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Ground-state energy of a polaron in n dimensions
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The Frohlich Hamiltonian is generalized to the case of an electron moving in n space dimensions.

For n=2 and n=3 the familiar Frohlich Hamiltonian is reobtained. The polaron ground-state en-

ergy is calculated up to fourth order in perturbation theory. %e found that within the Feynman

two-particle polaron model approximation the polaron ground-state energy satisfies the scaling rela-

tion E„D(a)=(n/3)E3D((I'[(n —1)/2]3~m/2nl'(n/2)]a), where E„D is the Feynman polaron

ground-state energy for the polaron in n dimensions and E3D the energy in three dimensions.

I. INTRODUCTION

The study of the Frohlich polaron problem has attract-
ed interest over the last forty years (for a review we refer
to Ref. 1). It was the first problem in solid-state physics
which was treated within a field-theoretical framework.
In recent years, there has been renewed interest in the po-
laron problem because (i} polaron effects have been ob-
served in low-dimensional systems, e.g. , p-type InSb
metal-oxide-semiconductor structures and (ii) certain
physical problems can be mapped into a polaron-type
problem, e.g. , the interaction of an electron with the sur-
face modes of a thin liquid-helium film can be mapped
into a two-dimensional (2D) acoustical polaron problem.

Over the years polaron effects have been studied in 3D
and 2D (st+, e.g., Ref. 4) systems. In the present paper we
want to investigate the effect of the dimensionality of the
system on the ground-state energy of the optical polaron.
In order to do that we first extend the Frohlich Hamil-
tonian to arbitrary dimensions. This generalization is not
unique. We will follow a physical approach inspired by
the formulation of the 2D optical polaron problem as ob-
tained' from the 3D polaron Hamiltonian. More explicit-
ly the Frohlich Hamiltonian for lower-dimensional sys-
tems will be derived from the Frohlich Hamiltonian of a
higher-dimensional system by integrating out one or more
dimensions. The basic interaction from which the polari-
zation results will always be the same as in 3D, i.e., 1/r or
Coulomb-like, but the electron motion will be embedded
in an n-dimensional space. This approach has the proper-
ty that in 3D and in 2D the present definition of the pola-
ron Frohlich Hamiltonian for n dimensions reduces to the
usual expression for the Frohlich Hamiltonian.

In Sec. III we give a perturbation expansion of the pola-
ron free energy which is based on a Feynman path-
integral formulation of the polaron partition function.
The polaron ground-state energy is obtained in Sec. IV up
to second order in the electron-phonon coupling constant
u (which corresponds to a fourth-order perturbation cal-
culation in the electron-phonon interaction). For the 3D
polaron we reobtain the result of Hohler and Mullen-
siefen and in 2D we find our recent result for the coeffi-
cient of the ct term of the polaron ground-state energy.

The exact ground-state energy to order a calculated for
arbitrary dimensions is interesting for its own sake. We
want (i) to study the effect of the dimensionality of the
system on the polaron ground state energy and (ii) to in-
vestigate whether or not the Feynman approximation to
the polaron ground-state energy, generalized to arbitrary
dimensions, gives a better description at higher dimen-
sions. The latter question is studied in Sec. V where we
also derive a scaling relation for the Feynman polaron
ground-state energy. The explicit calculation of expecta-
tion values and of integrals are presented in the Appen-
dixes.

II. FROHLICH HAMILTONIAN FORMULATED
IN n DIMENSIONS

The form of the Froh1ich Hamiltonian in n dimen-
sions is the same as in 3D,

2

H = +g ficoiagai, +g( Vi ai,e'"'+ Vga i e '"'}, (1)

except that now all vectors and operators are n dimen-
sional. r and p are the electron position and momentum
operator, respectively. ai, (ai, ) is the creation (annihila-
tion) operator for a phonon with wave vector k and fre-
quency toi, . In the present paper we limit ourselves to
dispersionless longitudinal optical phonons, i.e., toq ——too.
The electron-phonon interaction coefficient for coupling
with wave vector k is denoted by Vi, . In the following
units are chosen such that 5=nt =too ——1.

Now we have to address the question of the explicit
form of the interaction coefficients Vi, in n dimensions.
Therefore we remark that the electron-phonon interaction
is a representation in second quantization of the electron
interaction with the lattice polarization, which in 3D is
essentially a Coulomb potential 1/r

~ Vi,
~

is propor-
tional to the Fourier transform of this potential, and as a
consequence me have in n dimensions

(2)

with V„ the volume of the n-dimensional crystal. In do-
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ing so we assume that the electron-polarization interaction
is also (1/r) l-ike in n dimensions but that the electron
motion is embedded in n space dimensions. To obtain the
coefficient A„we note that

~
V(

~

in n —1 dimensions
can be obtained from

~
Vk

~

in n dimensions by integrat-
ing out one of the dimensions explicitly,

where a is the electron-phonon coupling constant and Vis
the volume of the n-dimensional crystal.

In 2D, Eq. (6) reduces to

(7)

A„

V (k2+ I2)(ll —1)/2 (3)
which has been obtained earlier by others (see, e.g., Refs. 5
and 10).

with k=(l, k„) an n-dimensional vector, I, an (n —1)-
dimensional vector, and I =ki+k2+ +k„). Re-
placing the sum by an integral, i.e.,

III. PERTURBATION EXPANSION
OF THE POI.ARON FREE ENERGY

we obtain

A„
dk„

1
+ (l2+k2)(n —1)/2 Ill —2

which after performing the integral leads to

2v mr ———n 1

2 2

(4)

(5)

Since the pioneering work of Feynmans on the 3D pola-
ron problem it has been well recognized that the Feynman
path-integral formalism is a very convenient formalism
for treating the polaron problem. The reason is that in
this formalism as shown by Feynman the phonon coordi-
nates can be eliminated exactly and as a consequence the
polaron problem is reduced to a effective one-particle
problem with retarded interaction. In the present paper
we will use Feynman path integrals in order to calculate
the polaron ground-state energy.

The partition function of the polaron system divided by
the partition function of the noninteracting electron-
phonon system is given by

where I (x) is the I function. Noting that in 3D the in-
teraction coefficient is well known, i.e.,

~
V),

~
=(2v 2)ma/Vk, we can use the expressions (2)

and (5) to obtain the interaction coefficient in n dimen-
sions:

~rg —3/2 (n —1)/2a

n —1

pp (
st[r(t)])

0

with E the electron-phonon interaction contribution to the
polaron free energy and p= 1/ktt T, with kt) the
Boltzmann constant and T the lattice temperature. In the
limit of zero temperature, the free energy F reduces to the
polaron ground-state energy E. The average in Eq. (8) is
a path-integral average with weight function
exp f So[r (t) ]):

f dro f f &r(u)A[r(u)je ' 5(ro —r(0))5(ro —r(P))
(A)s, ——

so[gu) t
ro rQe ro —KO io —1

P
So= — f du r(u)

2m
(10a)

the action of a free particle (for imaginary time) and

S, g~ V„~'f du f dsG~(u —s)e'"(""'-""' (lob)
P

0 0

the action for the electron self-interaction. In Eq. (8) we
introduced

with fdro an integral over the crystal voluine V and

f f ~r(u) a Feynman path integral over all possible
electron paths r(u) going through ro at u =0 and at
u =p. In Eq. (9) the phonon coordinates are already el-

iminated. The functionals appearing in Eq. (8) are

G„(u)= ,' n (e))(e"'"'—e"(t' ("
~ '—)-

cosh(
~

u
~

—P/2)
2 sinh(P/2)

the phonon Green's function where n (co)= 1/(e~ —1) is
the number of phonons with frequency co. G„(u) is in-
dependent of the dimensions of our system.

The objective of the present paper is to obtain a pertur-
bative expansion of the ground-state energy in a, the
electron-phonon coupling constant. Note that

~
V),

~

2-a
and thus St-u. Consequently expanding e ' in Eq. (8)
implies a perturbative expansion of the partition function,
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Z= g, (ISI[r(u)]j )s
1

0m!

which we may write as

(12)
of F can be expressed in terms of the expansion coeffi-
cients of Z, e.g.,

ai(n, p)
bi(n, P)=—

Z= g a (nP)
0

(13)

where a0(n, p): 1 a—nd n is the dimension of the space we
are working in. One can make a similar expansion for the
free energy,

F= g b (n, P)a
P5 =1

Using the definition Z =e ~F the expansion coefficients

b2(n, P) = [a i(n, P) —az(n, P)],I

2P

I a i (n p) [3a2(n, p) —2a i (n, p)] —a, (n, p) j,

(15b)

(15c)

which is the familiar cumulant expansion for the free en-
ergy.

Inserting Eq. (10b) into Eq. (12) we obtain for m ) 1

N$ p p m

f duj f ds'G (k )(u —s ) exp ~ g k "[«u ) —«s, )]
kt k j=1 j=l (16)

The expectation value in Eq. (16) is calculated in Appendix A and is given by Eq. (A8). Thus formally we know the ex-
pansion coefficients of the partition function,

a (n, P)= g g g ~
V~

~ f du; f ds;G„~i, ~(u; —s;)e

m i —1

&& exp —$ $ k;.kj [D (s~ —u; ) +D (u/ —s; )

i =0 j=l

where r0(k)=co~, g' i
——0 if i =1, and D(r)=(

~

r
~

/2)(1 —
~

v
~

IP).

D(uj —u; )—D(s~ —u—; )] (17)

IV. SECOND- AND FOURTH-ORDER PERTURBATION RESULT FOR THE POLARON
GROUND-STATE ENERGY

The ground-state energy to second order in perturbation theory is given by the term linear in a in the free energy F for
p~ oo. One therefore should calculate

ai(n, P)= —g ~
Vq

~ f du f ds G~(u s)e— (18)

Noting the property D(r)=D(p —r) and G (r) =G (p r), one of the in—tegrals is trivially done:

ai(n, P)= —g ~
Vg ~' f du G~(u)ea

This expression can further be simplified to

ai(n, p)= p f dkk" '~ V„~' f duG (u)e-"n'"~
a (2m)" 1(n/2) 0 0

(19)

r
2 p G„,(u)

&D (u)
2~Zr —"

2
4r-n

2

10(p/2)
sinh(P/2)



33 GROUND-STATE ENERGY OF A POI.ARON IN n DIMENSIONS 3929

bi(n, P)= ——
n —1I

10(p/2)
sinh(P/2) '

I
2

(20)

which in the limit of zero temperature reduces to

bi(n, P)=—
2 nI

2

Note that for n = 1 the result is not defined. For
I

with Io(x) the modified Bessel function of order zero.
The coefficient of the term linear in a appearing in the

free energy is [see Eqs. (14) and (15a)]

n =2,3, . . . , one obtains bi(2, oo )=—m/2,
b i (3, ao }=—1, b i (4, ao ) = —m /4, b i (5, ao }= —2m /3,
bi(6, ao)= —3n/16, . . . , and in the asymptotic limit
n ~ ao we may apply Stirling's formula to find
bi(n, oo)= V—m/2n, which tends to zero (as n tends to
infinity}. We are then led to the conclusion that polaron
effects decrease with increasing dimensionality. Further-
more, note that to order a [see Eq. (20)] temperature ef-
fects and the dimensionality factor out separately. The
polaron ground-state energy to order a has been obtained
earHer for the case n =3 (see Ref. 1) and for n =2 (see
Ref. 4). Equation (21) is a generalization of these stan-
dard results to arbitrary dimensions.

Now we will consider the next term in the expansion of
the free energy with respect to a. This term can be ob-
tained by fourth-order perturbation theory. From Eqs.
(14) and (15b) we see that we have to calculate ai(n, p)
which is given by Eq. (17}:

&2(n») =
a kl k2

P P P P -k2, D~. , —., ]
X

o
dui dsi

o
due dsiG„(q, ~(ui —si)G„~qi~(ui —sz)e

—k2D(u2 —s2) —k) k2C(u), s),u2, s2)2

ge e (22)

with

C(u»sl~u2&$2} D(ui —Si)+D(si —u2) —D(u( —u2) —D(si —$2)

In Appendix B we evaluate the sum over the wave vectors kt and kz. This reduces Eq. (22) to
2

(23)

aq(n, p) =—1

8 nI
2

G„,(u, —s, ) G„,(uo —s, )

[D(u —s )]' [D(u —s ))'
du i ds ) du 2 dsp

1 1 n C (ul~si, ui, sp)
2

xF ———
2

'
2

'
2

' D(ui —si)D(uz —sz)
J

(24)

with F(a,b;c;z) the hypergeometric function. In Appendix C it is shown how this fourfold integral can be reduced fur-
ther. Inserting the explicit expressions for a, (n, p) and a&(n, p) into Eq. (15b) and taking the limit phoo, we find (cf.
Appendix C) the expression

b2(n, p) =—
I n —1

3/2

8
'+ — dx 1—

I
2

4
z i F(n,x)

(I+x )
(25}

F(n,x)= f de
(1—x cos 8)'i

In Table I numerical results are given for the coeffi-
cients bi(n, oo ) and bz(n, ao ) for different values of the
dimensions n. The results for n =3 and n =2 coincide

f

with the results of Refs. 6 and 7, respectively. In 3D the
integral in Eq. (25) can be done analytically

b, (3, ~ ) = —in[1+3/(2v 2)]+1/i/2,

which is the result of Ref. 6. From Eqs. (21) and (25) it is
apparent that b, (n, ao ) and b2(n, ao ) are infinite for
n =1. But the ratio b2(n, ao)/bi(n, ao) is defined for
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2
3
4
5

6
7
8
9

10
20
30

1.570 796 3
1.0000000
0.785 398 2
0.666 666 7
0.589 048 6
0.533 333 3
0.490 873 9
0.457 142 9
0.429 5146
0.291 336 5
0.234 749 2

0.063 9740
0.0159196
0.007 009 6
0.003 9106
0.002 486 3
0.001 717 5

0.001 256 5

0.000 958 6
0.000 755 2
0.000 167 1

0.000071 3

n =1;we found

bg(1, oo ) 3 —1 =0.060 660 17. . . .
bi(1, oo) 8

(27)

In the limit of large dimensions, one can make a series ex-
pansion which yields

TABLE I. Expansion parameters for the exact perturbation

result (up to the given digits) of the polaron ground-state energy

E =b&a+b2a for different dimensions n. n
E„D(a)=—EsD

3

r n —1

2

nr
2

3~~
2n

(31)

between the energy of the nD polaron (E„D) and the 3D
polaron (EsD). This scaling relation is not an exact rela-
tion. It is valid for the Feynman polaron energy and also
for the ground state energy to order a. The next-order
term (i.e., a ) no longer satisfies Eq. (31). The reason is
that in the exact calculation (to order a ) the electron
motion in the different space directions is coupled by the
electron-phonon interaction. No such coupling is taken
into account in the Feynman theory; and this is the under-
lying reason for the validity of the scaling relation for the
Feynman approximation. A more elaborate discussion of
the approximate validity of Eq. (31) was given by the
present authors in Ref. 7 for the case of the 2D polaron.

The Feynman approximation to the polaron ground-
state energy (29) gives an upper bound to the exact
ground-state energy. By expansion of Eq. (29) for small a
we obtain

b2(n, oo )

b', (n, ~)
1 4 1 9 24 3—+—
2 3m n 8 5~ 2 n'n —+1

2

+ 0 ~ ~

n —1r
1

27n
I

2

nr
2

2
Q 2

(32)

(28)

V. DISCUSSION AND CONCLUSION

The results for the polaron ground-state energy of pre-
vious sections which are exact to order a can be com-
pared with the ground-state energy calculated within the
Feynman two-particle polaron model approximation. The
latter approximation gives

The first term on the right-hand side (i.e., the term in a)
equals the exact result as obtained from second-order per-
turbation theory. The second term on the right-hand side
(i.e., the term in a ) is smaller than the exact result (see
Table I) which was obtainixl by fourth-order perturbation
theory. Let us introduce

n —1I

CX =
2

'a.

n (u —iu)

4 U nr
2

Q oo

dt
[D (r)]1/2 Equation (32) then takes the siinple form

E = —a' —l,„(a')

(29) where

(33)

with

2 2 2

D,(r)= r+ (1—e "'),
2U 2U

(30)

where u and iu are the parameters of the Feynman pola-
ron model which are determined by minimizing the ener-

gy (29) with respect to u and iu. Comparing Eq. (29) with
the Feynman result for the 3D polaron we note the fol-
lowing scaling relation,

1

27. (34)

%ith this normalization of the electron-phonon coupling
constant, finite results are obtainmi for n =1! The coeffi-
cient of the (a') term in the expansion of the ground-
state energy is shown in Fig. 1 for the exact result and for
the Feynman approximation. In order to plot Fig. 1 we
calculated A,„ for n generalized to a real number. For
n ~ 00 the exact result reads
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1 10 20
DIMENSION In I

FIG. 1. Coefficient of the (a')2 term in the polaron ground-

state energy E = —a' —A,„c,'a') as function of the dimension of
the system for the exact perturbation result and for the Feyn-

man approximate polaron theory.

Note that the coefficient of the 1 jn term of A,„ is only a
factor 1.02 larger than the corresponding Feynman result.

In conclusion we have generalized the Frohlich Hamil-
tonian for the polaron to n dimensions. The generaliza-
tion is such that the Frohlich Hamiltonian in the next
lower dimension can be obtained by integrating out one of
the dimensions. In 3D and 2D the we11-known expres-
sions for the Frohlich Hamiltonian are reobtained. A for-
mal perturbation expansion was presented for the polaron
free energy in n dimensions. In the limit of zero tempera-
ture, the ground-state energy was calculated up to fourth
order in perturbation theory or equivalently to second or-
der in the electron-photon coupling constant a. %'e

found that polaron effects in the ground-state energy de-

crease with increasing dimensionality. This conclusion
generalizes an earlier result by Das Sarma and I.arsen"
who found that polaron effects are enhanced in 2D sys-
tems in comparison with 3D systems. Within the Feyn-
man approximation we find that the polaron ground-state
energy of an n-dimensional polaron can be obtained from
the 3D result by a simple scaling relation.
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APPENDIX A

In this appendix we calculate the path-integral average

f(ui, s„.. . , u, s;ki, . . . , k )=(explik] [r(ui) —r(si}]+ +ik [r(u ) —r(s )]J)s,
'I

= exp i k ruj —rsj
j=1

where 0 &sj, sj &]g. This expression may be written as (we put rn =%=coo 1)——
=1 ro=rt p) p m

f( s;]]x;f ; )=k]f dre f f „, tdr(tlexp ——,
' f dti(t) +i Z k [r(et) —r(st)]

j=1

where
'o="p) p

Zo= f dro f f „,&r(u)exp ——,
' f dur(u)

Introducing the Lagrangian for imaginary time,
Nf

I. = ——,' r(t)'+i g k,"r(t)[5(t u, ) 5(t——s, )—],

(Al)

(A2)

(A3)

(A4)

Eq. (A2) can be written as

k
ro ——r(p) p

f(Iu;,s;];tk;])= f dro f f „, ds]r(t)exp f dtl. (r(t), r(t), t) (A5)

The Lagrangian (A4) describes a free particle which interacts with the imaginary electric field
E ig. i k [-5(t —uj ) 5(t —sj )]. Note tha—t the Lagrangian (A4) is quadratic in the electron position coordinates and
consequently only the classical path and quadratic fluctuations around it contribute to the path integral of Eq. (A5).

The classical equation of motion corresponding to the Lagrangian (A4),
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r(t)+i g kj[5(t —uj) —5(t —s )]=0 (A6)

has to be solved with the boundary conditions r(0)=r(P) =ra and where 0(uj, sj (P. The solution is

r(t)=ro+r(0)t+i g k.[(u t)8—(t —uj) —(s t)—6(t —s )],
j=1

where the electron velocity at t =0 is given by

~
g

m

r(0)= ——g k (u —sj),
j=i

with 6(x)=0 (x (0), 1 (x )0).
Inserting the classical path (A6) into the Lagrangian (A4) gives the expectation value (A5),

f(Iu;,s;];Ik; ] )=exp[ D(I u—;,s; J; Ik; [ )],

(A7)

(AS)

(A9)

where

D(Iu;, s; j; Ik; J ) =—
r

m m

g k (u —s ) + g k'kt[ut(6(u —ut) —6(s —u ))—st(8(u —si) —8(s —s, ))] . (A10)
j=1 j,l =1

This expression can also be written in a slightly different form,

D((u;,s;J;Ik;I)= $ kjD(uj —sj)+ $ kj kt[D(sj ul)+D—(uj st) D—(uj —ut) D(—sj sf—)], —
j &l =2

with

(A 1 1)

D(r)= 1—
2

which has the property D(P r) =D(r).—In Eq. (All) we defined g j i ——0 when ni =1. For m =2, Eqs. (2.12) and
j &l =2

(2.14) of Ref. 13 are obtained with A(r) =2D (r).

The 2n fold sum-,
APPENDIX 8

(Bl)

will be evaluated in this appendix. Replace the sum (1/ V)$&-+[1/(2ir) ] f dk by an n-fold integral, introduce spheri-

cal coordinates, ' and insert Eq. (6). This results in

2(n —3)/2 (n —1)/2

2

performing the kz integral one finds

n —1I

2m 2' — ~
dk

~
dk &d~ . z pe

—k&a k&b ck&k& oscs——/2 (n —1)/2 to g 2 2

0 0 0
n

&
n —1

2 2

(B2)

2nVnI.n

2

This can further be simplified to

f k~&u +cik—tcosis/4b

0 0
(B3)

2v ~l
2

. f de
sin" (9

(4mb —c cos 8)'~~ (B4)
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By a change of variable we readily find function

I n —1

2 i ( 1 2)(n —3)/2
dx

(4ab —c x )'/
2~mi'—n

2

(85) I n —1

2

nr—
2

2

1 1 n

8&ab 2'2'2'4ab (B6)

which can be expressed in terms of a hypergeometric

APPENDIX C

In this appendix we present details of the calculation of the coefficient of the a term in the nD polaron ground-state
energy. This coefficient is given by [see Eq. (15b)]

bi(n, P) = [a i(n, P) —ai(n, P)], (C 1)

where the limit p~ oo must still be taken. The term a i(n, p) was calculated in Sec. IV. We will give an outline of the
calculation of aq(n, p) Sim. ilar calculations have been performed in Refs. 13 and 7 for the 3D and 2D polarons, respec-
tively.

aq(n, P) is given by

a kl k2

P P P P —k la(Q1 —$1 )
X f dui f dsi f du& f dszG(ui —si)G(uz —sz)e

—k2D(u2 —s2) —kl k2C(ul ~sl ~s2~s2)2

Xe e (C2)

1

2
1

2

where D (~) and C(u i,s i,uz, sz ) have been defined in Secs. III and IV. First, make the transformation
I

1 0 E.

S)
1

2 0
1

2

10

(C3)

and perform the R integration. This simplifies Eq. (C2) to

a2(n») = 8

a Il k2

T

&( f dpi f drzG(ri)G(rz)e ' ' e

1 /2( Tl T2 ) P-(1/2)(T1 +T2)
dr(p r, )+2 f„„—, dr[p ——,(~, +rz) r]—

where we introduced the function

—kl AC(T1, T2, r)Xe (C4)
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Next, perform the k„kz integrations (see also Appendix 8) and one ends up with

8a, (n, P)= ~ n
1

2

tt 'i G (r))G (r2)
X d&) dry

[4D (r )D (r )]'

X g (r1 —r2)E(n, xz)+ —,
'
[p—(&~+'r2)]E(n,x& }+[4D(r()D(g2}]~ J dx y'(n x)

1

where x2 =&&(1—&i~P) ~[4D(&i }D(r2)]'",x ~
——r~~~/p[4D (~~)D(T2)], and

F(n,x) =I d8
(1—x cos28)'~2

»serting the expressions for a &(n, p) and a2(n, p) into Eq. (81}and taking the limit p~ m, one finds
2

(C6)

b2(n, p) = ——
8

n —1

2

nr—
2

12~m.
n —lI

n

2

1 2xI' n, g +
0 1T

n —1F

nI
2

F(n,x}
(1+x )

(C7)

which we have evaluated numerically for different values of n.
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