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Relaxation and nonradiative decay in disordered systems. II. Two-fracton inelastic scattering
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The two localized-vibrational quanta (Raman) relaxation process is calculated for a localized elec-

tronic state. The calculation is expected to be relevant to relaxation at elevated temperatures where

the principal vibrational excitations are of high energy (and hence of short length scale). Localiza-
tion of the vibrational eigenstates is most likely for this regime. Vibrational localization can be

geometrical in origin (as on a fractal network, with the quantized vibrational states fractons), or as a
consequence of scattering (analogous to Anderson localization, with the quantized vibrational states
localized phonons). The relaxation rate is characterized by a probability density which is calculated
for both classes of localization under the assumption that the electronic and vibrational energy

widths are larger than the maximum electronic relaxation rate. The time profile of the initial elec-
tronic state popu1ation is calculated. The long-time behavior begins as t~'~2" "lexp[ —c~(t)'~" "],
where a =4q +22 and 4q+22 —2 for Kramers aud non-Kramers transitions, respectively. Here, 2
is the fracton dimensionality and q =2d~/D The f.ractal dimensionality is D, and d~ is defined by

d
the range dependence of the fractou wave function: /~exp{ r&l. The —long-time behavior thus
begins as a stretched exponential. After a crossover time, the long-time behavior varies as

2n—cl(lnf) ~
(lnt)" t where cl is a constant and g=D/d~. This portion of the time decay is faster
than any power law but slower than exponential or stretched exponential. In the presence of rapid
electronic cross relaxation, the time profile is exponential, with a low-temperature relaxation time

23f 1+2(d /D}]—l 22[1+2(d /D}]—31/Ti" proportional to T ~ and 1 ~ for Kramers and non-Kramers transi-
tions, respectively. These results may explain recent fractional temperature exponents found for
electronic spin-lattice relaxation in macromolecules and nuclear spin-lattice relaxation in glasses.

I. INTRODUCTION

There has been considerable recent interest in the
dynamical properties of random systems. ' Experiments
by Stapleton et al. were the first to suggest that spin-
lattice relaxation processes in macromolecules could be at-
tributed to the fractal character of the molecular struc-
ture. Their results exhibited a fractional temperature
dependence for the Raman spin-lattice relaxation rate.
They related this dependence to a density of vibrational
states which was specified by the fractal dimension D
(which gives the range dependence of the atomic density}
of the macromolecule as determined from an x-ray
scattering analysis of the atomic positions within the ma-
cromolecule. Their analysis, however, did not take into
account the range dependence of the force constant acting
between constituents of the macromolecule. It was
shown by Alexander and Orbach that when this was

done, a new dimension, the so-called fracton dimension 1,
was necessary to account for the density of vibrational
states.

It is tempting to simply insert d for D in the original
expressions of Stapleton et al. , but this would be in-
correct. For, in addition to the density of vibrational
states depending on a different parameter, one must also
consider the localization of the vibrational states. As we
shall show in this paper, this profoundly affects the spin-
lattice relaxation rate, both in terms of its temporal
characteristics and its temperature dependence.

The purpose of this paper is to calculate the two-
vibration contribution to the spin-lattice relaxation time
of localized magnetic centers (e.g., electronic or nuclear
moments} in structures where the vibrational states are lo-
calized. There is some reason to believe that this calcula-
tion may be relevant to other materials as well as macro-
molecules. Previous work has suggested that glasses and
other amorphous materials may exhibit fracton vibration-
al excitations at high energies. Indeed, Thorpe and He
and Thorpe interpret the elastic properties of covalent
glasses in terms of an amorphous solid in which rigid re-
gions percolate. This would represent a condition where
the mass density is Euclidean (i.e., D =1), but where, be-

cause of the percolating character of the bonding, d &d.
Other examples would be hydrated gels, where a similar
separation between mass density and force-constant
behavior obtains (the former Euclidean, the latter fractal)
epoxy resins and particle aggregates.

As Stapleton et al. show, the observation of nonin-
teger exponents for the temperature dependence of the
spin-lattice relaxation rate can itself serve as an indication
that the material host exhibits fractal vibrational excita-
tions. Our perspective is similar. We explore the time
and temperature dependence for spin-lattice relaxation of
localized centers in disordered hosts. Our predictions can
then be used to determine the character of the vibrational
excitations in such materials.

&e have argued that at very long length scales all ma-
terials will behave as Euclidean structures. 3 It is only for
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the short-length-scale vibrational excitations that one can
expect localization, and under some circumstances, fractal
geometry. We separate the long- from the short-length-
scale regime by a characteristic length scale g. We denote
vibrational excitations with wavelength A, &g as phonons.
Those with characteristic lengths (g are referred to as
fractons, or localized phonons, depending on whether the
geometry is fractal, or Euclidean, respectively. We show
below that the latter is a special case of the former, so that
it is more general to work with fractons at short length
scales.

We denote the vibrational frequency corresponding to
the characteristic length scale ( by co„the so-called cross-
over frequency. For a fractal network, on which the dif-
fusion constant scales with length as D (r) ~ r
~, cc g

('+'s~~'). For localized phonons (Euc1idean
geometry), 8=0 and one is concerned with the usual lo-
calization edge in the Anderson sense" at A, =g.

Clearly, the detailed behavior in the length-scale region
near g will be complex. Because g corresponds to an ener-

gy scale co„weaddress ourselves to the spin-lattice relaxa-
tion rate at temperatures such that the thermally excited
vibrational states have energies substantially in excess in
fico, . Thus, we work "deep" in the fracton regime where
the asymptotic form of Alexander and Orbach for the
density of vibrational states is accurate.

It will prove fruitful to make reference to the percolat-
ing network when we actually evaluate our expressions.
Though such a structure is clearly only a model, it is one
which is quite illustrative and for which nearly all of the
parameters which enter into our treatment have been cal-
culated. Here, the characteristic length g is just the per-
colation correlation length g~. Our calculation, being
relevant to high temperatures, thereby depends on vibra-
tional excitations whose characteristic length scale is
much smaller than gz. Those excitations of length scale
comparable to and longer than g~ will not contribute sig-
nificantl to the high-temperature Raman relaxation pro-
cess (exactly similar behavior is found for Euclidean
structures and is the reason why the two-phonon Raman
process dominates the one-phonon direct process at high
temperatures' ).

Our treatment in this paper will take into account not
only the alteration of the vibrational density of states
caused by fractal geometry, but, as noted above, also the
localization of the vibrational states inherent for a fractal
network with d &2, or for a Euclidean network with suf-
ficien impurity scattering. " This feature will manifest
itself directly in the time dependence of the magnetiza-
tion. The relaxation rate at various electronic sites will
differ because of fluctuations in the spatial location of
suitable nearby vibrational levels. This will lead to a
broad distribution of relaxation rates and to a time depen-
dence for the initial electronic level occupation which is
different from the usual exponential law found for extend-
ed vibrational modes.

In previous papers"' we considered the relaxation of
an excited localized electronic state interacting with a sin-
gle localized vibrational mode (the one-quantum process).
The primary assumption of our model was that the
energy-dependent localization length of the vibrational

modes, /„,was the only length scale in the problem (be-
cause we worked deep in the fracton regime, at length
scales «g). We distinguished between two types of lo-
calized vibrational states: (i) fractons, localized because of
the fractal geometry of the vibrating network, and (ii) lo-
calized phonons, localized in the Anderson sense because
of static imperfection scattering. These two types of lo-
calization were characterized by differing energy depen-
dences of their respective localization lengths, and by their
differences in density of states. As a result, the matrix
element of the electron-vibration interaction exhibited dif-
ferent energy dependences for the two cases. We then de-
rived the probability density for the relaxation rate for
both classes of vibrational states and used it to obtain the
time dependence of the population of the initial electronic
state. In both situations, we found that the decay at long
times was characterized by the law t """,where t is the
time measured in suitable units and the exponent x is
determined by the dimensionalities describing the underly-

ing network. Thus, the long-time decay due to one-
fracton or one-phonon emission has the same functional
form. The only difference lies in the expression for the
exponent x.

We consider in this paper the relaxation of a localized
electronic state caused by the absorption and subsequent
emission of two-vibrational modes, the difference in vibra-
tional energies equaling the change in electronic energy.
We obtain in this manner an explicit expression for the
spin-lattice relaxation time in the Raman regime for a
paramagnetic impurity in a disordered system. A prelimi-
nary version of this theory has already appeared. '

A difference between one- and two-vibrational relaxa-
tion will show up in this paper. The fracton and localized
phonon cases will exhibit different temporal decays for
two-vibration-induced relaxation. The difference will
arise from the difference in energy dependences of the lo-
calization lengths assumed for the two cases.

The ordinary (extended-phonon) Raman relaxation pro-
cess utilizes primarily phonons of high energy (a few mul-
tiples of kii T) because it depends upon the integral of the
square of the density of states multiplied by positive
powers of the phonon frequency. In this paper, we shall
assume that the localization length of the localized pho-
non states is energy independent. The strength of the Ra-
man relaxation process will then also depend upon the
higher-energy vibrational modes, just as for extended pho-
non states. The only difference is the broad distribution
of relaxation rates obtained for localized phonons. It is
this broad distribution which will lead to the peculiar de-
cay rate described above.

The fracton Raman relaxation process will differ from
the localized phonon Raman relaxation process because of
the energy dependence of the fracton localization length.
In general, this length will decrease as the fracton energy
increases. Thus, the probability that a given localized
electronic site has two fractons in its vicinity capable of
inelastic scattering will increase as the frequency of each
fracton decreases. Our subsequent treatment will show
that, when Pco, & 1, the fracton Raman process is dom-
inated by the lower-energy fracton modes. This, in com-
bination with the distribution of relaxation rates caused
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by fracton localization, will lead to a decay in the time
domain of a stretched exponential form. This is not true
for the localized phonon Raman relaxation process under
the conditions assumed in this paper: the decay will al-

ways be of the form t " ", though x will depend on the
specific time domain.

We shall study in Sec. III the two-fracton Raman relax-
ation process. We first derive the probability density for
the largest relaxation rate seen at a given localized elec-
tronic state site. The Laplace transform of this probabili-

ty density then generates the time dependence of the elec-
tronic return to equilibrium. We find that, at long times,
the return to equilibrium will begin as a stretched ex-

ponential, afterwards crossing over to an e " "law. We
calculate the average relaxation rate from the first mo-
ment of the probability density and compare it with
Stapleton's calculation i which did not take fracton locali-
zation into account.

The calculation of the two-fracton Raman relaxation
process is extraordinarily complex. As a consequence, we
shall sketch, in Sec. II of this paper, the procedure we
shall follow in subsequent sections. The principal results
of our paper are derived in Sec. III. The reader who is

only interested in the results may omit Sec. III and pass
directly to the Summary (Sec. V) where a comparison is
made between the conclusions of this paper and previous
work. Section IV contains a development similar to Sec.
III, but for localized phonons. Its results are also includ-
ed in the Summary.

II. GUIDE TO THE CALCULATION

The problem faced when calculating the two-fracton re-
laxation process arises principally from the localization of
the vibrational wave functions. The localized electronic
sites are embedded in a "sea" of fractons, of all energies
fuo~ and concomitant length scales 1„.We take the frac-

tons localized, so that different electronic sites will in-
teract with different sets of fractons. Thus, even though
the overall fracton-excitation-energy density of states is
smoothly varying with fracton energy, the spectrum of
fractons interacting with a particular electronic site will
not vary smoothly with fracton energy (i.e., as the fracton
energy changes, the spatial position of the higher-energy
fractons will vary randomly). Such is not the case for ex-
tended phonons, where all localized electronic sites couple
equally strongly with a particular vibrational state.

As a consequence, each electronic site will experience a
different fracton-induced Raman relaxation rate. That is,
the relaxation rate W for the full electronic system will be
described by a probability density P(W). The principal
problem addressed in this paper is the calculation of
P( W).

We do so by making an assumption which we have
proven to be valid in Ref. 15. %'e calculate the transition
probability per unit time, W(co,L,L'), for a particular
electronic site to relax upon the absorption of a fracton of
energy fm centered a distance L away from the electron-
ic site, and the emission of a fracton of energy co~+coo
centered a distance L' away from the electronic site, with
uo being the change in electronic energy. We shall subse-

quently ignore ~0 in comparison with co because we are
interested in electronic transitions of energy ficoo((Pleo„
and fracton energies are (always) greater than fico, .' Only
co will enter into our expressions for W.

The assumption we make is that the full probability
density for W, P( W), is sufficiently skewed that it is suf-
ficient to calculate only the probability density P(W) for
the largest relaxation rate seen by a given electronic site.
This may seen surprising at first, but our (unpublished)
calculations have shown that, for the two-fracton Raman
relaxation process, the contributions to W which arise
from W smaller than the largest [i.e., from summing
W(co~,L,L') over L and L', for L,L' larger than the
closest value] generate only logarithmic corrections to W.
We have shown this explicitly for the one-fracton relaxa-
tion process in an Appendix to Ref. 14. Length con-
siderations prevent our doing so here for the two-fracton
relaxation process.

The probability density for the largest relaxation rate
experienced by an electronic site is denoted by P ( W). Re-
markably, we are able to obtain a closed-form expression
for P( W), and to evaluate it analytically at small W.

The calculation proceeds as follows. We calculate
W(co,L,L') using standard methods, ' exhibiting the re-
sult in Eq. (3). We let P(W) be the probability that a
given site experiences a relaxation rate W. Then the prob-
ability P( W) that W is the largest relaxation rate for that
site is given by P( W) multiplied by the probability that no
other W will be larger. This can be collapsed to the form
of Eq. (7):

~ma.
P ( W) =P( W)exp —f d W'P ( W')

where W is the relaxation rate for L =L'=0, i.e., for
both fractons centered on the electronic site.

To find P( W), we take W(co~,L,L') and multiply by (i)

[Eq. (8)] the probability of finding a fracton within a dis-
tance L, L +dL from the electronic site, with energy be-
tween co~ and boa+dao; (ii) [Eq. (10)] the same probability
for the second fracton at L ', and (iii) the energy-
conserving delta function. Integrating over co, L, and L'
then gives us P( W) [Eq. (11)].

The remainder of the calculation for P( W) is complex
and tedious, with explicit forms for P( W) at small W ex-
hibited in Eq. (26). It is a straightforward process to cal-
culate the time decay profile P(t), the occupation of the
initial electronic state, by taking the Laplace transform of
P(W). The results are exhibited in Eqs. (28) and (29).

These calculations have all assumed that the electronic
states do not communicate with one another, i.e., that
they relax independently. The presence of couplings be-
tween the electronic sites (e.g. , dipolar or exchange spin-
spin couplings) can tie the individual site magnetizations
to one another if sufficiently strong. This "cross relaxa-
tion" then causes the electronic system to relax as a
whole, with a single decay rate equal to the average relax-
ation rate ( W) =—1/T&"'. The time decay profile is then a
simple exponential, quite different from that obtained for
independent electronic site relaxation.

We calculate 1/Ti"' both by taking the first moment of
P(W) and by direct calculation. The temperature depen-
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dence, given by Eq. (33), differs substantially from the
conventional result for electronic relaxation caused by ex-
tended phonons.

Section IV, the calculation of the localized phonon Ra-
man process, follows closely the methods of Sec. III. The
time decay profile is found to be of the same analytic
form as the very-long-time two-fracton result

[P(t) ~ r ""'").The temperature dependence of 1/T;"' is
exactly the same as for extended phonons. This guide to
Secs. III and IV should enable the interested reader to fol-
low the complex algebraic calculations contained therein.

III. THE TWO-FRACTON RAMAN PROCESS

We calculate the two-fracton relaxation rate for a Kra-
mers doublet. The two fractons are located at distances L
and L', respectively, from the center of the localized elec-
tronic site. The energy difference between the electronic
ground doublet and an excited doublet (in order to break
time-reversal symmetry) is b, and the Zeeman-energy
splitting of the ground doublet is F00. The matrix element
of the interaction with the vibrational modes for short-
range forces is proportional to the strain components of
the local medium. We expand the distortion of the sur-
rounding medium in terms of fracton normal modes. The
wave function for the ath fracton mode with energy r0, is
assumed to have the form

P (~ ) ~(&„) ~ exp[ —,'(L/I„)~—], (1)

W(co~,L,L') o: I (I„) co~+

Xexp[ (L—/1 ) ~ (L—'/I„)4]J
T ~a

1 ~a
(3)

(&~a 1)2 5(a)~,L,L')

The terms in the curly brackets result from the square of
the matrix element (co arises from the normal-mode ex-
pansion). The terms in the large parentheses are the vi-
bration occupation numbers. The factor 5(co~,L,L')
represents the combined widths of the electronic and frac-
ton vibrational states. Here, 1/5(co„L,L') replaces the
energy-conserving delta function which usually appears in
the golden rule formula for extended vibrational states.
The factor (m /5 ) appears in the relaxation rate of Kra-
mers doublets and arises from the dynamical breaking of
the time-reversed symmetry of the ground doublet. '1 For
non-Kramers transitions, it is replaced by (1/b, ) . We
rewrite Eq. (3) in the form

5(co,0,0)
8'(co,L,L')=W (co )

ro, L,L '

Xexp[ (L/I„)—~ (L'/I )—i] . (4)

where,

II (~ )=WpP '(Pro )'e /(e —1)'.
Here,

where I„is the localization length. Here, D is the Haus-

dorff dimension of the fractal. We expect the localization
of the vibrational wave function to scale with the
Pythagorean length L as exhibited in Eq. (1). Under some
conditions, '

d~ may be replaced by dm;„,where I &x L
such that 1 is the shortest path between two points
separated by a Pythagorean distance L.' Whether such
an identification holds for fractal networks in general is
somewhat controversial. One should therefore regard Eq.
(1) as a trial wave function of sufficient generality that ap-
propriate identification of d& will allow all of our subse-
quent results to be applied to specific physical situations.
The interaction matrix element is proportional to the spa-
tial derivative of the fracton wave function, and thence to—dy
( I ) ~. Using the energy dependence of the fracton lo-

calization length,

l~ c(- co~ (2)

where d is the fracton dimensionality; we find that the
spatial derivative of P is proportional to cog where

q =d(d~/D).
The Raman relaxation rate involves an absorption

(emission) of a vibrational mode of energy rom and an
emission (absorption) of a vibrational mode of energy
co +coo. In general, co will be of the order of thermal en-
ergies. Hence, ~ ~~~0. The overall rate is proportional
to the fourth power of the interaction matrix element (be-
cause both vibrations enter the expression for the transi-
tion probability per unit time). Putting all these elements
together, the relaxation rate is proportional to

4q +2d, Kramers transitionsa=
4q+2d —2, non-Kramers transitions

Wo is a constant divided by 5(co,0,0) and p=1/k&T.
When a & 2, W (tom) is peaked at a certain value of pro~
(this value is zero for a=2). We denote the maximal
value of W (co ) by W,„.

We next construct the probability density I' ( W) for the
largest relaxation rate seen at a given spin site. This con-
sists of the probability density P(8') for a given relaxa-
tion rate 8' times the probability that no relaxation rate is
larger than 8'.

F( W) = J d W' P( W') . (7b)

The probability density P( W) consists of three factors: (i)
the probability of finding a fracton state within a distance
L, L +dL, of the localized electronic site, with energy be-
two'n co~ alid co~+dco~'.

Nr, (co )DL 'dL de

where Nr, (co ) is the fracton density of states (per atomic
volume),

Qf, (co~) =dco~ '/Qf (9)

and IIf is the fracton Debye frequency; (ii) the probabili-
ty of finding a second fracton state at distance
L',L'+dL' from the electronic site with energy between
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co~ and co +5(co~,L,L') is given by

Nr, (co~)D (L') ' dL' 5(co,L,L'); (10)

5(co,L,L'}=5(co,0,0}=5 . (12)

We insert Eqs. (4) and (11) into Eq. (7b) and find (see Ap-
pendix A for details)

F(W) =rl8(rl, rl+1)5I(p, W),

where

(13)

I(P, W)= fdco~[Nr, (co~)l„]{1n[Wm(co )/W]j 'i

xe(W (~.)—W),

with

(14}

rl=D/dp .

e(x) is the unit step function and 8(rl, rl+1) is the beta
function (here, just a numerical constant).

The co~ integration in Eq. {14)is confined to the region
where Wm(co )& W. From Eq. (5) for W (co~), we find
that this region is bounded from below by coi and from
above by co2, where coi and co2 are the solutions of

W/Wi (Pco )'e ——'/(e 1)— (16)

(iii) a delta function requiring the relaxation rate
W(co,L,L') to be equal to W. Thus,

P(W)= fdco~ fdL fdL'D L '(L') '5(co~,L,L')

XNq, (co )5(W(co,L,L') —W) .
(11)

In order to carry out the calculation of the probability
density P( W), Eq. (7a), from P( W), Eq. (11), we need to
specify the distance and energy dependence of the com-
bined electronic and fractan energy widths 5(co,L,L').
We consider two limits for the one-fracton relaxation
problem previously ' (i) rapid fracton relaxation or ra-

pid cross relaxation for the electronic state, whence

5(co,L,L') is a constant, independent of co, L, or L', and
(ii) slow fractan relaxation and negligible electronic cross
relaxatian, whence 5(co~,L,L') is replaced by the relaxa-
tion rate W itself. The latter requires a self-consistent
solution for P(W) which, for the two-fractan case, is
prohibitively complex. The former allows for a straight-
forward, though by no means simple, treatment. We
therefore treat the farmer limit and replace

to write I( W) [Eq. (14}]in the form

=2 " 1 w, z'e'
I(W)=(d)2p f dz —ln +lnz' (e'—1)

2n

(19}

where the zi z
——pcoi 2 specify the integration limits as dis-

cussed above. Note the factor z in Eq. (19). This gives
great weight to the region of small z in the integrand. It
results fram the relation between the energy dependence
of the localization length and the fracton density of states
[Eq. (18)]. For the extended-phonon Raman process, the
density af states is alone in the integrand and weighs most
heavily the larger frequency regime (until the k&T limit
imposed by the Bose factor}. In the fracton Raman pro-
cess, the energy dependence of the localization length l~a
shifts the weight in the integrand to the smaller frequency
regime.

The function I( W) is a monotonically decreasing func-
tion of W. As Wapproaches W,

„

it tends to zero:

max}]
+

~ ( / max) &&

(20)

hx:ause in this case the integration region is very small.
For W/Wi values &1, the integral in Eq. (19) is dom-
inated by the contributions of the small-z region. In the
small-z limit, the solution of Eq. (16) with pco =z is

zi ——(W/Wi)' ' ', a &2. (21)

Therefore, for W & Wi(pco, )', the lower bound of the
integration is pco„provided that pco, & 1. For
W & Wi(pco, )', the lower bound is zi, as given by Eq.
(21). Denoting

is double valued as long as ci & 2. This is obeyed for ex-

ponents appropriate to most fractals (see below). ] Howev-

er, there are further limitations on the physically accessi-
ble values of co . The fracton energies are bounded from
above by the fracton Debye energy Af and from below by
a cutoff energy. This is either the crossover frequency
separating the extended phonon (low-frequency) regime
from the fracton (high-frequency) regime, or the Zeeman
energy coo, whichever is larger. Denoting the lower cutoff
frequency by co„onehas to replace co, by co, whenever

co~ (co and m2 by Qf whenever ~2 g Qf.
We now use the relationship

Nc, (co~)l =d /co

W, = W, (P~, )'-', (22)
W, =WoP (17)

[Note that the function on the right-hand side of Eq. (16)
we find that the contribution to I(W) arising from the
small-z region is

I(W}= ~

r

(d) P(a —2) "(W, /W)'i" ' I (Zq+1) —I 2g+1, ln(W, z' /W), W& W,
0 —2

(d) p(a —2) "(Wi/W)'~" ' I 2rl+1, ln( W, /W) —I 2rl+1, ln( Wizo /W)
I 1

0 —2 Q —2

(23a)

W& W, . (23b)
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Here, I'(x) and 1 (x,y) are the complete and incomplete gamma functions, respectively, and zo is a number of order uni-

ty. For small values of W/Wi the limiting behaviors of Eqs. (23) are

(d) P(a —2) "1{2rl+1)P(Wi/W)'~" ', W& W, (24a}

I{W)- (d) p(a —2)z'sp(Wi/W)'~' 'I 2rt+1, ln(W, /W), W & W,
0 —2

(d) (1/ro, )[ln($;/W)] ", W« W, . (24b')

The expression (24b') results from the limit W« W, of
the incomplete gamma function, where we have also used

Eq. (22}.
Figure 1 portrays I(W) versus W/W~ as computed

directly from Eq. (19) (curve a) and from the approximat-
ed expressions, Eqs. (23) (curve b). The difference be-
tween the two curves is rather small. One notes that the
contribution of the large-z region to I(W}, for small
values of W/W~, is of the order of P(ln{W~/W)} ".
When Pco, & 1, this is smaller by a factor of Pro, than the
contribution of the small-z region for W & W, [see Eq.
(24b)]. We shall adopt, therefore, Eq. (23) and their limit-

ing forms, Eqs. (24), in subsequent calculations.
We now return to the probability density P(W} for the

largest relaxation rate seen at a given site [Eq. (7a)] and
use it to find the time dependence of the population of the
initial electronic state. The time profile is found by tak-
ing the Laplace transform of the probability density

P(t)= f dWP(W)e '. (25)

We consider the decay of the initial population at long
times. We need, therefore, the probability density at small
values of W/Wi [W'i being of the order of W,„.See
the discussion after Eq. (6)]. Using Eqs. (24) in Eqs. (7)
and (13), we find

Pi(W)dW=a(P5 {W)/W)' "
a —2

where the time constant t& is

«t~(5/ni, )' (28a)

t, =[ai/(a —2)](1/W) )(1/P5)' (28b)

and a3 is the numerical constant as ——ai(a —1)/(a —2).
The contribution of the second term in Eq. (27) is

P (t)-(5/ro )' '[»(tlt )]" ' '

XexpI —az(5/ro, )[ln(tlt2)] "j, t & t2,

where the time constant t2 is

t2 (2rtaz/——W, )(5/ro, ) .

(29a}

(29b}

From these equations, we see that the long-time behavior
of P(t) begins as a stretched exponential [Eq. (28a}]. The
temperature dependence of the time constant t

&
(assuming

that the level width 5 is temperature independent) is found
from Eqs. (17) and (28b): t~ -P . At a time of the order
ti(5/co, )' ', the decay changes its character. From Eq.
(29a}, it is seen that it is slower than the stretched ex-
ponential but faster than a power law. In this regime, the
time constant is proportional to (P5) (co, )' ', using Eqs.

(the details are given in Appendix B). The contribution of
the first term in Eq. (27) to P (t) is

P, (t)-(t/t, )'~" "exp[ a(—tlt, )' ' ],

Xexp[ —a((p5)( Wi /W)'i" ']d W/W,

W & W, , (26a)

Pz( W)d W =a2(5/ro, )2g[ln( W, /W)] "

XexpI —ai(5/ro, )[ln( W', /W)] "jdW/W,

W « W, , (26b)

where a~ and aq are the numerical constants

ai gB(rt, rt+1)(d) (——a —2) vl'{2rl+1)

and

a2 rlB (rl, g+ 1){—d—)

respectively. The integral in Eq. (25) is separated accord-
ing into two terms:

IVY fV

P(t)- f Pi(W)e 'dt+ f P2(W)e 'dt . (27)

%'e carry out the integrations by the saddle-point method

FIG. 1. Function I(W) computed from Eq. (19) (curve a)
and from the approximate forms Eq. (23) (cgrve b). The pa-
rameters used are Pro, =0.01, PQJ ——6.0, a=5.63, and g=1.8
(appropriate to a percolating metalwork for d~ ——d - ).
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WiP5, a &3
1 /Tave

WiP5(1/Pco, ) ', 3&a &2,
(32)

(17), (22), and (29b) and the relationship [Eq. (5))
W0~5 . The peculiar time behavior exhibited by Eq.
(29a) is similar to the one found' ' for the relaxation of a
localized electronic level by virtue of the one-fracton pro-
cess. It results from the [1n(W, /W}]" dependence of
F( W).

As the temperature is lowered and Pai, increases, the
small-z region of the integrand in Eq. (19) gradually di-
minishes in importance. Then, for small values of W/Wi
the leading behavior of I ( W) is given by P(ln( Wi /W}) ".
This is identical to the behavior exhibited by Eq. (24b ),
with co, and W, replaced there by 1/P and Wi, respec-
tively. Consequently, the behavior of P(t) at long times
and in the limit Pcs, &1 is given by Eqs. (29a) (with
co, -+P ', W, —+ Wi } and is thus slower than exponential.

We now consider the situation where the magnetic mo-
ments of the relaxing levels are strongly cross relaxing.
The levels then relax at the average of the probability den-
sity for the relaxation rate. The return to equilibrium is
expected to be exponential. Denoting the average relaxa-
tion rate by 1/T i"', we evaluate it by taking the first mo-
ment of the probability density for W,

W'

1/Ti"' ——f dW WP(W) . (30)

We use the approximate expressions, Eqs. (26), for P( W).
Because the integral in Eq. (30} includes W, we may
neglect the contribution of P2(W) [see Eq. (26b)] to Eq.
(30) and use instead only the part pertaining to the larger
values of W/Wi, Pi( W) as given by Eq. (26a). This ap-
proximation becomes better as Pco, becomes smaller (i.e.,
as the temperature increases) because W, is then much
smaller than W'i [see Eq. (22)]. Inserting Eq. (26a) into
Eq. (30) and substituting x =( W, /W)'~" ', we find

{W//$V )1/{ —2)
1/Ti"' ——aiP5Wi f dxe ' x2 '. (31)

For a & 3, the integral is dominated by its lower bound;
for 2 & a &3, it is dominated by the upper bound. As a re-
sult,

is the combined electron and fracton energy widths) is
N~, (co~)1. 5. Therefore, the fraction of fracton-state pairs
which dominate the relaxation process is

[Nr, (a) )l„]5dco exp[ Nr,—(co )1„5], (34)

where the exponential insures that the second fracton state
of the pair is the closest available to the first fracton
member of the pair. We multiply Eq. (34) by the relaxa-
tion rate W (co ) [Eq. (5)] for the pair at energy ~ and
integrate over all energies to find

1/T;"'= f da) [Nr, (co )I„]
X5 exp[ —Nr, (a)~)1„5]W~(co~). (35)

Using the relation Eq. (18) between the fracton density of
states and the localization length, and substituting
Pg~= 1/x, Eq. (3S) takes the form

1/Pm
1/Ti"' ——WiP5(d) f dx e ~x ' . (36)

Here we have used the small Pool expansion of the fracton
occupation numbers [see Eq. (5)] and, correspondingly,
the lower bound of the x integration has been taken to be
of the order of l. Equation (36) has the same form as Eq.
(31) and therefore leads to the same expressions for 1/T i"'
as Eqs. (32}. Note that Wi is proportional to 1/5 [see Eq.
(17) and the discussion after Eq. (6)]. Hence, the average
relaxation rate is independent of 5.

The explicit temperature dependence of 1/T i"' is T'
for a&3 and T for 2&a&3. This result differs from
that of Stapleton et al. , in that they did not include the
energy dependence of the localization length for fractons.
As a consequence, their result is limited to q=1, so that
they obtain a =4+2d for Kramers transitions and
a =2+2d for non-Kramers transitions. In order to
evaluate our expressions explicitly, we set d~ ——d;„.This
is probably an overestimate (i.e., we expect d~ &d;„).In
three dimensions, we then find for percolating networks

q-0.74 (q =dd;„/D, d =—', , and D/d;„=1.8). Hence,
from Eq. (6), a=5.63 for Kramers transitions and 3.63
for non-Kramers transitions. Using Eq. (33), this leads to

where we have used Eq. (22). It turns out that, for per-
colating networks with d&

——d;„,a & 3 both for Kramers
and non-Kramers transitions. For general d~ with a & 3,
one has

T ' s for Kramers transitions
i

T ' for non-Kramers transitions,

respectively.

(37)

28I 1+2{de/D)) —1l,~ave T,Kramers transitions
/

2ai 1+2{1~/I))-3T non-Kramers transitions .
(33)

The results of Eq. (32) can be derived directly by
averaging over the relaxation rate seen at given spin site
[Eqs. (4) and (5)]. We carry out this procedure explicitly.
Consider a volume of radial distance l. around the spin
site. The fraction of pairs of fracton states whose wave
functions are localized within this volume is (I„/L)
The number of fracton states with energies in the range
co,co +d~ is Nr, (co )L dec . Similarly, the number of
fracton states with energy in the range co,co +5 (where 5

IV. THE LOCALIZED PHONON RAMAN PROCESS

We now reduce the results of the preceding section to
the limit of phonons localized in the Anderson sense (i.e.,
as a result of impurity scattering). We refer to the
geometry of this condition as Euclidean, implying that

d~ = 1 (and d =D =d, so that q= 1). We ignore effects of
a localization edge by neglecting any energy dependence
of the localization length /„=g. We take the localized

phonons to obey a linear dispersion law and we set the
spatial derivative of the localized phonon eigenstates pro-
portional to their energy. These simplifications can all be
relaxed under specific conditions, but we make them here
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4, Kramers transitions
a~h ——

2, non-Kramers transitions .
(38)

When a~h ——2, the maximum value of W (tp ) [Eq. (5)] is
located at to~ =0, and W (t0 ) is a single-valued function.

in order to illustrate the principal differences between re-

laxation by fractons and localized phonons.
Making the above replacements in Eqs. (3), (4), and (5)

results in the same form for relaxation as for the fracton

Raman process. [Note that the factor 21 in Eq. (6) results
from the energy dependence of the fracton localization
length. ] The only difference is that the value of the ener-

gy exponent a changes to

The same philosophy obtains for the derivation for the
probability density for the largest relaxation rate seen at a
given site for localized phonons as for fractons. There-
fore, we can use Eqs. (13) and (14},replacing I„byg and

rt [see Eq. (15)] by the embedding dimensionality d. The
localized phonon density of states (see list of assumptions
above) is taken equal to

Nph(a) )=dna" '/Qph,

where Q~h is the phonon Debye frequency. Because the
phonon localization length ( has been taken to be energy
independent, the function I(W), as defined by Eq. (14),
takes the form

Z2

I(W}=d ((/pQ~h) p J dzz [1n( W&/W}+in(z ~ e'/(e' 1)—z)]~ . (40)

Here,

Wi ——WpP (41)

Eqs. (26}for fractons:

P)( W)d W =yz(4d —1)[ln( W(/W)]

and z& 2 are the solutions of Eq. (16) (with a replaced by

a~h ) for a ~h
——4. For a ~h

——2, z ~
——0. Again, for

zz &PQph, zz is replaced by PQph, and for z) &Pro„z)is
replaced by Pto, where to, is the lower cutoff frequency
(localization edge) for the localized phonons.

As opposed to the two-fracton case, the principal con-
tribution to the z integration for I(W} [Eq. (40)] arises
from the large-z region (i.e., for higher energies). The
reason lies with the density-of-states weighting factor in
Eq. (40): z . This shifts the weight to the large-z re-
gime. For fractons, the energy dependence of the localiza-
tion length changes this factor to z z. Thus, the princi-
pal distinction between the contribution of fractons versus
localized phonons to the Raman relaxation process lies in
the energy region which contributes principally to I(W),
leading to a difference in form for the probability density
P( W).

The function I( W), Eq. (40), is monotonically decreas-
ing with W. For W close to W,„,it attains the form of
Eq. (20) with rl replaced by d. For small values of
W/W& and PQ~h& 1, the contribution of the large-z re-

gion to I( W) is

X exp I
—y2[ln( Wl /W}] '1~W/W

where,

ln( W) /W) &PQph, (44a)

y2=[d'«2d —1}1,'(O'PQ, h) P&, (44b)

(45b)

Inserting the expressions in Eqs. (44) and (45) in Eq.
(25), we obtain the time profile for the initial electronic
state population after time t. The details of the calcula-
tions are given in Appendix C. The results are

P, (t)-(y, )'~'[ln(t/t, ))~

and

Pz( W)dW =y32d[ln( W&/W)]~

X exp I
—y3[ln( W, /W)] Id W/W,

ln( W~ /W) & PQ~h, (45a)

where

[y)/(2d —l)][ln( W)/W)]

ln( W~ / W}&PQ&h (42a)I(W)-
[y)/(2d —1)](PQph) '[ln( W) / W}]

ln( W, / W}& PQph, (42b)

where

y) ——d (g/PQph} P .

Xexpj —y2[ln(t/t) )]

where the characteristic time t& is

t )
——yg(4d —1)/ W),

Pz(t)-(y )' [ln(t/t )]e

t, &t &t, e ', (46a)
PA h

(46b)

Following exactly the same procedures as in Sec. III, we
obtain the probability density P(W) (for small W/W&
and PQ~h & 1) for localized phonons, to be compared with

X exp I
—y3[ln(t/t2)) ) t & t2e

where the characteristic time t2 is

(47a)
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tq ——y32d/8'( . (47b)

The long-time behavior of P(t} [Eqs. (46a) and (47a)j at
low temperatures (PQ&b&1) is slower than exponential
but faster than any power law. At shorter times, the de-

cay is rather rapid, with the characteristic time f
&

increas-
ing with increasing temperature for 1=3 [From Eqs. (41),
(44b), and (46b), ti cc T ~"]. At longer times, the de-

cay becomes slower, with the characteristic time t2 de-
creasing with increasing temperature [From Eqs. (41),
(44b), (45b), and (47b), ti ~ 7 ]. ln both regimes the
time decay obeys a law of the form e '"'~. The same
time dependence has been found for one-vibrational quan-
tum relaxation. ' For that process, both fracton and local-
ized phonon relaxation yield the same time dependence.
For two-vibrational quanta relaxation, the difference in
the energy dependence of the localization lengths between
fractons and localized phonons manifests itself through
different time dependences [Eqs. (28a) and {46a)] charac-
terizing the beginning of the long-time behavior.

We next calculate the average response time for two-
localized-phonon (Raman} relaxation. This would be ap-
propriate for rapid cross relaxation between the electronic
sites. We calculate the first moment of the probability
densities Eqs. (44) and (45) and then integrate over W to
obtain the contribution of localized phonons to the aver-
age spin-lattice relaxation rate, I/T'i"', at low tempera-
tures. Inserting Eqs. (44) and (45) into Eq. (30), we find

00 y3x —x1/2d
+yqWi dx e ' e

)2d
(48)

Here, we have substituted x =[In( Wi/W)] ' to obtain
the first term in Eq. (48), and x = [ln( Wi/W)] to obtain
the second. In the limit

PQ~b & 1, the second member of
Eq. (48) may be neglected. The first is of the order of
y2Wi. Consequently, using Eqs. (41) and (44b),

T +, Kramers transitions
I /7 ave T'+, non-Kramers transitions .

(49)

This result reproduces the normal (low-temperature) tem-
perature dependence for extended phonons for the Raman
relaxation process.

Finally, we consider the high-temperature limit,
PQ~b & 1. Returmng to Eq. (40), we find that in this limit

d2gi~(1/Qpb) I ln[( Wi /W)(PQpi, ) ] J

P(W)dW=y (5/Q „)2d[ln(W/W)j

Xexp I
—y4(5/Q~b)[ln( W/W)]~j, (51)

~here y4 is a constant independent of the temperature,

~i (d —I )!d!
(2&)!

(52)

Xexp I
—y4(5/Qpb) [In(t / ~ )) (53)

with the characteristic time given by

r =yg(5//pi, )/W-P (54)

which increases as the temperature decreases. The first
moment of the distribution Eq. (51) is of the order of W.
Thus, at low temperature, I/T i"' —T, both for Kramers
and non-Kramers transitions. This again reproduces the
normal (high-temperature) temperature dependence for
extended phonons for the Raman relaxation process.

V. SUMMARY AND CONCLUSIONS

We have shown how localization of vibrational excita-
tions can profoundly affect the relaxation of localized
electronic states. We have calculated the distribution of
relaxation rates for the condition that the combined ener-

gy widths of the electronic and vibrational states exceed
the maximum relaxation rate W,„and are temperature
independent. This is appropriate to rapid anharmonic re-
laxation of the vibrational states, for example.

We have calculated the probability density for the larg-
est relaxation rate, as seen from a particular electronic
site. For two-fracton relaxation, the near-long-time pro-
file for the probability of remaining in the initial electron-
ic state is a "stretched exponential":

Pi(t) ~exp[ a3(r/ti)'~—' "] (two fractons), (28')

where a3 is a numerical constant, ti is a characteristic
time, and a =4q +2d for Kramers transitions and
a =4q+21 —2 for non-Kramers transitions, respectively.
Here, q =d(d~/D). For the far-long-time profile, one
finds

—fin{~/~, )]2~
Pz(t) ~ t ' (two fractons), (29')

where t2 is another characteristic time and g=D/d~.
For the case of localized phonons, the near-long-time pro-
file takes the form

and W- WOP [see Eqs. (50)]. The long-time behavior
of the initial electronic state population is given by

P(t)-(y 5/Q „)'[In(r/F}j

I(W)-
1 ( (I/Qpi, )[ln(Wi/W}j

(50) —
I ln{tlt I }j~

p, (r) cc r ' (localized phonons), (46')

Qp] =2 .

Taking into account that Wi o:P '" [Eq. (41)], we see
that I(W) has the same form and temperature depen-
dence for both Kramers ( a ~b

——4) and non-Kramers
(a~b=2) transitions. The probability density P(W) per-
taining to the high-temperature limit is

—Iln{t/f& }j~
P2(r) ~ r (localized 'plloilolls), (47')

where t2 is another characteristic time.
Under the assumption of rapid electronic cross relaxa-

tion„ the time profile becomes a simple exponential, with a

where t& is a characteristic time. For the far-long-time
profile, one finds
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characteristic relaxation rate equal to the first moment of
the distribution P(W}. We find the following ternpera-
ture dependences for the average spin-lattice relaxation
rates.

Two-fracton Raman relaxation:

3 ( W, co~) =ln[ W~(to~)/W] . (A3)

F(W)=5fdto~[Nt, (co )1„]
y fd(xv)d [(x }~]e(~—x —x )e(~},

(A4)

1/Tave (33*)
non-Kramers transitions .

M[1+2(d&/D) j—1T ~, Kramers transitions

22[1+2(d~/D) j—3

where we have used Eq. (12). Here, ri=D/d~ and e(x) is
the unit step function. Carrying out the x and x' integra-
tions, we find

F(IV(=gB(q, q+1(Sf dry, [i((flru j( ,]„
Extended or localized two-phonon Raman relaxation:

Kramers transitions

T +, non-Kramers transitions .
(49')

If we set d~ ——d;„and evaluate Eq. (33) for a percolating
network in d=3, we find the following.

Two-fracton Raman relaxation:

Kramers transitions
2.63T, non-Kramers transitions,

(37'}

to be compared to the following.
Extended or localized two phonon R-aman relaxation:

T9, Kramers transitions

T, non-Kramers transitions .
(49")

We see that the exponent of the temperature dependence
for 1/T;"' is much smaller for two-fracton versus two-

phonon Raman relaxation. Such low powers have be
observed' for nuclear quadrupolar relaxation in glasses
(i.e., non-Kramers transitions), but were attributed to in-

teractions with two-level systems. A two-fracton interpre-
tation may be more relevant, but independent values for
the parameters entering into Eq. (33) need to be obtained
from thermal and neutron diffraction measurements. ' '

X[A(Wai )]'"e(&(Wco )),
(A5)

where 8 (rl, ri+ 1) is the beta function,
1

a(q, q+I)= f, dy y~ '(I -y)". —

Equatjons (A3) and (A5) together give Eqs. (13) and (14)
directly.

APPENDIX B: DERIVATION OF EQS. (28)
AND (29)

We carry out the integrations in Eq. (27) by the saddle-
point method. Inserting Eq.(26a) into the first term of
Eq. (27}and denoting

x =(W /W)' ' (81)

we fmd

Wl Wc )1/(a —2)

Pi (t) =f dx aiP5 exp( —a,P5x —Wi tx '),
(82)

where ai is a numerical constant (see text). The limiting
behavior of Pi(t) is found by the saddle-point method.
The saddle point xo of the integrand in Eq. (82) is
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x, = [(a —2)W, t/a, P5]'"'-"
and, consequently,

(a —2) Wit
Pi (t)—[2m a iP5/(a —I )]'~

a1

(83)

APPENDIX A: DERIVATION OF EQS. {13)
AND (14)

%e evaluate the integral

F(W)= f dW'P{W'),

with P(W) given by Eq. (11). The delta function appear-
ing in Eq. (11) requires that the contribution to the in-
tegral arise from the region

W & W (co,L,L') & W,„, (A2)

where W (co,L,L') is given by Eq. (4). Clearly, the right
inequality is always satisfied. Therefore, we need only
consider the region of W appropriate to the left inequali-
ty. %e define

X exp

' 1/(a —1)
(a —2) W, t

aip5
0 —2 aip5

(a —2) Wit/ai & p5/(pro, )' (85)

where we have used Eq. (22). The stretched exponential
decay exhibited in Eq. (84) exhibits the characteristic time

ti ——[ai/(a —2)] (p5)
1

81 (86)

One notes that the condition for the saddle point to lie
within the ~nt~grat~on bounds, xo '

& Wi /W,
equivalent to
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Equation (84) is valid for times such that
t &t)(5/co, )'

Inserting Eq. (26b) into the second term of the right-
hand side of Eq. (27) and substituting

x =[ln(W, /W)] ",
we find

Pz(t) = f dx az(5/to, )

(X) 1/2d
Pz(t)= I dx y3 exp( —y3x —W) te "

) . (C3)(~ )2d

To obtai~ the first member of P(t),P)(t), we have substi-
tuted

x = [ln( W, /W)]~

in«Eq. (44a). Similarly, the substitution

Z '/2
Xexp[ —az(5/co, )x —W, te " ], (88) x =[in(W, /W)]~

where az is a numerical constant (see text). The saddle
point xo obeys the equation

Z 1/2yZo ~ (1/2g) —1 (89)

into Eq. (45a) generates Pz(t).
We use the saddle-point method to find the long-time

behavior of P(t). The saddle point xo of the integrand in
Eq. (C2) obeys the equation

where we have introduced

tz ——(2zlaz/W, )(5/to, ) .

(2 4')/(~ J )
—z0

t&
——txo e

(810) where the characteristic time t, is given by

(C4)

At times such that t &tz, the leading order solution of
Eq. (89) is xo (t/tz) "/'——& ". Consequently, the leading
behavior of Pz(t) is exponential: Pz(t) —exp( —W, t),
t &tz Beca. use tz-t((5/to, )' ' [from Eqs. (22), (86),
and (810)], the exponential behavior of Pz(t) falls in the
time region where Eq. (85) is valid. In this region, the
time profile is dominated by P, (t) [Eq. (84)], which de-
cays slower than exponential. At times such that t p tz,
the leading order solution of Eq. (89) is

xo-[ln(t/tz)) ",
and the leading behavior of Pz(t) is

tl =yz[(4d —1)/W) l .

For t & t), the solution of Eq. (C4) is

x (t/t )(4d —))/(4d —2)

(C5)

x, —[ln(t/t, )]

Integrating around the saddle point, we obtain

P, (t) —[2n (4d —1)y,] '"[ln(t /t, )]'d- '

(C6)

and the leading behavior of P)(t) is exponential. For
t ~t„the solution of Eq. (C4), to leading order, is

P,(t)-(4~a,5/~, )'/z[in(t/t, )]&-)/z

XexpI az(5/—co, )[ln(t/tz)]z" j, t & t,

XexpI —yz[ln(t/t) )] 'I, t) & t & t, e

(C7)

(812)

APPENDIX C: DERIVATION OF EQS. (44) AND (45)

P(t) =P, (t)+P,(t),
where

(Cl)

4d —I(pQ h) 1/{4d —1)
P) (t)= dx yzexp( —yzx —W) te )

0

The Laplace transform of the probability density given
by Eqs. (44) and (45) is

( 1 —K)/~ Z0
t2 ——txo e (C8)

with tz ——y&(2d/W, ). In this case, there is no solution for
t & tz [because the lower bound of the integral in Eq. (C3)
is greater than unity]. For t ~ tze '", the leading
behavior of Pz(t) is

Pz(t) -(4n'1yz) ' [ln(t/tz )]"

Xexp I
—yz[ln(t /t z ) ] I . (C9)

where the requirement that t ~t&e '" insures that the
pQ h

saddle-point Eq. (C6) is within the integration limits.
The saddle point of the integrand in Eq. (C3) is given

by the equation
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