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Resistance fluctuations in random resistor networks above and below the percolation threshold
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We examine the critical behavior of resistance fluctuations in random resistor networks near a
percolation threshold. The "links-nodes-blobs" picture is used to discuss a conductor-insulator mix-
ture above the percolation threshold of the conducting bonds. A similar picture is used to discuss a
normal-conductor —superconductor mixture below the percolation threshold of the superconducting
bonds. Upper and lower bounds are found for the critical behavior in each case. An exact relation
is found between the two types of behavior in the case of two-dimensional networks.

I. INTRODUCTION

Several groups have measured flicker noise in a series of
metal-insulator composites of varying metal content. '

They found that the noise amplitude increases dramatical-
ly as the metal-insulator transition (i.e., the metallic per-
colation threshold) is approached from the conducting
side. This noise, whose power spectrum is proportional to
the square of the current flowing through the composite,
has been interpreted as resulting from fiuctuations in the
total resistance of the composite. ' These, in turn, result
from fluctuations in the resistances of the small metal
particles comprising the composite. When the fraction of
metal in the sample is far above its percolation threshold,
current flows through the system by a large number of
parallel paths, so that the independent fluctuations in dif-
ferent paths tend to cancel and decrease the fluctuations
in the total resistance. As the metal fraction approaches
the percolation threshold, however, the tenuous connec-
tivity of the conducting backbone restricts current flow to
a small number of paths. Cancellations therefore cannot
occur, and the noise amplitude increases. Attempts have
recently been made to treat this phenomenon theoretically
by means of a random-resistor-network model with fluc-
tuating elementary resistances.

In this article we consider the problem of fluctuating
resistances on two types of random networks near a per-
colation threshold p, : (a) a conductor-insulator network
at p &p, (here p is the fraction of conducting elements)
and (b) a normal-conductor —superconductor network at
p&p, (here p is the fraction of superconducting ele-
ments). Simple considerations based on variations of the
"links-nodes-blobs" model of the network are used to ob-
tain estimates of the critical behavior of the mean-square
macroscopic resistance fluctuations (5R ). We find that
the relative fiuctuations M/R diverge as p~p, in both
types of network, and we get exact bounds for the critical

exponents. For the case of two-dimensional (2D) net-
works, we use a duality transformation to obtain an exact
relationship between the critical behavior above and below

p, . A preliminary report of some of the results presented
here has appeared in an abstract.

In Sec. II we explain how the links-nodes-blobs picture
can be used to describe the resistance fluctuations of ran-
dom networks both above and below p, . In Sec. III we
use that picture to derive exact bounds on the critical
behavior of the fluctuations. In Sec. IV we show that in
2D systems the critical exponents that characterize this
behavior above and below p, are the same. In Appendix
A we discuss the critical behavior of the number of singly
disconnecting bond between two clusters of a random net-
work. In Appendix 8 we derive useful expressions for
derivatives of the conductance of a network with respect
to the elementary conductances.

II. LINKS-NODES-BLOBS PICTURE
FOR RESISTANCE FLUCTUATIONS

We start by reviewing the behavior of a uniform, d-
dimensional hypercubic network, of length I. on a side, in
which resistors are present for all bonds, i.e., p =1. The
resistors are assumed to be identical, each fluctuating in-
dependently around the value ro. If we call r;1 the value
of the resistor connecting nodes i and j of the network,
then

re =ro+6P'gj.

(5r J)=0,
5ro if (i,j ) =(k, l),
0 otherwise .

The network is placed between two parallel conducting
plates, and a voltage applied between the plates causes a
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current to flow through the network. This defines the
macroscopic resistance R. If 5ro&~ro, then those resis-

tors lying parallel to the electrodes carry very little
current and affect R only to second order in 5ro .We can
therefore ignore them and consider the current to be flow-

ing through a set of parallel linear resistor chains of
length I.. Because the resistance of' each chain r

&
is equal

to the sum of the individual resistances, the average and
variance of ri are given by

(r, ) =Lro,
(5r', ) =L 5ro,

(2a)

(2b)

since the fluctuations of different elementary resistances
are independent. The resistance of the entire network is
obtained by combining L ' such chains in parallel.
Since a simple sum of the individual chain conductances

g, = 1/ri gives the total conductance of the network
6 —= 1/R, the average and variance of 6 are given by

I d —1 Ld —2«)=L'-'(g, )= (3a)
(r, ) ro

Id —1 Id —4
(56')=L" '(5gi)= (5r', )= 4 5ro.

(r, )~ ro
(3b)

The magnitude of the relative fluctuations in the total
resistance of the network is thus

(5R') (56')
(4)(R)' (6)' L r'

The intuitive interpretation of this result is that the rela-
tive resistance fluctuations of all the unit cells of the net-
work add up randomly, and therefore the squared relative
fluctuation of the total resistance is inversely proportional
to the number of unit cells L ~.

We now consider case (a)—a random network in which
resistors are present with probability p. For p slightly
above p„we describe the network by the links-nodes-
blobs (LNB) picture, ' which models the tenuous connec-
tivity of the backbone by a hypercubic array of nodes
separated by the correlation length g. Adjacent nodes are
connected by links which are comprised of one-
dimensional segments, called singly connected bonds
(SCB's), in series with multiconnected "blobs." The link
connecting two adjacent nodes has a resistance R~ with
average (R~) and variance (5R&). The average resis-
tance of the network is customarily obtained by consider-
ing a hypercubic network of identical resistors (Rg) and
unit cell of size g,

'd —2

(R~),

and this relates the critical behavior of (R~) to that of g
and of the specific resistivity p, namely

(p —p, )
"

p=(R)L~ '~(p —p, ) ',

«, )

gx ——t —(d —2)v .

(Rg) &Liro, gg &1.
The LNB model looks like a regular array of identical

resistors R~, and by considering the fluctuations of these
resistors in this network we can, as in (4},obtain (5R ) in
terms of (5Rg),

(5R') g (5Rg ) 1

(R )' L (R, )' L.' (9)

where this serves to define the critical exponent ~ as in
Ref. 4. This result shows that, as long as L &(, the
squared relative fluctuation continues to be inversely pro-
portional to the volume of the system L". This depen-
dence is expected if the system is homogenous on large
enough scales (i.e., scales greater than g), and it has indeed
been observed experimentally over a wide range of
volumes. '3 The other factors in (9}give the critical depen-
dence of noise on composition near the percolation thresh-
old.

We would like to point out that, despite the inherently
intuitive and seemingly approximate nature of this pic-
ture, the critical exponent gz defined in (6}will rigorously
characterize the average resistance between a pair of
points separated by g, as long as it is true that g is the
only relevant length scale in the problem. Similarly, Eq.
(7) is an exact result and, consequently, the bounds that
we shall derive for a in Sec. III are also exact.

For the discussion of case (b), we will use a picture that
is similar to the LNB picture described above, though less
frequently invoked. ' This is again a hypercubic array of
nodes separated by the correlation length g, only this time
each node represents a superconducting cluster of linear
size g. Adjacent nodes are connected by a link of conduc-
tance Gg, which represents the thin membrane of normal
conductors separating the two adjacent superconducting
clusters.

At some places, where the membrane is as thin as possi-
ble, only one bond separates the two clusters. These bonds
are called the "singly disconnecting bonds" (SDB's). As
the fraction of superconducting bonds p approaches the
percolation threshold p, from below, the number Li of
SDB's diverges as'

(10)

i.e., in a fashion similar to the behavior of Li above p, .
A brief proof of this result is given in Appendix A.

Within this picture, we can discuss the total conduc-
tance G:—1/R of the normal-superconducting network
below p„as well as its fluctuations 56, in a way that is
largely parallel to the previous discussion of R and 5R of
the conductor-insulator network above p, . Thus, the
average of 6 is related to (6~) by

A well-known bound for gii results from the observation
that (R~) is bounded from below by the total resistance
of the SCB's whose nuinber is'

(p —p, ) '.
Thus we can write



398 %RIGHT, BERGMAN, AND KANTOR 33

d —2

(Gg&,

(Gg& ~(p, —p)

gG
——s +(d —2)v .

From the remarks on the role of the SDB's and from
(10), we obtain

(Gg&)L1, (G&1,
Tp

(13)

and by considering the fluctuations of the conductors G~
on a hypercubic network, we obtain

P

(56 & g ( g& 1

(6&' L (6,&'

where the last term serves to defme the critical exponent
x'. We again stress that, despite the intuitive nature of
this picture, the concept of G~ as the conductance be-
tween two points at a distance g is well defined, and the
relationship between gG and s is exact as long as g is the
only relevant length scale in the problem.

III. EXACT BOUNDS FOR THE CRITICAL
BEHAVIOR

We will now derive bounds for the critical behavior of
(5R & in a normal-empty network above p„and for that
of (562& in a normal-superconductor network below p, .
This will be done by considering the fluctuations of the
link resistances (5Rg & and link conductances (56~ & for
the two types of network, respectively. In view of the
parallelism in the discussion of these systems in the
preceding section, the derivations will proceed in parallel.

The critical behavior of (5R~& for p &p, and that of
(56~ & for p &p, is expected to be

(5Rg&~(p —p, ) '", p&p.

(s —s. )
"

s &p. .

Because (5R~ & of a link is equal to the sum of the aver-

age squared resistance fluctuations of the SCB's and the
blobs (they are connected in series), we can therefore ob-
tain a lower bound by retaining only the SCB contribu-
tion. Similarly, since (56~ & of a link is the sum of con-
tributions from the SDB's and from the rest of the normal
meinbrane (they are connected in parallel), we obtain a
lower bound by retaining only the contribution of the
SDB's. Thus we can write

(5R g & )L 1 5r o, $5R & 1 (16a)

(16b)

and the critical behavior of (6~& is related to that of g
and of the specific conductivity o = I/p,

V, —s»
"

a=(6&/L '~(p, —p) ',

where 5go 5—ro/ro is the variance of fluctuations of an
elementary conductance.

To obtain an upper bound, we note that for a given link
the link resistance R~ as a function of the elementary
resistances r &,r2, . . . , r„ in the link, and the link conduc-
tance G~ as a function of the elementary conductances

g, ,g2, . . . ,g„ in the link, have the following properties:

Mg BR( I;
R~(r„r2, . . . , r)= g r;, 0& = &1

r; r;

(17a)

BGg BGg Vi2

Gg(gl g2 gll ) y gi
gi

(17b)
Here V (or I}is the total voltage (current} across the link,
while V; (or I;) is the voltage (current) across the con-
ductor g; (resistor r;). The first equation in both lines
merely expresses the fact that R~(r„r2, . . . , r„) and

6~(gi,g2, . . . ,g„) are both homogeneous functions of or-
der I. The second equation in both lines represents well-
known results, which are also demonstrated in Appendix
B. For small, independent fluctuations of r; (or g;) we
can develop 5R~ (or 56~) in powers of 5r; (or 5g;}, then
square and average, to get

'2

(5R', & =g ' 5r,'
Bri all r, =ro

5ro aRg
r, (18a)

rO; rt all r, =ro
'2

(56'&=+ ' 5g',
hagi all g,. =1/ro

, (Rg&
=5ril

Pp

&5go ro g gi =5go ro(G~&,
hagi all g, = ilro

and hence

(18b)

05R & 0R

05G & 0G

(19a)

(19b)

From (16) and (19), with the help of (9) and (14), we final-
ly get

dv+1 —2)R &~&dv —gR,

d v+ 1 —2(G & z' & d v —gG,
(20)

which gives exact bounds on the noise amplitude in terms
of other measured quantities. The upper bound for v has
also been obtained by Rammal et al. , while the lower
bound for x has also been obtained by Tremblay and
Feng. '

In Table I we exhibit the bounds obtained from (20)
with the help of (6) and (12) and the known values of t,s, v
for d =2,3,6. Note that, whereas the two bounds on ~
coincide at d =6, this does not happen with the two
bounds on a'. This behavior of the bounds for i~ reflects
the fact that at d & 6 the contribution of the blobs to the
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TABLE I. Upper and lower bounds K„,K~ and &„,KI obtained for ~ and ~' from (20) with the help of (6) and (12). Also shown are

the input data used for v, s, t as well as the values of (R and gG.

4/3'
0.89+0.01'

) f

0.973+0.005'
2.2~0. 1'

6f

s/v

0.973%0.005
0.85+0.04'

0f

1.297+0.007
1.07+0.14

1

1.297+0.007
1.65+0.05

2

KI

1.07
1.53
2

1.37
1.60
2

KI

1.07
0.38
0

I
Kg

1.37
1.02
1

'Reference 17.
bReferences 20—22.
'Reference 18.
dReference 23.
'Reference 20.
~Reference 19.

total resistance above p, becomes negligible. A considera-
tion of the SCB's alone thus leads to a correct calculation
of both (R&) and (5R~), and the inequalities (8) and
(16a) become strict equalities. Also, since M~/Br;=1
when r; is a SCB, (18a) becomes a strict equality too. On
the other hand, a similar domination of the conductance
by the SDB's below p, does not occur at any dimensional-

ity other than d =1. Indeed, it is easy to see that we have
@=a'= I for d =1. This appears at first sight to agree
with the trend exhibited by the bounds on ~', which ap-
proach each other and decrease towards 1 for decreasing
d. However, the expressions for the two lower bounds in

(20) are incorrect at d = 1, since L i is then no longer pro-
portional to

~ p —p, ~

', but rather to
~ p —p, ~, while a

is undefined since p cannot exceed p, (which is equal to
I).

The bounds for ~ at d =2 can be compared with the re-
sults from simulations of random resistor networks, where
it was found that ~=1.12+0.02. This is within our
bounds, lying close to the lower bound. It would be in-
teresting to do similar simulations of random normal-
conductor —superconductor networks. It would also be in-
teresting to have careful experimental determinations of
the critical behavior of the noise amplitude both in
metal-insulator mixtures and in normal-superconducting
mixtures. Some experiments to measure x in 3D compos-
ites and in 2D percolation networks inscribed on
aluminized Mylar are currently in progress.

IV. EXACT RESULTS FOR 2D SYSTEMS
FROM DUALITY

Some years ago, Keller discovered an exact relation be-
tween the bulk effective conductivity of a 2D continuuin
composite made of two isotropic components and that of
the dual composite. This was later extended by Mendel-
son in various ways, ' including nonisotropic and non-
symmetric conductivity tensors and an arbitrary number
of components in the composite, and by Straley to apply
to discrete networks. The dual of a composite network
is one where each bond i is rotated by 90', together with
the current through it, I;, and the voltage across it, V;.
Moreover, the roles of I;, V; are interchanged, while the
conductance of each bond is inverted. The following rela-
tion is found to hold between the macroscopic conduc-
tances:

D D D
Gx (g i, . . . , g„)= 1/Gy(g&»g2». . . , gn )

=Ry(ri, ri, . . . , r„),

g; =1/g;=r;, i =1,2, . . . , n

(21)

where g;, i =1,2, . . . , n, are all the elementary conduc-
tances of the dual network, while 6, is the total conduc-
tance of that network in the x direction, and 6„—:1/Ry is
the total conductance of the original network in the y
direction. We note that this theorem refers specifically to
a network with the shape of a rectangle, and that the mac-
roscopic conductances G„,G„are defined by placing the
network between two conducting plates that are perpen-
dicular to the x,y direction, respectively.

Since (21) holds for any momentary configuration of
values of the fluctuating elementary conductances, we can
also write 5G„=5R„. We now specialize to a random
network with a square unit cell and with equal sides (i.e.,
the macroscopic rectangular shape also becomes a square),
where the resistance of any bond r; is either zero or else
has small, independent fluctuations about the nonzero
value ro. We then average the total resistance and its
squared fluctuations over the fluctuations of the nonzero
elementary resistances 5r;, and also over the different con-
figurations of the random network. Since the ensemble of
dual networks is now identical to the original ensemble,
we can clearly drop all the suffixes x,y,D to obtain

( R )(r; =ro or 0)= ( G )(g;= ro or 0),

(5Ri)((5r; ) =5ro)= (56 )((5g; ) =5ro) .
(22)

in 2D. (23)

The left-hand side in these equations refers to a normal-
superconducting network where the fraction p of r; =0
bonds is less than p, ( = —,

'
)—this must be the case if we

are to have (R )&0. The right-hand side in these equa-
tions refers to a conductor-insulator network where the
fraction 1 —p of go~0 bonds is greater than p, ( =

z ) by
the same amount —again this must be the case if we are to
have (G)&0. It is thus crucial that the percolation
thresholds of the two types of bonds in the network be the
same —this is a result of the property of self-duality that
the square network possesses. The first equality of (22)
leads to the well-known result s =t, while the second
equality proves a new exact result, namely
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APPENDIX A

Consider a network, in which each bond belongs to
class A with probability p&, and to class 8 with probabili-

ty p~. The tmo events are considered to be independent
and hence the probability of belonging to either class is

given by

P (~ +JJ) =P~ +Pa P~Pa-
The pair-connectedness function p,z(p} is defined as the
probability that the nodes i and j belong to the same clus-

ter, and depends on the occupation probability of the
bonds p. By considering the case p =p(A +B), we can
write

P;, (P~+Pa P~Pa =P—;,(P~)+gQ;, (p„,C)L,, (pa, C),
C

where Q;j(P„,C) is the probability that the network is in
configuration C, in which the sites i,j are disconnected,
when the fraction of occupied bonds is pz. The quantity
L;j(pa, C) is the probability that, starting from configura-
tion C and increasing the fraction of occupied bonds to
P (A +8), sites i and j will become connected. For small

p~, we can easily calculate I.,J to leading order in pz,

L;, (Pa, C) =X; (C)Pa+0(Pa),
where A.;j(C) is the number of singly disconnecting bonds
between i and j in config.uration C; i.e., this is the number
of unoccupied bonds in C such that any one of them, if
occupied, will connect i and j. Taking p&~0 we nom
find

dp;, (p)
(1—P) „" =gQ;, (P, C)X;J(C)—= (X;J(P)) .

dp

Both the logic and the results of this argument are simi-
lar to those made by Coniglio' for the average number
()i.,z(P) ) of singly connected bonds between i and j, name-

ly

APPENDIX B

The conductance G ( Ig;j j ) between two points of a net-
work of conductors g;j can be defined by calculating the
total power dissipated in two mays and equating the two
results,

1 2 1
—,GV =g —,gij V~j .

{ij)

Here the sum is over all the elementary conducting bonds,
V is the voltage applied across the network, and
V'j V' Vj is the voltage that appears across g;J . By al-
lowing gij to vary, we deduce from this the first variation
of G,

2 5GV g ( 2 5gij Vij +gij Vij 5 Vij )

(ij)

The terms involving 5V; vanish as a result of Kirchoff's
equation g. g; ( V; —V ) =0:

yg;J ViJ5V; = —,
' y yg;J(v; —VJ)(5V; —5vj)

=g 5 v, 'g gj( v, —v,. ) =0 .

Thus we get the following result for the partial derivative
of G(Igjj),

aG0&
t)gij

2

&1,
V2

since clearly
~ Vj

~

is always less than
~

V ~. It also fol-
lows that the total resistance of the network
R ( I r,z j ) = 1/6, as a function of the individual resistances

rj =—1/gj, has derivatives that are given by

M gij t)G ij
2 12

0& &1.
Br,

&
G t)g,j

Here I is the total current flowing through the network,
while I;J is the current through r;J, and they clearly satis-

=(J(,;J(P) & .
dp

The number of SDB's between adjacent superconducting
clusters for p &~„Li, is now obtained by setting

~

i —j ~

=g in (i(,;j(P}),just as the number of SCB s in a
link L i was obtained for p &p, . ' In this way we obtain'

L =(X&(p)) (p, —p)
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