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Self-trapping in quasi-one-dimensional solids
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Electronic excitations in highly anisotropic quasi-one-dimensional solids are often regarded as be-

ing in a one-dimensional system. Here we determine the degree of anisotropy that is required to jus-
tify treating an excess carrier in this manner. En particular, we consider the adiabatic ground-state
eigenfunctions for an excess electron in an electronically anisotropic solid in which the electron-
lattice interaction is short ranged. In this circumstance an excess carrier in a one-dimensional sys-

tem always self-traps to form a finite-radius (generally, large) polaron. On the other hand, in a
three-dimensional system, an excess carrier will either self-trap to form a severely localized (small)

polaron or it will not self-trap at all. %e determine that the one-dimensional behavior typically re-

quires the ratio of the electronic transfer integral for the easy direction to that for the transverse
directions to be at least two orders of magnitude. Thus, estimated electronic anisotropies in many
quasi-one-dimensional systems are not sufficient for these systems to be regarded as one dimensional

with regard to self-trapping.

I. INTRODUCTION

Charge carriers in quasi-one-dimensional systems are
frequently regarded as being self-trapped to form one-
dimensional polarons. As was shown some time ago, '

self-trapping in a truly one-dimensional system differs
qualitatively from that in systems of higher dimensionali-
ty. In particular, a charge carrier in a one-dimensional
system will always self-trap to form a polaron. Further-
more, this polaron expands in spatial extent continuously
as the ratio of the intersite transfer energy to the
electron-lattice coupling energy is increased. Quite dis-
tinct from this, in a three-dimensional system self-
trapping is dichotomous. The charge carrier either self-
traps to form a severely localized sma/1 polaron or it does
not self-trap at all. Thus, in approaching the question of
self-trapping in real anisotropic materials one must
develop a criterion for one-dimensionality. Here we em-
ploy an adiabatic approach to this problem.

It is found that one-dimensional behavior will prevail if
the binding energy associated with a one-dimensional po-
laron exceeds one-half the electronic bandwidth associated
with electronic motion transverse to the quasi-one-
dimensional chain. The binding energy of a one-
dimensional molecular-crystal-model polaron is
Ez ——W/12(a/1. ), where W is the one-dimensional elec-
tronic bandwidth, 1. is the polaron half-length, and a is
the intersite separation. This generally yields quite mod-
est estimates of the large (one-dimensional) polaron bind-
ing energy: at very most -0.1 eV. Thus, for one-
dimensional polaron theory to be applied to quasi-one-
dimensional systems such as trans-polyactelene, the trans-
verse contribution to the electronic bandwidth must be
comparably small. This corresponds to an anisotropy of
electronic transfer integrals of at least 2 orders of magni-
tude. Failing to meet this criterion means that the charge
carrier will not form a large one-dimensional polaron.
Rather, it will remain as a quasifree particle which will

move, albeit tenuously, transverse to the quasi-one-
dimensional chain.

Band structure calculations yield estimates of the aniso-
tropy of only 10 to 100 in various quasi-one-dimensional
solids. ' Accepting these estimates implies that one-
dimensional polarons will not form in these quasi-one-
dimensional solids.

II. ADIABATIC CALCULATION

We begin with the tight-binding eigenvalue expression
for an electron in a solid:

(E Es)as ————g Js s+i,as+i, . (1)
h

Here E is the eigenvalue of the system, Es is the energy
of the system with the electron confined to site g, and

Jss+i, is the electronic transfer integral linking site g
with site g+h. The amplitude for the electron's occupan-
cy of site g (g+h) is denoted by as (as+i, ). As indicated
by the circumflex over the h summation, the summation
only extends to adjacent sites in each direction.

For definiteness, we consider a molecular solid in which
the site index g refers to a molecule. Each molecule is as-
sociated with a single deformation parameter xs which
refers to the deviation of atoms of the molecule from their
(carrier-free) equilibrium positions. Then, with a short-
range hnear electron-lattice interaction, the energy of an
electron confined to the gth equivalent molecule of the
molecular crystal is given by

(2)

where F is the electron-lattice force.
%e assume that the electron can adjust to the instan-

taneous atomic positions. In particular, we employ the
adiabatic approach and seek the eigenstates of the system
which ininirnize the sum of the electron energy and the vi-
brational potential energy. That is, we neglect the vibra-
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tional kinetic energy and minimize the energy eigenvalue
E with respect to atomic displacements. In analogy with
the procedure of Ref. (2), the energy minimization condi-
tion is found to be

g(BEg/Bxg) ~ag ~

=0, (3)
8
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for all g. Within the adiabatic approach,

Eg ——eg+(k/2) gxg, (4)

E—(S'/2k)g ~ag I'+(F'Ik) ~ag ~' a,

= -XJg.g+~ag+~ .
h

Multiplying this Eq. (6) by ag and summing over g we
obtain an expression for the adiabatic ground-state energy:

E= —yy J a'a —(F /2k) y ~ ag
~

I h I

We now consider an anisotropic solid with easy transfer
in the x direction. The x direction is associated with the
nearest-neighbor transfer integral Ji and intersite separa-
tion a. Transverse to the x direction, in the y and z direc-
tions, the transfer is associated with the transfer integral
J, and the intersite separation b Equation .(7) may then
be rewritten as

E= —JI gag (ag+,,+a,, )

—J, gag [(ag+,b+ag, &)+(ag+t,g+ag ia, )

(F /2k)g
~ ag —

~

~.

Passing to the continuum limit, the ground-state energy is
rewritten as:

E=(—Jia /2) f dr/'(r)B g(r)IBx

+( J,b l2) f dr/'(r—}B it/(r)IBy

+( J,b /2) f dr/—'(r)B it/(r)/Bz

—(2Ji+4J, ) (F /2k) f dr
~

it/(r) ~—

Dropping the constant term (2J&+4J, ) and integrating
the kinetic energy terms by parts yields

where k is the stiffness constant associated with the
molecular deformations. Inserting Eq. (4) into Eq. (3) we
then obtain the minimization condition

xg F/ag——/'/k .

Inserting the minimizing values of the deformation pa-
rameters from Eq. (4) into Eq. (1), we obtain the nonlinear
eigenvalue equations which characterize self-trapping in a
molecular crystal:

If i}/(r) were the exact ground-state eigenfunction, E
would be the ground-state energy. However, we do not
have an explicit expression for f(r) Th. us we may at-
tempt to get a qualitative understanding of the effects of
anisotropy by doing a variational calculation presuming
that the ground-state eigenfunction is spatially separable.
Denoting the longitudinal extent of the wave function by
R i and the transverse extent of the wave function by R„
the ground-state energy will be of the form

E= T(IRi +2T, /R, Eb/RI—R, .

Here Ti and T, are, respectively, the kinetic energies for
extension in the longitudinal and transverse directions:
TI =2J~ and T, =2J, . Eg is the small-polaron binding en-

ergy F /2k The l.ongitudinal and transverse spatial ex-
tents, Ri and R„are measured in units of the cutoff dis-
tances appropriate to a discrete lattice. These cutoffs
arise because the continuum approach loses its validity for
very small transverse and longitudinal decay lengths.
Namely, the energy contributions saturate when the
eigenfunction's spatial extents fall much below an intersite
separation. Thus RI and R, are dimensionless quantities
that are constrained to be greater than or equal to unity.

Three dimensionality then corresponds to R~ and R,
both exceeding unity. Two dimensionality corresponds to
RI being unity and R, being greater than unity: severe lo-
calization in one dimension. One dimensionality corre-
sponds to R, being unity and RI being greater than unity:
severe localization in two dimensions. Severe localization
at a single site, small-polaron formation, is represented by

A system's ground state corresponds to the minimum
of the energy with respect to the two spatial extents RI
and R, . We are, therefore, interested in the behavior of
the function E(Ri,R, ). The energy as a function of the
radius R has been previously found for idealized three-,
two-, and one-dimensional systems. ' The present result,
Eq. (11), reduces to the idealized cases in the appropriate
limits. Namely, the three-dimensional isotropic (Ti = T, }
results are found for E(R,R) as a function of R. The
two-dimensional results are found from E(1,R, ) as a
function of R, . The one-dimensional results are found
from E(Ri, 1) as a function of Ri.

We now study the stability of the one-dimensional solu-
tion in an anisotropic system. Namely, the energy
minimum which exists in the idealized one-dimensional
case T, =0 is at RI ——2TI/E~ and R, = l. %'e examine the
stability of this minimum as the transverse transfer energy
T, is increased. For this purpose we write down the first
derivative of the energy with respect to R, :

aE/aR, =( 4T, +2E, /R, )R— (12)
%'e note that the first derivative of the energy with
respect to R, is not generally zero at RI ——2TI/Eb and
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R, = l. Rather, because of the R, =l cutoff, the one-

dimensional minimum occurs when BE/M, is positive at
this point. That is, we have a one-dimensional minimum

when

ly stable. That is, there is then no longer an energy mini-
ma associated with the one-dimensional polaron.

III. NUMERICAL ESTIMATES

4—?'i +2Eb /(2?'i /Es ) = 4?—'i +Esi/T» 0 (13)

In other words, the stability condition for a one-
dimensional polaron is

Ef, &4?'i?; . (14)

Eb, 1 & 2~r ~ (16)

This is the condition for dynamic stability —the condition
that the large polaron exist.

We can reexpress it in terms of the binding energy of
the large one-dimensional polaron Eb i calculated in Ref.
(2). In our terms, Es i

—Eb/6—T~. This is the amount
that the energy of a large polaron on a one-dimensional
chain hes below the energy of a one-dimensional free par
ticle. The dynamic stability condition is then

Eb i) 2?;/3 .

However, Eb i is not the binding energy for a quasi
one-dimensional system. Rather, the binding energy in a
quasi-one-dimensional system is Eb i 2?;. Th—e added
energy contribution —2?; is the kinetic energy associated
with confining the particle to a chain [See Eq. (11) when

R, =l]. Thus, energetic stability, relative to the three-
dimensional free state, requires

Here we contemplate whether the anisotropy of various
quasi-one-dimensional systems is sufficient to justify
treating them as one-dimensional systems with regards to
self-trapping. For this purpose it is useful to use Eqs. (37)
and (41) of Ref. 2 to express the binding energy of the
one-dimensional polaron in terms of its half-length, 1.,
and J~. We have

Eb i= (JI/3)(&/L )' .

Note that the one-dimensional bandwidth 8' is 4J~. The
condition for energetic stability of the one-dimensional
polaron with respect to the three-dimensional free carrier
is then

(Jl/3)(ull )') 4J, .

Thus, the ratio of the transverse to longitudinal transfer
integrals, Ji/J„must exceed 12(1./a) for the energetic
stability of the one-dimensional polaron. With polaron
sizes such that L/a is comparable to five, say, this re-

quires a 3-order-of-magnitude anisotropy of the transfer
integrals. Various electronic structure calculations pro-
vide anisotropy estimates considerably below this. i'

Thus, acceptance of these estimates would lead us to con-
clude that a large one-dimensional polaron formation will
not occur in the materials in question.

Thus, the condition for energetic stability, Eq. (16), is
stronger than that for dynamic stability, Eq. (15).

Hence, as?; is increased from zero the system will first
find it energetically favorable for the polaron to decom-
pose such that the electron becomes unbound and extends
over all three dimensions. The minimum corresponding
to the formation of the one-dimensional polaron is then
no longer an absolute minimum. With a further increase
of ?I the one-dimensional polaron ceases to be dynamical-
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