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Carrier transport through grain boundaries in semiconductors
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The transport of majority carriers through an electrically active grain boundary is treated for the

situation where deep traps are an essential feature of the bulk semiconductor. Electrons trapped at
the interface are screened by the ionized defect states within the depletion regions and thereby a

double Schottky potential barrier is formed. The leakage and nonlinearity of the steady-state
current across such a grain boundary depend strongly on the distribution of interface states and on

the density of the available screening charge. The ac small-signal conductance and capacitance are
governed by both the finite response time of the interface and the deep bulk traps. From measure-

ments of the static and dynamic quantities it is then possible to determine the microscopic parame-

ters of the grain boundary.

I. INTRODUCTION

The physics of grain boundaries in polycrystalline semi-
conductors has attracted increasing interest over the past
few years. ' Progress has been made in understanding
some of the fundamental aspects of grain boundaries such
as their atomic and electronic'3 structure or the grain-
boundary total energy. An important field of interest is
the transport properties of these materials, which are usu-

ally dominated by the formation of potential barriers at
the grain boundaries. Many technical applications' rely
on such grain-boundary phenomena (ZnO varistors,
boundary-layer capacitors) or at least have to deal with
them (polycrystalline Si devices, solar cells). Any im-
provement of such devices is therefore based on a
thorough knowledge of the underlying physical phenome-
na.

The electrical properties of grain boundaries have thus
been extensively studied experimentally as well as theoreti-
cally. ' On the experimental side the admittance spec-

troscopy ' '" ' has proved to be a very useful tool for
the study of the microscopic grain-boundary parameters.
These measurements can provide information on the den-
sity of interface states, their trapping cross section, and
the relaxation time. The corresponding quantities can as
well be determined for the donor and acceptor states in
the depletion regions adjacent to the interface. Equivalent
information can be gained by the well-known technique of
deep-level transient spectroscopy'4 (DI.TS) as the underly-
ing physics is basically the same.

In this paper we give a self-consistent description of the
static and dynamic properties of carrier transport over a
double Schottky barrier forming at a grain boundary. A
finite density of states within the gap is responsible for the
charging of the interface. For the first time the screening
charge for the interface is assumed to include an arbitrary
number of deep bulk donor (acceptor) levels besides the
shallow defects. Two extreme models are discussed for
the relaxation properties of the grain boundary. The first
considers strongly localized interface traps such that the
quasiequilibrium is established only with the bulk. The

second treats perfect relaxation within the interface itself.
The physical situation, in general, then will be somewhere
between these two limits.

Models for the adinittance of grain boundaries have
been developed by Seager and Pike ' and by Werner;"
however, the role of the deep bulk traps is not included in
their analysis. On the other hand, several model calcula-
tions for p njun-ctions or Schottky contacts in the pres-
ence of deep volume traps have been reported in the litera-
ture.

Here we will show that deep traps can have a strong ef-
fect on the static and dynamic properties of carrier trans-
port through a grain boundary. Their presence contri-
butes to the screening of the interface charge and thereby
to a destabilization of the static barrier. Dynamically, the
deep traps lead to a dispersion in the small-signal admit-
tance even at zero bias. Such a dispersion, which can
change the zero-bias conductance by several orders of
magnitude, has been found in polycrystalline ZnO (varis-
tors) 5, 18, 19

The modifications of the carrier transport due to the in-
terface states can be well separated from those generated
by the deep traps. Whereas the former have a strong in-
fiuence on the small-signal capacitance at low bias, the
latter are best studied by analyzing the small-signal con-
ductance. The comparison of experiments with the
present model calculations then allows for the determina-
tion of the microscopic parameters of the interface and
the deep trap states.

The outline of the paper is as follows. In Sec. II we
describe the steady-state properties of a grain-boundary
barrier in the presence of an arbitrary nuinber of deep
bulk traps. The time-dependent properties of the carrier
transport without the influence of deep levels are briefiy
reviewed in Sec. III, where we also present a short discus-
sion of the interface relaxation properties. The full
dynamic behavior including deep trap effects is then
developed in Sec. IV. In Sec. V we summarize our results.

The theory presented in this paper describes the trans-
port of majority carriers through a grain boundary. In the
high-field regime new phenomena are observed which can
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be attributed to minority carrier generation by hot elec-

trons in the depletion region. ' First there is a strong des-
tabilization of the barrier at large bias, leading to an elec-
trical breakdown with nonlinearity coefficients
a=d(logj)/d(log V) as large as a-200. A second effect
shows up in the small-signal capacitance which becomes
negative at large bias. Most directly the presence of the
minority carriers is observed in recombination lumines-
cence experiments. ' ' A model for their inclusion in the
description of the transport properties has recently been
proposed by Pike, '9 but a detailed analysis has not been
published. The full model treating deep trap effects and
minority carriers is the topic of a second publication on
carrier transport through grain boundaries. The compar-
ison of these theoretical calculations with experiments on
polycrystalline ZnO will then be the final paper in this
series.

II. STEADY STATE
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A grain boundary in a semiconductor becomes electri-
cally active as a result of charge trapping by gap states lo-
calized between two adjacent grains. Such interface states
are possibly created by dislocations introduced by the
crystallographic mismatch between the adjacents grains,
thereby leading to dangling bonds or other interfacial de-
fects. A second possible origin of these states are dopant
or impurity atoms trapped at the interface and acting as
donor or acceptor levels. The diffusion of these atoms
into the bulk of the grains is strongly suppressed in this
case, e.g., by size misfit. The width of such an interfacial
region typically amounts to —10 A.2z The idealization of
an infinitely thin interface in our model is therefore well

justified.
The electric field generated by the charged interface

gives rise to a band bending in the adjacent grains. The
depletion of majority carriers leads to the buildup of a
screening charge due to ionized shallow defects. Addi-
tional screening charge is provided by deep bulk gap
states. These charged centers may be intrinsic (defects) or
are introduced by controlled doping.

The geometry of the energy bands around a plane
charged interface is easily calculated in the Schottky ap-
proximation. The Poisson equation

d
@( )

p(x)
dx &0&

for the potential 4(x) has to be solved for a charge distri-
bution p(x) of the form (see Fig. 1)

p(x) =e g N„[6(x+x)„)—6(x —x,„))—Q;5(x) .

The reduction to a one-dimensional problem is due to the
translational invariance of the plane interface. The inter-
face charge is denoted by Q;, the trap densities by N„, the
dielectric constant is e, eo is the permittivity of the vacu-
um, and e the unit charge. In (1) we adopt the convention
e =!e ! such that the potential energy of an electron is
simply e4(x). Finally, 6(x) and 5(x) are the Heaviside
step function and the Dirac 5 function, respectively.

Here me restrict the discussion to donor states in an n-
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FIG. l. Energy-band diagram and charge distribution for a
double Schottky barrier forming at a grain boundary. For the
sake of clarity only one deep bulk trap level is included.

type semiconductor. The extension to deep acceptor levels
or p-type material is straightforward. '" Xo is the densi-

ty of the shallow donor which is often the dominating
trap and which we assume to be ionized everywhere.

The solution of Eq. (1), subject to the boundary condi-
tions

Yv 2(x +x)y), —x))) (x (—x)~+i
v=O

4(x) = '

Vv
(x xrv) —V~ xrp~i—(x (xr p .

v=O

For p=n we define x)„+i——x, „+i——0. Here Vis the bias
apphed across the grain boundary (see Fig. 1) and

eX„r.=
~=o

The positions xl„and x,„are determined by the condi-
tions

e(0-)=e(0+)=C„, (3)

@'(0 ) —4'(0+)=Q;/roe, (4)

@(—~ ) =4( —x)o) =0 and 4( ao ) =4(x„o)= —V,

is given by
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xi„=xio (b„)'—i, v) 1
' 1/2

Xq~ =XI~+ V, v&0

with the b„defined recursively by

v-1
(b„)' =a„ i+ no ' a„gn„"—'a„'

4

1/2

and the starting value

p 2
bi no a——i =

~'Vo

Gap

The constants n„" are the relative weights for the deep
traps,

Despite this complicated result for the boundaries of
the deep trap screening charges, xt„and x„ the result for
the barrier height 4b turns out to be very simple (see the
Appendix)

4b ———, V, 1 — + g y„e„', V& V, .4 C y V V& — C (6)

When a bias V is applied to the junction, the barrier 4b
is lowered by a reduction of the first term in Eq. (6). The
second term in (6) initially is voltage independent. How-
ever, as V is increased, an ionized deep trap, say v=A, ,
disappears below the quasi-Fermi-level and is neutralized
completely as soon as ebb ~ e~.

As

—g r.~'. & —g r.ei,.=~i.
v=1 ~ @=1

(the traps v) k have already disappeared) it follows froin
(6) that the condition e@b(V) &ei for the neutralization
of the trap A, is reached at a bias V & V, . Therefore the
second term in (6) also disappears as V—+V, and hence
+b~Oas V~V, .

The remaining free paraineter in the geometry of the
barrier is the voltage-dependent interface charge Q;. This

ee( —x,„)=ee(x,„)+ev=e„—e»=e'„, v) 1.
The new symbols introduced above are 4b for the barrier
height and e e» for the positions of the deep traps and the
bulk Fermi level relative to the conduction band (Fig. 1).

The above 2n + 3 conditions have to be solv& for the
2(n+ 1) positions xt„and x„v=O, . . . , n, and the bar
rier height 4b. This calculation is rather tedious and the
derivation is given in the Appendix. The result is

XIp = 1 — +a„, V, =

is determined by the interface density of states (DOS)
N~(E) which is fixed with respect to the valence band.
The electron traps are filled up to the (quasi-) Fermi level

(; of the interface,

Q;=e f dEN;(E)f;(E), (7)

with

1

(E »)—jk T
» 8

The integration in Eq. (7) proceeds from the Fermi level

g of the neutral interface. 6'~ ' ' This allows for the filling
of some traps in the lower part of the band gap without
generating any net charge at the interface.

For zero-bias conditions the Fermi level is constant
throughout the bicrystal, i.e., g;(V=O)=g, whereas for
V) 0 the quasi-Fermi-level at the interface is shifted with
respect to the bulk Fermi level2 "'

2
gj ks T lil yak T

1+e '

The above shift is determined by the detailed balance con-
dition for the interface, i.e., the number of electrons
trapped and emitted by the interface have to be equal.

As mentioned above, the interface density of states
N;(E) is fixed with respect to the valence band at x=0.
Therefore N;(E) shifts with respect to g; as the barrier
height 4b is changed. This results in a dependence of the
interface charge Q; on the barrier height 4b [Eq. (7)].
Thus as we apply a bias V to the junction, the barrier is
reduced as is clear from Eq. (6); on the other hand, the
reduction is partly compensated by an increase of the
trapped charge Q; as long as N, (g;) is finite. Hence, with
increasing bias more charge is filled into the interface and
the barrier is stabilized. Only when N~(g; )~0, i.e., all in-
terface states are filled, can the barrier decay rapidly as
given by (6) for a constant Q;. The (local) stabilization of
4b is stronger for a larger N~(g;( V) ).

This is illustrated in Fig. 2 where the bias dependence
of the barrier height 4b and the charge Q; (calculated
self-consistently) are shown. Examples are given for a
single interface level [N;(E)=¹5(E E~)], a Gauss—ian
density of states (centered at E; with variance h& and in-
tegrated density N;), and a rectangular shape (centered at
E, with half width && and total density N, ). The numer-
ical values for the parameters are listed in Table I. No
traps are taken into account yet.

In all cases there is an obvious collapse of the barrier
height as soon as all interface states are filled. The barrier
is strongly pinned for the sharply peaked DOS. The in-
fluence of the deep trap states on the barrier height 4b is
illustrated in Fig. 3. An increase in the deep trap density
always decreases the first term in Eq. (6) but increases the
second. However, it is easy to show that the net effect is a
decrease in the barrier height because

8+b
(ei —e@b)&0

BNg e()ey

The last inequality is the ionization condition for the trap
A, as discussed above. Figure 3 shows that the barrier



33 CARRIER TRANSPORT THROUGH GRAIN BOUNDARIES IN. . .

—16

1.0 W—

0 4 6
V (volts i GB)

10

4 6
V I. volts / GB )

FIG. 2. Barrier height 4s and interface charge Q; versus ap-
plied bias V. We compare the stability of Cq for a single level, a
Gaussian, and a rectangular DOS for the interface. The values
for the parameters and the zero-bias mterface charge Q;(0) are
listed in Table I. No bulk traps are included here. GB denotes
grain boundary.

FIG. 3. Barrier height 4b(V) and interface charge Q;(V) for
a Gaussian DOS for the interface, The situation with no traps
( ) is compared to the cases of a moderate [ ———,case
(a) in Table I] and a large [———,case (b) in Table I] density
of deep bulk defects. Also shown is the relationship between the
total bias drop across the grain V~,„„and the grain-boundary
bias V( ~ ~ ). There is only a minor dependence of V~ „on
the trap density and the interface DOS.

height 4s( V) is strongly affected by the deep traps: (i) the
interface charge Q;(0) is larger (Table I); (ii) the interface
is filled faster and thus the barrier decays earlier, and (iii)
the neutralization of a deep trap at ebb ei leads to a lo-
cal stabilization.

At large applied bias where 4s is small, the finite con-
ductivity of the grains has to be taken into account. The
voltage drop across a single grain is then divided up into a
bulk part and a contribution from the grain boundary.
The equality of the current following through the bulk
and over the barrier into the next grain determines the ra
tio of the two voltages. We show the result of such a
(self-consistent) calculation in Fig. 3 where the total bias

across a single grain is plotted versus the bias drop at the
grain boundary. There is a sharp separation between the
barrier-dominated conductivity at low bias and the bulk-
dominated part at large bias.

We conclude this section with a discussion of the car-
rier transport through the grain boundary within the ther-
mionic emission model.

The electron current emitted over the barrier 4b into
the positively biased grain is

A T2 ~~@~+~~
A Te 7

with A' the Richardson constant, T the temperature, and

TABLE I. List of microscopic parameters for the grain boundaries described in Figs, 2—9. (The temperature is 400 K, the energy

gap is 3.2 eV, the dielectric constant is 9, the effective mass is 0.25, the grain size is 15 pm, the grain conductivity is 10.8 Scm, the

Richardson constant is 30 A cm K, and the Fermi level e~ equals 0.067 eV.)

Interface E (eV) m (ev) X; (cm ~) c (cm2) Q((0) (10"e)

2.0 13 —13

2.0 «013 10—13 ease (a): 7.09 case (b): 7.57

2.0 0.5 «O" 10—13

Bulk traps

Shallow
Deep
Deep
Deep

e„(eV)

0.02
0.2
0.4
0.6

X„(cm )

case (a)

10"
sx 10"

10'
2x10"

X„(cm }
ease (b}

«018

«O"

2x 10'
4x10"

c„(cm )

10 &4

10—14

«O-"
«O-"

0
7.36x «O-"
2.44x 10-'
8.07 x 10-'

co, (s ')

1.36x10'
4.10x10'
1.24x 104

'E& is measured with respect to the valence-band edge at x=0.
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ks the Boltzmann constant. A second current, suppressed
by the factor exp( eV—/kttT}, is flowing in the opposite
direction. These are the two main currents at the junc-
tion. A fraction of these currents is trapped and reemit-
ted by the interface states. The trapping is asymmetric
for V&0,

j,=j,t+j„=j(1+e ) J dEc(E)N;(E)[1—f;(E)],

with
~*

~ ~ ~ + ~

II'

—(e+b+ e~)/k~ TJ=A Te
whereas the emitted current is distributed symmetrically,

-'l0
-2

l l l

0
«og Vg,» C. volts / Grain )

The capture cross section c(E) and the charge emission
rate b (E}are approximated by constants and can be relat-
ed to one another by the detailed balance conditionis"'
(b =2Ac, A =A 'T ). The energy Eb corresponds to the
top of the barrier (see Fig. 1).

The two currents j, and j,m are responsible for the up-
dating of the interface charge Q; whenever the external
bias V is changed. Therefore they control the main
currents flowing over the barrier. Their importance will
become clearer when the time-dependent properties are
discussed in the next section.

The external dc current flowing through the grain
boundary finally is the weighted sum of the above
currents, which can be evaluated on either side of the in-
terface. From now on we choose the left side in our dis-
cussion. We then find

—eV/k~ T
Jd =Jtb=J(1 —e }—zJ +J~ (10)

with the total capture probability

c=c J dEN~(E}[1 f;(E)] . — (12)

The factor 1 —c/2 is due to the asymmetry in capture and
emission.

The external current jd, contains the exponential of the
barrier height ebb in units of ksT. Typical values of
ebb are on the scale of 1 eV. Therefore the current
strongly depends on every detail of the function @b(V).
This is illustrated in Fig. 4 where we show the large varia-
tions in dc current as the bias V is changed. For cornpar-
ison different densities are considered for the interface
states (single level, Gaussian, broad rectangular) and for
the deep traps. At low bias (eV&&ksT) the j-Vcharac-
teristic is Ohmic as Cb~ is constant on this energy scale.
At higher voltages the factor 1 —exp( —eV/ksT) in Eq.
(10) tends towards a saturation. This competes with the
exponential rise of the current when the barrier N~ de-
cays. For a stable barrier sub-OhmIc behavior can be seen
in this region. As the interface is filled the barrier col-
lapses and the current rises by several orders of magni-
tude. This is called the breakdown regime. Finally, at
very large bias, a second Ohmic regime is entered when

FIG, 4. dc current jd, versus applied bias V~„;„. A single-

level DOS for the interface {no deep traps) leads to the highest
nonlinearity with a pronounced saturation regime. This is com-

pared to a Gaussian ( ———) and a rectangular DOS without

deep traps and the same Gaussian DOS when deep bulk defects[,case (a) in Table I] are present.

d[og j
d log V

20

0-
0 8 'I2

Vg„. ,„ I, volts / Grain )

18

FIG. 5. Nonlinearity parameter a versus applied total bias

V~, for the grain-boundary models of Fig. 4.

the current limiting process is given by the finite conduc-
tivity of the grains (see also Fig. 3).

Usually the breakdown behavior is quantified by the
nonlinearity coefficient a =d (logj)/d (log V), which is
shown in Fig. 5 for the data of Fig. 4. High values for a
are obtained when the interface is rapidly filled at a large
bias V. For reasonable parameters, a can be as high as
-40. The dips in a(V), for the case including deep bulk
traps, indicate the loca) stabilization of the barrier when
the screening charge is reduced with the disappearance of
a deep trap level (see also Fig. 3).

The lowering of the deep trap density leads to a reduc-
tion in leakage and to a larger nonlinearity a as is evident
from Figs. 4 and 5.

The thermionic emission model for the currents applies
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sufficiently well to a large variety of materials, including
polycrystalline Si, '" GaAs, ' and ZnO. ' For highly
doped samples and at low temperatures, however,
phonon-assisted tunneling ' cannot be neglected.

The constants cp c——N, (1 f—;p) and jp ——A exP[ —(e4bp
+e~)/kzT] are the steady-state parts of the capture prob-
ability c and the current j, respectively.

The finite interface current j; limits the rate of change
of the charge Q;. Integrating the equation of continuity,

III. TIME-DEPENDENT PROPERTIES
%HTHOUT DEEP SULK TRAPS

In this section we calculate the time-dependent proper-
ties of carrier transport through a grain boundary in
linear response. The effects from deep bulk traps are not
yet taken into account. Three models for the interface are
discussed: The simplest case of a single interface level is
examined in Sec. IIIA. In Secs. III 8 and III C the modi-
fications due to a continuous density of states are dis-
cussed. The case of strongly localized states is presented
in Sec. III 8, whereas Sec. III C deals with the case of per-
fect relaxation within the interface itself. No such dif-
ferentiation has to be made for the single level.

A. Single interface level

When a time-dependent bias

d =i coQ, e'"',
dt

leads to the result

Q;=C;(co) @b— V
evo~kar1+e

with the interface capacitance C;(co) given by

e c()
C(co)= f p

Ckg T 1 + l Q)7i

The relaxation time ~;,

ef;p 1 (e+bO+st)/k' TTi- e 7
Ae e oja ip i

1+e

(14)

(15)

V(t)= Vp+ Ve'"', ev(&keT (13)

is applied across the grain boundary the interface charge
Q; as well as the screening charge from the ionized shal-
low donor become time dependent. One consequence of
the resulting change in the barrier geometry is a modula-
tion of the main currents emitted over the barrier. This
modulation is delayed in time with respect to the applied
bias V(t) since any change in interface charge Q; involves
trapping (j, ) and emission (j, ) processes which are not
instantaneous. The exponential amplification of the vari-
ation of the barrier 4b [and by Eq. (7) of Q;] in the exter-
nal current can then be used to study the dynamics of the
interface.

A second effect is caused by the time dependence of the
shallow donor screening charge which leads to a displace-
ment current. This is again shifted in phase with respect
to V(t) and gives a second contribution to the small-
signal capacitance of the grain boundary.

We first study the dynamics of the interface charge Q;.
The net current flowing into the interface is given by the
difference

CI C,
(17)

where we have introduced the capacitance Ci ——epe/xipp
( C, =epe/x„pp) of the left- (right-) hand-side depletion re-
gion. All charge variations, Q;, Qip, and Q„p, can now be
expressed as a function of ib and V, and with the neu-
trality condition

Q;(t) =Qlp(t)+Q„p(t),

depends exponentially on the barrier height 4~0 and
changes by several orders of magnitude as the dc bias Vp
is increased.

Given the modulation of the external bias V and the in-
terface charge Q;, we can calculate the time dependence of
the barrier height 4b This .has to be done self-
consistently as 4b shows up in Eq. (14}for Q;. We relate
the barrier modulation 4b to the variation in screening
charge Qip eNpxip a——nd Q, p

——eNpx„p by expansion of Eq.
(2),

l CiPt

Ji =Jr —Jem =J~e

Expanding Eqs. (8) and (9), we find for the linear response

j; the expression

we can relate these two quantities to one another:

C, +C~(co)/(1+e )

C, +CI+C;(co)
(18)

e~o —ev, yk~Ti; =i p k T
(1+e

8

V
,vga T-

1+e' '
k~T f,

f p(1 —fop)

where we have used similar expressions as Eq. (13) for
the time dependence of the bamer height
@b 4b p 4b exp(isa—t } an—d the interface occupation
f& f&p+f& exp(i+)r). 2s The single interface level is
described by the density of states N~(E)=&;&(E —E;).

The time dependence of the barrier geometry is now com-
pletely determined.

The effects of the variations of the barrier can be
detected in the external current. The dc part of this
current is still well described by Eq. (11) with j and c sub-
stituted by their steady-state expressions jo and co.

The ac small-signal current is made up of two contribu-
tions, a part flowing over the barrier and a displacement
current i'= —Qip due to the time dependence of the
screening charge Q&p. The ouer barrier part is f-ound by
expansion of Eq. (10):
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+o;(co)
V

e V0/k~ T1+e
Here 0'p is the zero-bias dc conductance

—e V0/k~ T — —ev0/k~ T-
Jm=~o[(1 ~ )C's+e V] (quasi)equilibrium only by exchange with the bulk. No

equilibration among the interface states is allowed. Thus
each level acts independently of all others. Then we sim-
ply have to integrate the contributions from all single lev-
els with their weight N;(E). The total interface charge
variation Q; becomes

e co
oo=jok TB

and tr&(cp) is a correction due to the trapping and emission
by the interface,

c —evo/ATrc(ta))=jp C;(Pi)[(1+itor()—e (1 ico—rt )) .

The displacement current j~ —Q—t—p is given by Eq. (17),

f;o«)[1—fio«) l
Q; =e2 dE N~(E)

B

1
X

1+ioir~f; p(E)

i
-=e'ltd, (gio) Jp fo 1+ivor;;p

V
eV0/k& T0 8

V
ev0/kg T1+8

'~

The ac small-signal current finally is

=Ct(co)
V

ev0/k~T1+e

ja~=o'Ve' '

with the admittance o,
—eV0/kg To=[(1—e )crp+0g(pi }+iN'ct]

C, +C;(to)/(1+e '
)

C, +Ct+C;(pi)

.V,usT-+ e 0'o—
0 8

(20)

with the new interface capacitance C,"(tp) given by

ln(1+i cur,' )
C (p)) =e~N~(g;p)

lCOVi

Here we assume that the DOS E;(E) is a smoothly vary-
ing function on the scale ktt T.

Note that the occupation statistics of the interface devi-
ates from a Fermi distribution in this model as the quasi-
Fermi-level g; is energy dependent,

T

This is our main result of this section.
The zero bias limit o-f the admittance (20) is especially

simple since (18) reduces to 4b/V=-, '. The conductance
G, defined as the real part of o, becomes

G(co, Vo ——0)=Reer=op .

The capacitance C, which is proportional to the imagi-
nary part of o, is given by the high-frequency capacitance
CHF alone,

1
C(co, Vp ——0)=—Imo'=

63 &Ioo+&roo
CHF '

B. Continuous DOS—localized states

We assume that the continuous DOS is made up of a
homogeneous spatial distribution of single levels with dif-
ferent binding energies E;. The matrix element for hop-
ping between these states is taken to be zero (localized
states) such that the interface is in thermal

Thus the zero-bias limit of the admittance does not show
any dispersion within this restricted model, which does
not contain the deep bulk traps. This result is acceptable
only for those situations where deep trap effects are of
minor importance. " However, certain polycrystalline ma-
terials as, e.g., ZnO, can show a zero-bias dispersion in 6
ranging over several orders of magnitude. ' Therefore it
is imperative to take deep trap effects into account in a
description of these materials. For e Vo »kii T the result
(20) also simplifies considerably.

g;(E)= e4s-
1+itor; E

eV
ev0/k~ T1+e

We consider the case where the occupation statistics of
the interface is always described by a Fermi function, i.e.,
the interface is in a (quasi)equilibrium at any moment.
Such a thermal equilibrium is reachtzl if the correspond-
ing relaxation time is much smaller than 1/v, where v is
the frequency of the applied field. The electrons are free
to move between the different interface states in this
model.

The dynamics for the interface charge Q; is again given
by an expression similar to Eq. (14), but with the capaci-
tance now changed to'

eco 1
C (co)=

2ckB T 1 + g Qj+.

with the relaxation time

e 1 (eeb, +e~)/k~ T
e—e V0/k~ T1+e

Obviously we obtain these new expressions for C;(to) and
r,' out of the single-level formulas [Eqs. (15) and (16)] by
substituting the value at the Fermi level f;o(g;p) = —,

' for
the occupation probability f;o(E;). Similarly 7 is now
defined as 2r,' and by taking the integrated trapping prob-

The small-signal admittance o is given by Eq. (20) with
the new interface capacitance C;(co) and the integrated
trapping probability co, Eq. (12).

C. Continuous DOS—relaxed interface
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ability co, all the necessary modifications to the single-

level results are done.
The above discussion shows that our expression for the

admittance a, Eq. (20), is of a very general form, as it de-

scribes equally well the physical situation for different in-

terface models. The only nontrivial changes are restricted
to the interface capacitance.

The same is true for different models of the depletion
region as described in Sec. IV (inclusion of deep trap ef-
fects): There, the additional modifications are restricted
to the capacitances Ci and C, of the depletion regions.

We close this section with an illustration of the differ-
ences in the small-signal response of the three interface
models. In Figs. 6 and 7 we show the capacitance C as a
function of dc bias Vo and frequency co. The case of a
single interface level is compared to a Gaussian density of
states using the localized model in one case and the re-
laxed model in the other.

The capacitance C( Vo), shown in Fig. 6, changes from
the high-frequency value CHF at zero bias to a maximum
which is about 1 order of magnitude larger. This increase
is due to the resonant response of the interface: At higher
bias Vo, the decaying barrier height 4~ reduces the relax-
ation time ~; [see Eq. (16)]. As soon as r0~; ( Vo) ( 1 the in-
terface can follow the apphed ac signal and the delayed
filling and emptying of its states increases the capaci-
tance. Finally, when the interface is filled, the states do
not empty any more and the capacitance decays again to
its high-frequency value. If the density of available states
remains finite the decay of the capacitance to its high-
frequency limit at high dc bias Vo is inhibited.

The two different interface models for the continuous
density of states give only minor differences in the shape
of the resonance in C( Vo). More drastic effects are found
when the interface DOS is changed as, e.g., by concentrat-
ing this DOS symmetrically in a single level. The result-

ing modifications of the barrier 4»( Vo) (see Fig. 2) lead to
a strong reduction in the capacitance resonance at the
chosen frequency.

Vp=

0
10 ~ 10 &04

FIG. 7. Capacitance C versus frequency ~ for dc bias Vo ——1

and 4 V. The same interface models are used as in Fig. 6:
, single level; ———,localized; ———., relaxed,

The details of the frequency dependence are illustrated
in Fig. 7 for two values of bias Vo. A general feature is
the decay of the large low-frequency capacitance (co~; ( 1)
to the high-frequency value CHF when the interface states
can no longer follow the ac signal. The decay is broader
for the model with localized interface states. This is a
consequence of the integration over the interface relaxa-
tion times which leads to a logarithmic behavior for
C;(a)) [Eq. (21)].

Next we discuss the situation for small frequencies
(eVoppksT). A closer examination of Eq. (20) shows
that the term proportional to ao is responsible for the
low-frequency capacitance, while the part due to the dis-
placement current ( ~i coCi) determines the high-
frequency behavior. The low-frequency capacitance is
then proportional to the ratio 4s /V, and therefore

C„C;~;C-00 N~O
(C, +Ci+Ci)

g
I

/~
////

//

0
0

I a

~o I. VOI&s / GH

FIG. 6. Capacitance C versus applied dc bias Vo for a single
level and a Gaussian DOS for the interface. The localized states
( ———,Sec. III 8) are compared to the relaxing model
( —.—.—., Sec. III C). No bulk traps are considered.

where C; is the dc limit of the interface capacitance. For
intermediate dc bias Yo (interface states not completely
filled), the interface capacitance is dominant ( C„Ci
&&C;); therefore, C-1/C;. The physical meaning of this
situation is the following: The oscillations in screening
charge (-C, V) and interface charge ( C;4&) are equal by
charge neutrality and, as the modulated over-barrier
current dominates the net capacitance C at low frequen-
cies, we obtain a large capacitance vrhenever N~ is large.
This leads to the unexpected result that the capacitance C
is large when the interface capacitance C; is small.

As the interface states are filled, C; decreases and the
capacitances of the depletion regions, CI and C„become
dominant. The grain-boundary capacitance then decays
to the high-frequency value CH„.

Figure 7 shows again that the different interface inodels
introduce only small changes in the response of the grain



3960 G. BLATTER AND F. GREUTER 33

boundary. A major change in the capacitance is found for
the limit of a single interface level. There a modified bar-
rier geometry strongly affects the relaxation time r;, and
hence the resonances are shifted to lower frequencies.

IV. TIME-DEPENDENT PROPERTIES
INCLUDING DEEP BULK TRAPS

The inclusion of deep bulk traps introduces a new type
of screening charge into our model. This screening charge
differs from that due to the ionized shallow donors be-
cause of the finite response time of the deep states.
Therefore new resonance effects can be expected in the
small-signal response of the grain boundary.

We start again with the determination of the time-
dependent geometry of the bamer. The result is then used
to obtain the expression for the over-barrier current which
now contains relaxation effects from the delayed response
of the interface and the deep bulk traps. The total exter-
nal current finally will pick up an additional contribution
from the displacement currents generated by each deep
trap.

For the study of the dynamics of the deep bulk traps we
define the screening charges,

Ql, ——f Q„(x)dx and Q,„=f Q„(x)dx,

with the screening charge densities Q„(x) given by

Q„(x}=eN„[1—f„(x)], v=1, . . . , n .

The occupation number for the trap v depends on position
x and is given by the Fermi function

1

[E„[x)—g'{x)]/k& Tf (x}=
1+g„e

( )
e f ( )

[Eco~) glkaT

Ac.

We concentrate here on the traps to the left of the grain
boundary. The calculation for the traps to the right
proceeds along the same lines. However, the potential
variation 4(x) has to be substituted by 4(x)+ V since the
relevant quantity is the variation of E,(x) with respect to
the bulk Fermi level.

The product f~(x)[l f~(—x)]lkiIT in Eq. (23) is a
sharply peaked function at E~(x)=g(x) (proportional to
the derivative of the Fermi function}. In general, we can
approximate this expression by a 5 function and then
compare the result to the Schottky approximation for
Ql„(x),

Ql (x }=QIP « +xlvo»

eN„ 1
Ql.= 4( —«I~) .

o( «I~—)
I

I +ito~„( «Iu—)

The potential variation 4( —xi~) can be expressed in
terms of the screening charge amplitudes QI& with p g v,

v—],

+lp, o +1' lp,
I=O

I @o(—xi~) I g eNIc(xilco —xi~)
ff ~p

With the definition

Qlv rvQIO &

we can relate the delayed dynamics of the deep trap
screening charges to the instantaneous response of the
shallow donor states. The coefficients r„are defined
iteratively,

Here g„ is the inverse of the degeneracy of the trap which
can only be singly occupied (usually g„=—,

' ). E„(x) and

g(x) are the position-dependent energies of the deep level

and the Fermi level, respectively (see Fig. 1}.
The response of the screening charge density under a

change of applied bias is again limited by the amount of
charge which is able to flow into or out of the traps. The
equation of continuity then determines the rates,

+1@.p +lvO ~p,
1 p —0

1+lN7 v g (xipo xiu)(NEIN—v)
p, =o

e„/k~ T

Ac„(1+g )

o=1

Q„(x,t) =——Ac„N„[1 f„(x,t)]e-
t

+b„N„f„(x,t)e (22)
We now express all charge variations as functions of cI)s

and V [see Eq. (17)],

The first term on the right describes the trapping of elec-
trons by the ionized states and the second the emission out
of the occupied, neutral level. The capture cross section
and the charge emission rate are again denoted by c„and
b„, respectively, and their values are related to one anoth-
er by b„=g„Ac„ through the detailed balance condition
for V=o.

The small-signal expansion of Eq. (22} relates the varia-
tion in screening charge density to the barrier geometry,

f~(x)[1 fvo(x)) eN„—
Q„(x)= . e4(x), (23)

8 I+Eto'rv x

with the relaxation time

X ]vp
&. Qlo

O
6'PE

P

r„Q„O—V,
v=o ~O~

and use the neutrality condition

n

Q;(I)= g [Ql„(t)+Q„„(t)]

to relate 4» to V. The result is identical to Eq. (18) but
with the capacitances of the depletion regions now
changed to
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v=O
CI =&o&

&Im rv

gr„
v=o

and C» =Eop

x,~r
(24)

Q.»= C:»@b—
with

f» 1 —f»} 1
C:» =&'N»x. »0

kg T I + l CO'Tg

This additional charge modulation finally modifies the
response of the barrier 4& and Eq. (18) changes to

C„+C;(0i)/(1+e )
V,

C, +C„'+Ci+C;( )

(~rpo xru)rp
Ce y Ce l4=0

v=1 2 g x,„0r„

In the above derivation the dynamics of the deep trap
states is handled separately from the interface states. The
capacitances Ci and C„become mixed with the results for
the interface capacitance (Sec. III) only in the calculation
of the barrier geometry [Eq. (18)].

The above derivation has to be extended to include the
situation where a deep trap, say v=A. , disappears below
the quasi-Fermi-level. Here we assume that the quasi-
Fermi-level is parallel to the conduction band at the boun-
dary of the positive-biased grain (see Fig. 1). Such a spa-
tial variation has been found for a diffusion-limited
current flow by Pike. 25'~' Whereas the screening charge
Qi» disappears smoothly as equi, ~e» (xi» & 0},the charge
Q,» (x„»~ 0} is neutralized suddenly as the deep trap level
crosses the quasi-Fermi-level. For steady state p-roperties
this charge extinction can be described by a density renor-
malization,

N»(1 —f»»

f» =f»(o) -= 1

(~@b—~& ]tk& &
&+gxe

The dynamics of the disappearing deep trap has to be
treated separately. The product f»0(x)[l —f»0(x)] in Eq.
(23) cannot be approximated by a 5 function. For the Fer-
mi level running parallel to the deep trap level E»0(x),
however, this product simplifies to the constant
f»(1 —f»). Physically this means that not only the boun-
dary layer of the charge Q„» but the whole charge Q,»
responds to the applied small signal, thereby leading to a
large capacitance. The dynamics of this charge is again
given by Eq. (22) with the exponent E,(x) gsubstituted-
by E,(0)—g, as the trapped electrons originate predom-
inantly from the left-hand side of the barrier. Integration
over x leads to the result

and with C, and Ci still given by Eq. (24}. Note that C;
is large only when a deep trap disappears below the Fermi
level and can be neglected otherwise, thereby restoring the
old result, Eq. (18).

The ooer-barrier current j~~ is entirely determined by the
dynamics of the top of the barrier 4b [the term propor-
tional to cr0 in Eq. (19)] and the interface (o; ). The result
forj~b of Sec. III therefore can also be used for the general
case which includes the deep traps.

The displacement current j~ is now the sum of all the
contributions generated by the shallow and deep donor
screening charges moving back and forth,

and

n 1~1
G(0i, V0 0) =cr0+——CHF0i

1+(0iri)

C(0i Vo=o)=CHF 1+

with

n1

1+(cori )

T1

1+(N i /No }(xiiolxioo)

N i 1 x110/xl00n1=
N0 + (N i /N0 }(xi,0/xi00)

For more than one defect state, the zero-bias capaci-
tance and conductance are still described by a sum of sim-
ple Debye terms. However, a coupling among the indivi-
dual traps is introduced by the relaxation coefficients r„.
This coupling is weak for the situation where the shallow
donor is the dominating trap, X ((Xp, v) 1.

The presence of the deep bulk traps leads to a zero-bias
dispersion in conductance and capacitance. In the con-
ductance 6 the dispersive term is weighted by a factor co .
Thus the deep trap resonances are best studied by analyz-
ing G. On the other hand, for moderate bias V0 the capa-
citance depends strongly on the relaxation properties of
the interface as we will illustrate below. Therefore the ef-
fects due to the deep bulk traps and the interface states

jg = —g —Qi„=i 00Ci@ye„0
This is identical to the result of Sec. III but with the capa-
citance Ci now modified for the total screening charge ac-
cording to Eq. (24).

Our main result for the admittance o found in Sec. III,
Eq. (20), proves now to be of a very general form. Dif-
ferent interface models are accounted for by choosing the
appropriate formula for the interface capacitance C;(co),
and the physics of the deep bulk traps is incorporated by
adopting the suitable expressions for the depletion region
capacitances CI, C„and C,'.

A simple illustration of the general result is the zero-
bias limit for the conductance G and the capacitance C.
Again kt, /V= —,

'
due to the symmetry of the barrier.

Taking into account only one deep trap level, we find
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can be well distinguished and separately analyzed through
a study of G(co, V, T) and C(co, V, T), respectively.

We conclude this section with an illustration of the ad-

mittance for a grain boundary characterized by three deep
bulk traps of moderate density [case (a) in Table I] and a
Gaussian DOS for the interface (localized model). In Fig.
8(a) we show the capacitance as a function of bias Vo with
frequency co as a parameter. At moderate frequencies the
curves are characterized by four well-separated reso-
nances. The first, at lower bias values, is due to the inter-
face as already discussed in Sec. III (Fig. 6). The three
peaks at 4.5, 6.0, and 7.6 V indicate the neutralization of
the deep traps as they disappear below the Fermi level.
Vhth the Fermi level parallel to the deep trap level, a lot
of charge is dynamically captured and released at these
bias values, leading to large peaks in the capacitance. As
all deep traps are neutralized at high bias Vo the capaci-
tance returns to its high-frequency value CHF.

The interface resonance at moderate bias shows a
strong dispersion. The interface relaxation time r; de-
creases with increasing bias Vc. Therefore the resonance
shifts to higher bias values with increasing co. For co & 10'
s ' the relaxation time ~; &10 s is reached only when
all the interface states are already filled and the resonance
has disappeared.

The deep trap resonances show no dispersion for
co (10 s ' as their relaxation times are all small enough
to give a full dynamic behavior at this temperature (see
Table I). For ci & 10 s ' the deep trap resonances are re-
duced as the trapping and emission of charge cannot fol-
low the external signal any more.

In Fig. 8(b) the capacitance is plotted as a function of
frequency co for different values of Vo. The resonances
for bias values Vc (3 V and Vc ——3.5 V are assigned to
the interface and the deepest bulk trap, respectively. The
inset shows the deep trap resonances on an expanded
scale. Their position does not depend on applied bias.

Figure 8(c) then illustrates the dependence of the capa-
citance C on temperature T. At low temperatures the in-
terface is static because of the large relaxation time ~;.
This relaxation time shrinks with increasing T and for
cor;(T) & 1 the capacitance is enhanced by the dynamic in-
terface. On an expanded scale we illustrate the freezing
out of the deep trap states.

In Fig. 9(a) the conductance is reproduced as a function
of applied bias Vc with co as a parameter. For small bias
the small-signal conductance consists of a mixture of
over-barrier (oc) and displacement current (icoCt ) with an
increasing weight for the latter as co is increased. As the
bias Vo is increased, 4~ is reduced, and the over-barrier
current takes over. In Fig. 9(b) we show the conductance
as a function of frequency co for several values of Vc.
The (bias-independent) deep trap resonances are a pro-
nounced feature of these curves. They indicate the onset
of a displacement current as cur„& 1 for v= 1, . . . , 3. The
conductance is dominated by the barrier at low frequen-
cies (strong dependence on Vo). At high frequencies the
displacement currents dominate the leakage. Finally, Fig.
9(c) reproduces the conductance 6 as a function of tem-
perature. This plot is most suited for a determination of
the density, cross section, and energy position of the deep
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FIG. 8. (a) Capacitance C versus bias Vo in the presence of
deep bulk traps for a Gaussian DOS [Table I, case (a), locahzed
model]. The curves are split into two classes, rg(10' s ' and
co & 10 s ', as the interface and bulk trap relaxation time lie on
different time scales: v;( Vo) & 10 s and v„& 10 s,
v=1, . . . , 3. (b) Capacitance C versus frequency ~. At zero
bias (and Vo ——3.5 V) there is no interface contribution to the
capacitance. The resonance for Vo ——3.5 V is generated by the
deepest trap (co, =1.2X10 s '). The upper part shows the
deep trap resonances on an enlarged scale. (c) Capacitance C
versus temperature T. The dependence on bias for a fixed fre-
quency and the frequency dependence for a fixed bias are illus-
trated.
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trap levels. 's At low temperature all relaxation effects are
frozen in. With increasing T the relaxation times decay
and each deep level develops its resonance as soon as co~„
passes through 1, beginning with the fastest level (smallest
e„). At high enough temperatures also the interface is ac-
tive for Vo &0. However, this resonance is hidden in the
exponential rise of the conductance resulting from the in-
crease of ao.

V. CONCLUSION
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FIG. 9. (a) Conductance 6 versus bias Vo for the grain-
boundary parameters of Fig. 8(a). The large zero-bias dispersion
is a relaxation effect of the bulk traps. The decaying barrier @q
leads to the exponential rise of 6 at large bias Vq. (b) Conduc-
tance 6 versus frequency co. The position of the interface reso-
nance depends on bias, whereas those for the deep traps do not.
The grain boundary becomes transparent for the displacement
currents at high frequencies. (c) Conductance 6 versus tem-
perature T. The deep traps show pronounced frequency-
dependent resonances at lower temperatures. For T & 4QO K the
interface dominates ( Vo ~ 0}.

We have calculated the steady state and ac small-signal
properties for majority carrier transport through a grain
boundary. The transport properties are governed by the
double Schottky-type potential barrier forming at the
boundary as electrons are trapped in the interface states.
The shape and position of the interface DOS determines
to a major part the stability of the barrier when the ap-
plied voltage is increased. A second contribution to the
stability, however, comes from the density of deep bulk
traps. For donor states these additional levels tend to
screen the interface charge more efficiently and thereby
lower the potential barrier. The resulting current-voltage
characteristic then shows a larger leakage and a smaller
nonlinearity coefficient a. The inclusion of bulk defects
into the description of grain boundaries is important for
many practical situations, in particular when compound
semjconductors are considered. '

The time-dependent properties of the grain boundary
are strongly modified by the finite response time of the
deep states at the interface and in the bulk. At moderate
frequencies and bias the small-signal capacitance is
strongly enhanced by the charge trapping at the interface
while at high frequencies the conductance is magnified by
several orders of magnitude as a consequence of the dis-
placement currents generated through the dynamics of the
deep bulk traps.

At large bias, when the interface states are almost
filled, the bulk defects start to enhance the capacitance by
inducing oscillations in the barrier height and hence in the
over-barrier current. For practical situations, however,
these effects occur at rather large current densities, where
the experiments are difficult to perform.

We have discussed the effects of different shapes for
the interface DOS on the steady-state properties (barrier
stability, current transport, leakage, nonlinearity). Simi-
larly, there is a strong dependence of the ac small-signal
response on the form of the DOS. This has been shown
by Pike' in a comparison for the two cases of a single
level and a uniform distribution of interface states.

At present the question of the relaxation mechanism for
the interface is rather unclear. Here two limits for the
equilibration properties were considered: whereas the
states are assumed to be strongly localized in the first
case, the electrons are allowed to travel freely within the
interface in the other limit (extended states). We found
that the effects on the ac properties are small (besides a
broadening of the capacitance resonance as a function of
frequency for the localized model) when compared to the
large changes introduced by variations in the interface
DOS.
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The temperature dependence of the conductance and

the capacitance ( Vo &0) is specially suitable for the deter-

mination of the microscopic parameters of the grain

boundary. By choosing the appropriate bias, frequency,
and/or temperature ranges it is possible to clearly separate

the bulk from the interface contributions.

(b„)'/'=a, 1+(a, 1
—p„ 1+no 'a„)'/, (A3)

and using the abbreviations of Sec. II we find the solution

For v= 1 the result
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APPENDIX

4'e calculate the positions xh„and x, v=O, . . . , n us-

ing the ansatz (2) for the potential 4(x) and the condi-
tions (3)—(5). Equation (3) leads to

2V= g y,(x,„—xl„)(xr»+xi»),

(bi )' =np a i
—— e'11/2 0

To~
(A4)

= g y~(xl»+xr»)
&0& v=o

8 n

=(xlp+x, p) g y„—2 g y„(b,)'

is found immediately, thus all distances (b„)'/2 are deter-
mined by (A3). Finally, we obtain the position of the bar-
rier boundaries xlp and x„p by using again the neutrality
condition, Eq. (4):

and (4) is used to find the relation

Q;=roe g y„(x„„+xi„).

and with (Al) we find

»o= +2+ y (b )
1/2

2$ 6'pE

eoe V
(A5)

It is easy to see that x,„—xl„=x,„—xl„ for all pairings of
v and l2 and therefore we can relate x,„to xl„by

xr~ ——xl~+2epeV/Q; . (A 1)

Next we relate the positions xl v&1, to the barrier
boundary xlo. We use Eqs. (2) and (5) to find

v-1
g ey~(xi~ —xl») =26», v& 1 (A2)

p, =0

With the definition

(b„)' =xip —xl„1/2

we calculate the distance (b„)' under the assumption
that these quantities are known for p, g v. Using (A2), we
have to solve a quadratic equation for ( b„)'

v —1 v —1

y b 2 y y (b }1/2 (b }1/2

0 1
2 v v

P» —a»=np g n~Q~
@=1

We prove this by induction:

(A6)

Equations (Al), (A3), (A4), and (A5) now determine all
2(n +1) positions xl„and x,„.

Note that there is a difference in the handling of shal-
low and deeP states. The boundaries xlp and x,p are
determined by the neutrality condition of the barrier,
whereas the boundaries of the deep trap screening charges,
xl„and x„v&0, are given by Eq. (5), the condition for
the crossover of the deep level and the bulk Fermi level.
Therefore Xp describes the density of all shallow levels,
i.e., levels lying above the Fermi level. Their positions
enter the calculation merely in the determination of the
Fermi level, but not in the calculation of the barrier
geometry. This is due to the fact that these states are as-
sumed to be everywhere ionized and the neutralizing
charge away from the barrier is given by the electrons in
the conduction band.

The result (A3) can be simplified using the relation

P„—a„= g n„"b„+nlrb„)'—

v —1 v —1

=P» 1+n»b + g (n„" —n& ')b —a„—1+n "(b )'/2+ g (n" n» —1)(b
@=1 p, —1

2

Using the identity

v v —1 v v—1
Pfp —72~ = —lf v n~



33 CARRIER TRANSPORT THROUGH GRAIN BOUNDARIES IN. . . 3965

we obtain

p. a—.'=p. i+n."(b. p—. i) —Ia. i-+n."[(b.)'" a—. i-]I'

=(1—n„")(p„ i
—a'„ i)+n„"(1—n"„)I(b„)'~'[(b„)'~'—2a„ i]+a„' iI .

n
I

P1g
A, =O, . . . , v

we obtain the desired result

pv av no g npQp
@=1

Finally, using bi ——at, it is easily shown that (A6) is true
for v= l.

Equation (A6) is not only used for the simplification of
(A3) but also for the determination of the barrier height
4s. Evaluation of Eq. (2) at x=0 gives

Inserting the expression (A3) for ( b„)', we find

P„—a„'=(P„ i —a„' i)(1—n„")2+n",(1 n—„")no 'a, .

Assuming now that Eq. (A6) is true for v —1 and using
the relation

xf„= xto+ g [xylo
—(b„)'~ ]

=0 2 2 „1 2

xto 1'—xtoan+ pn ~

2

2 2

and using the relation for xto,

Q;
+1p

2p EpE

we find

@peV

g
+as

'2

C'b= —, V, 1 — + (Pa —aa) .
C

Inserting Eq. (A6) here immediately leads to the desired
result, Eq. (6).
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minus sign.
2 The same coefficients r„also describe the relaxation of the

screening charges on the right-hand side because of the equal-

ity x po
—x ~=xrpo

OA zero-bias dispersion in the small-signal admittance may also

be obtained by an asymmetrically doped barrier without deep
traps. The result [Eq. (20)] is still valid, however, Cq&C, al-

ready at zero bias and hence 4b /V depends on C;(~}. This
adds an additional resonance to the zero-bias response which
is due to the finite relaxation time of the interface.


