(r}] in (73b) integrates ta zero
within the lattice cell. The magnitude of its amplitude is
therefore not necessarily correlated with the magnitude of
Qt

Despite the capability of the present theory to describe
excitations, the quantitative treatment of optical transi-
tions, for example, is only possible within certain approxi-
mations. First of all, it appears that transition rates and
related quantities are accessible only by resorting to
Fermi's golden rule. Secondly, the associated transition
matrix elements Mf; require the true wave functions
)p(q(, q2, . . . , qN) for the respective eigenstates to be
known, whereas our scheme only provides their first com-
ponents, P(q), qz, . . . , q)((}. It appears to be very likely,
however, that the matrix elements formed with the true
wave function and with the ((}'s, respectively, differ very
little. On the other hand, measurements on oscillator
strengths involving these matrix elements are usually per-
formed with relatively limited accuracy, so that the errors
introduced by approximately forming the matrix elements
with the P's may even be smaller than the experimental
errors. If the two Slater determinants Pf(q„q2, . . . , qN)
and P;(q(,qz, . . . , q)v} differ in the one-particle states

Qfg (r ) and P„(r ), the optical matrix element attains the
simple farm

Mf) ~ f ff', (r)A Vg„(r)d'r,

where A denotes the vector potential of the radiation
field. This expression for Mf; has, without justification,
often been used in the literature (see, e.g., Benbow and
Smith ). Calculations on the optical absorption of vari-
ous metals (Mo, W, Pd, and Pt) have successfully been
carried out within the above scheme by Eckardt. 6

We now turn to the problem of thermal excitations in
interacting N-electron systems. As already stated in Sec.
II degenerate states %„(q),qi, . . . , q)v } are characterized
by associated Slater determinants (()„(qi, q2, . . . , qN )

which differ in degenerate one-particle states. To simplify
the notation we shall, in the following, drop the spin in-
dex. Furthermore, we use an index a for a group of de-

generate one-particle states and the index i to label the as-
sociated one-particle energy. The degeneracy of a one-
particle level, c.;, will be denoted by g;. As the inter-
action between the system under study and the heat bath
is turned on, transitions into excited states
%)(q(,q2, . . . , qN ) occur. Slater determinants
()},(q),qz, . . . , q)v) which differ only in states P; (r) for
fixed i will appear with some probability n; &1. This
refers to an average number n;g; of occupied degenerate
states Pi(q), q2, . . . , qN). Hence, the entropy of the sys-
tem is given by

S =kg lnI
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where

lnI = glnl;
The above derivation is due to Slater, who justifies the
use of Eq. (78b) by heuristic considerations. This applies
siniilarly to Landau s derivation of (81) in his paper on
Fermi-liquid theory.

I .=g!/(n, g )!(g;—n,g;)! . (77c) V. SUMMARY

where T is the temperature of the heat bath.
The variation of the total energy is, according to (35a),

5E= gsi5n;
i,a

(78b)

The occupation numbers n&~ and n; are conncx:ted
through

gg

"igi= g %a ~

a= j.

where

(79a)

(79b}
i,a

Writing 5E in the form (78b) implies that we assume the
corresponding variation 5( T, , ) to be negligibly small, as
is approximately true for many metals. Within our theory
it is absolutely crucial that the number of particles is a
constant. Hence, we have, from (79a}and (79b),

gg, 5n, =0.

Requiring the free energy E=E TS to atta—in a
minimum under the constraint (80), and using expressions
(78a) and (78b), we are led to

1
si +—lil

Pl) —p
1 —7l

g;5n; =0,

where

P=l/AT,
and y, denotes a Lagrange multiplier.

Obviously, the expression in large parentheses must
vanish, and then rewritten as

Pe — )

l
(81)

We have thus arrived at the Fermi distribution function
for an interacting electron system having a fixed particle
number N. It is obvious from our derivation that (78b)
constitutes a key equation which can neither be obtained
from Kohn-Sham theory nor from the Hartree-Fock ap-
proximation. The latter theories deal with occupation
numbers which are strictly unity. On the other hand, our
derivation crucially depends on the one-to-one correspon-
dence between!(t„(qi, q2, . . . ,~) and %„(qi,q2, . . . , q~);
otherwise we would not be able to clearly define the "ther-
modynamical probability" I by use of (77b) and (77c).

The quantity k~ denotes Boltzmann's constant. From
(77a)—(77c) we obtain

TM = k~T Q—Iln(gn, ) —ln[g(1 —n;)] Jg; 5n;, (78a)

We have shown that an extension of the Kohn-Sham
theory to excited states is possible without losing its strik-
ing advantages regarding the relatively simple numerical
techniques required to solve the relevant one-particle
equations. A concomitant virtue of the new approach is
that it elucidates the interrelationship between the Kohn-
Sham theory and conventional N-electron theory
developed primarily in quantum chemistry. It becomes
evident from this interrelation that the Slater determinant
P(qi, q2, . . . , qN), which within the Kohn-Sham theory
merely plays the role of an auxiliary construct, has an im-
portant physical meaning: it constitutes an optimized
component of the true wave function %(qi, q2, . . . , q~)
carrying maximum information on the one- and
two-particle densities which can be absorbed into one
Slater determinant. The remaining difference,
4(qi, q2, . . . , q~ ), between the true wave function and the
Kohn-Sham wave function does not contribute to the
one-particle density and only provides a fine-tuning
around the exchange-hole. [The latter represents a mas-
sive structure in the two-particle density which is com-
pletely modeled by P(qi, q2, . . . , q~). ] In addition,
'P(qi, qi, . . . , q~) gives rise to the correlation hole, which
is, again, a weak structure comparable to the "fine-
tuning" structure in the exchange part of the two-partjcle
density. This property of ((}(qi,q2, . . . , ~), viz. , that it
contains the key information already in the correct order
of magnitude, lends strong support to the (so far unjusti-
fied) assumption that transition matrix elements may —to
a very good approximation —be calculated by using the
functions !!t(qi,q2, . . . , q~) for the states involved.
Another interesting insight gained by our analysis is that
the one-particle energies of the Kohn-Sham theory are not
just numerical parameters which are relevant only to tech-
nical performance of the self-consistent calculations.
These energies appear exactly in the Fermi distribution
function, and hence they determine the (phonon-
undressed} electronic contribution to the specific heat in
metals. On the other hand, it can easily be shown that ex-
citation energies for interband transitions in solids are, in
general, not given by the difference of the bands involved.
It appears that approximate corrections to these differ-
ences are readily accessible.

Since our derivation leads to an exchange-correlation
potential which —in contrast to the Kohn-Sham theory-
is formed with the original (non-A, -averaged) correlation
factor, it will presumably be easier to find ways of sys-
tematically improving the present approximations by con-
sulting quantum-chemical calculations on identical sys-
tems.

Finally, the present approach lends itself to a relativis-
tic generalization which allows a consistent treatment of
spin ordering in the presence of spin-orbit coupling. This
extended scheme has successfully been applied to fer-
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romagnetically ordered iron and expanded palladium met-

al. The results will be published elsewhere.
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APPENDIX

We want to show the existence of the integral kernel
I'„' "(r",r', r) defined by

I „"'"r",r', r p, r" r"= p2'" r', r

When we introduce here expressions (26) and (27) for

5p, (r) and 5p2' "(r',r), respectively, and observe that the
quantities a„~ may be chosen at will, we are led to

f I'„' "(r",r', r)S~(r")d r"=5„'~,(r', r) . (Al)

We expand the right-hand side of this equation in terms
of a complete set of functions X;(r}which we may identi-

fy with one of the sets t P„(r}J for s =+1, each of which

will, in general, be complete:

k
k, l

Likewise,

I"' '(r",r', r}=g g A~":„"""X (r')Xt(r)X~ (r") .
rn' k, l

Substituting these expansions into (A I), we obtain

= g a~"„'"'"'~Xk(r')Xt(r),
k, l

M"' „=fS„(r")X (r")d r"

are known quantities which form a matrix for each n, s
given. The above equation requires

~ (k, l), (s', s)~(s) (k, l), (s', s)
Nl lt mm'n =~mn

These linear inhomo~eneous equations may be solved for
the coefficients A~"'„""which determine the integral
kernel in question. The matrix defined by the quantities

M~ „ is well behaved since the functions S„~(r)
represent overlap densities between eigenstates 4'„and
%~. Hence, the m-dependent upper bounds of their abso-
lute values will, in general, form a rapidly convergent se-

quence. The same applies to the m' dependence of M'" „
if the functions I (r) are ordered according to increasing
values of their associated one-particle energies. The ex-
istence of a solution to the above infinite system of linear
equations is, for the ground state, ensured by the Kohn-
Sham theory. Since the principal structure of the matrix
M" „ is not different in an excited state, there must al-
ways be a solution to these equations.

It should be noticed that these equations elucidate
another important feature of I'„'(r",r', r): The informa-
tion contained in this function obviously comprises the
full set of eigenstates qt (q&, qz, . . . , q~). Although it is
possible to obtain e'„",(r) from %„(qi,qz, . . . , q~) alone,
U'„", (r) requires the information on the full Hilbert space.
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