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%'e consider the q-state Potts model in one dimension for the cases q =2, m =1,2, 3, . . . . The

dynamical critical exponent is calculated with use of the real-space renormalization-group method.

We find z =2 in the 4- and 8-state models, which agrees with the Ising case, and speculate that this

generalizes to any m.

INTRODUCTION

Our understanding of the dynamics of systems near
their critical points is very limited compared to the large
body of knowledge that deals with the static properties.
There has been much theoretical interest in recent years in
extending the methods which have been developed for
static phenomena to study the time-dependent properties. '

Real-space renormalization-group techniques have been

applied very successfully to determine the dynamical criti-
cal behavior of the two-dimensional Ising model yielding
values of the dynamical critical exponent that agree well
with results of high-temperature expansions and Monte
Carlo methods.

The use of the renormalization-group (RG) method to
study the dynamics is very similar to its application to
static phenomena. The RG transformation scales the mi-

croscopic length of the system by a factor b, exactly as in
the statics. However, in the dynamics one must also scale
the microscopic time by a factor ls; where z is the
dynamical critical exponent. z describes the critical slow-

ing down of the system since it characterizes the depen-
dence of the relaxation time on the correlation length
r=P.

In this paper we apply the real-space renormalization-
group method introduced by Achiam ' to study the
dynamics of the Potts model in one dimension. It is
natural to try to extend the treatment that works well in
the two-state case dire:tly to the model with more states.
This proves to be much harder than one would at first ex-
pect since it is hard to construct an invariant subspace for
the RG transformation, and the normalization of the
probability is not preserved to lowest order as it is in the
Ising case. We choose instead to analyze the q-state Potts
model in terms of m-coupled Ising models, where q =2,
and study the dynamics of the Ising variables. This
avoids the difficulties mentioned above since the Ising
dynamics is known to be mell described by this method.
We cannot, however, treat the cases q=3,5,6,7, . . . by the
method presented in this paper, but we speculate that our
results are valid in these cases also.

We describe the dynamics in terms of an empirical
master equation which generalizes the original Glauber
model for Ising dynamics. In this model, the system re-
laxes to equilibrium from a slightly perturbed initial state
via the interaction with a heat bath. The heat bath causes

the spins at a single site to flip at each step ro, with a
probability W. We choose to consider a model with no
conservation laws. We must extend the usual model,
which allows only single spin flips, by allowing both our
Ising variables at the same site to flip in one time step. In
this way, we include the effects of transitions between any
pair of Potts states since, for example, we allow all the Is-
ing variables at a given site to flip in our formulation.
This is to be contrasted with the model described in Ref.
5, which allows only one kind of spin flip in each time in-
terval.

The RG transformation used is the usual static decima-
tion which eliminates half the spins. We find that z =2
for the 2-, 4-, and 8-state models, and we expect that this
generalizes for the cases q=2~, m &3. This agrees with
the results due to Forgacs et al. , who find z=2 for all
one-dimensional Potts models with energylike perturba-
tions. The terms energylike and magneticlike perturba-
tions refer to the types of deviation from equilibrium that
are considered in the relaxation of the system. We consid-
er here only magneticlike perturbations in which the field
controlling the time development appears as the coeffi-
cient of a magnetizationlike rather than an energylike
term.

RENORMALIZATION OF THE MASTER EQUATION
FOR q=4

We use the usual form for the reduced Hamiltonian for
the Potts model

PH=K g 5..—
&ij &

where s; =0, 1,2, . . . , q —1, and consider first the case of
a four-state model. For a discussion of the Potts model,
see Wu. We define two Ising models, cr and is, and write

1IBH= 4K ~—(criiri4 i+pipi+i+&icr +ip pi+i+1)''

and express the dynamics in terms of these Ising variables.
The master equation is

ro P(o,p, t) =LP—(cr,p—,t),
Bt

where
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L= g[(1 —P )W (.cr p)+(1—P". )8 (o p)

+(1 Pi—P,")W; "(cr,p)) . (2)

where T is the static RG transformation

T(o', p', o,p }= g 5(cr,' —cr2; )5(p'; —pz; }, (10)

P.(cr, p)=P(cr, p, t= ~) .

This does not, however, determine the transition rates
uniquely, but we shall make the standard choice

' 1/2
Pi P, (o, p)

W; (cr, p)=
Pq o',p

P; P,"P,(o, p)
W; "(a,p)=

Pn cr,p
(5)

We now define a variable that characterizes the devia-
tion of the system from equilibrium,

P(a, p, t)= P(o, p, , t)
Pq cr& p

and write

ro P(o, p, t) —=LP—(cr, p, t),

where

L= gg[P, (o, p)W; (o, p)(1 Pi)]—
+ g [P,(o, p) 8'; "(o,p)(1 P; Pt')] . —

l

%e consider only small perturbations and write

P(cr, p, t)=1+h ,(t) ger;+h„(t) gp; .

The renormalization transformation T(o', p', cr,p} is
applied to both sides of the master equation as follows:

ro QT(cr', p', cr—,p)P—(cr, p, t)
&r& i&

= g T(o', p', o,p)LQ(cr, p, ,t), (9)

We have introduced, for convenience, the spin-flip opera-
tor P; for the spin of type a. Throughout this paper the
symbol a is usal to denote either cr or p, . The effect of
this operator is to flip one spin at a given site:

P& f(cri pi cr& p& criv piv)

=f(crl&pi»'' ai&pi»'' cr¹pN)

and W; (cr,p) and W; "(cr,p) are the transition probabili-
ties. Note that the last term on the right-hand side of (2)
is the term discussed above which flips both o and p.

We choose transition probabilities which satisfy the de-
tailed balance condition to ensure that the system

progresses to equilibrium at large times, '

(1—P; ) 8'; (o, p)P, (o, p) =0,

(1 P; P&"}W—c "(cr, p)P, (cr,p, )=0,
where

~H= X[I (crn& pn&crn+i&pn~i)+ 4K] .

We arrange both rows and columns in all matrices as

(cr,p) =(1,1);(—1, 1);(1, 1};(

For each configuration of neighboring spins, a particu-
lar element of M is selected which is precisely the ap-
propriate term in the Boltzmann factor. To calculate the
RG of the left-hand side of the master equation, we need
to renormalize

P, 1+h gcr;+h„gp;

The first term is easily calculated from

A (K)Mn, n+ i (K ) M2n, 2n y 1(K) M2n+ i, 2n /2(K) i (12)

where A is the contribution to the free energy from the
decimation. We find the recursion relations

A (x') =x +3x

A (x') '=2x2+2x
(13)

where x=e rn, with a zero-temperature fixed point at
X = (x).

%e may evaluate the other terms similarly and write

R (P,h g,. a;), where R is the RG operation and a is o

or p. If i=2n, then we get P,' a2„where P,' is just the
product of a factor AM'(K') for each nearest-neighbor

pair. If i =2n +1, then we have to calculate

~2n, 2n+1 +2n+1 ~2n+1, 2n+2 ~

~here a denotes either

o =diag(1, —1, 1,—1),

p =diag(1, 1, —1, —1) .

We find to leading order

~2n, 2n+1 +2n+1 M2n+1, 2n+2

= A[M'(K')]„„~i(a„'+a„'+i)/2, (14)

which tells us that

which represents a decimation with b =2. The RG
transformation is performed at a particular time, and so T
commutes with c}idt on the left-hand side of the master
equation. The RG transformation is performed using the
transfer matrix,

1M„„+i(K)=exp[4K(o„o„+,+p„p„+i

+ancrn+ lpnpn+ 1 }l

exp[ V(cr„,p, n, o'n+ i&pn+ i)]

where
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and

P ' =P, (o, p) W; (cr, p, )

P ""' =P, (a, p) W; "(o,p) .
(a, ) .

Note that detailed balance tells us that P ' is indepen-
(o;p&)

dent of o,; and that P ' ' depends only on the product
(o;p;).

If i =2n +1, the contribution to the renormalized

I

T

R(P,P)=P,' 1+Ii' go,'+h„'gp, ,', (l5)
i i

where the rescaled field is h' =l,h with A, =2.
The renormalization of the right-hand side proceeds

similarly:

L,P=QQP '2I.a, +gP '"' g(2a.a, ), (16)
i a l a

where

right-hand side vanishes. This is clear for the first term
since

(a2. +l)Trp a2„+&
——0 . (17)

[(1,—1),( —1,1)],
where within each pair P ' ' is the same, and so this
term also vanishes. Thus,

(a;p,;)TrP ' ' (h erg„+)+h„pi„+,)=D.

If i =2n, the first term is

In the second term the trace is performed over rrz„+ i and

p,2„+,. We can group the terms in this sum into pairs of
terms

(o, p) = [(1,1),( —1,—1)]

2~Niz2pg g g 2~ Nci2nPe (M2n —2, 2n —i 'M2n —i, 2n ) (M2n, 2e+ i M2n+ i, 2@+2)
n a n a

(19)

where

(Mzs 1, 2a M—2n, 2rt+1 ) xp( V2rt —1, 2n)W2n(+ p) p( V2n, 2n+1) (2D)

and P,' " ' "+ ' is the renormalized equilibrium probability neglecting those spins from 2n —2 to 2n +2. The factor
W2„ in P '" does not effect the renormalization of those spina outside the range 2n —2 to 2n +2, and these each give a
factor AM(K'). This accounts for the factor P,'' " ' "+ ' in the above equation. The other terms include the effects of
W2„, which change the transfer matrix Mi„ i 2„ into M2„' i i„.

The second term on the right-hand side of the master equation can be treated similarly:

gP '"' 2k~a( ——gg(2h~rx„')P, ' " ' "+
(M2g —2, 2g —]'M2n —i, 2n) (M2n, 2n+1'M2n+1, 2np2) ~

i a n a
(21)

where

(Ã2. i, znMin, in+i)(op) (&p)

=exp(Vz„ i i„)W2„"(0,p)exp(&z„ i„+i) .

%'e obtain

Near the fixed point we find

M M' '=(1/V2)AM'~'

and

M.M'~&' = ( I /v 2)AM'

If we substitute (26) into (19) and (21), we find

R gg(P '+P ' ')2h a;

(26)

X X
~(p)

xU (1/x) U
~(n)

(1/x)U xU

(23)
i a

=-,' g g (P"" +P"""")2a.a'„, (27)

X R
R X (25)

I

p ) g2~ ( ') g~ ( ') ~ (2 —2, 2n+2)

x 1/x 1 1 1/x xX= 1/, U=
1 1, R=

I I
pi nl s) g 2~~ (a'P') ~i (~'p, ')p~ (2n —2, 2n+2)—n —1, n n, n+1 e

,(a„') r(~nI'n )Note that P' " is independent of a„', and P' " " de-
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pends only on (a„'p„'), as required. The factor of A is in-

cluded so as not to disturb the normalization of the proba-
bility, see (12). From (27) we have

R (L P ) =L ' 1+—,
'

h ~ g o,' + ,
'

h ~—gpI
l

From (15) we now have

R(LP) = , L—'$',

and so the master equation becomes

r,—a/arP'(a, i ', t) = ,'L—'y'.

(31)

(32)

=L 1+ ~ii~ga(. + 4ii~ QADI
l l

(30)

We can now define the renormalized time scale
ro =4'To=b To, which yields a master equation of the same
form. This gives us z =2 which agrees with the result in
the usual Ising case.

GENERALIZATIONS OF THE METHOD

The calculation described above was also extended to the case of the eight-state model, for which we must add another
Ising degree of freedom at each site. The reduced Hamiltonian is

PH 8 K (anan+1+8'epn+i+Tzrn+i+anan+ipnpn+ i

+Ii' n p'n + 1rn rn +1+an an + 1 rn rn + i +an an + ip n p'n + 1 rn rn ~ 1+ 1 }

1

gÃ(an~ ps~ rn~ an +1~ 0'a+1~+a+1)+ s K) (33}

The operator I. becomes

g g P, (a, p, ,~) W; (o, p, r)(1 P; )—
i a

+ g g P, (a, p, r)W, ~(a, p, r)(1 P; PP)—
i (a P)

+ QP, (a, p, r)W; "'(o,p, r)(1 P; P,"P ), —

I 0

iO
—I

where I is the 4X4 unit matrix. This gives

M2, 2 +1 a2 +1 M2 +1, 2 +2

= AM„' „+i (K')(a„'+a„'+ i )/2,

(1—P; )W; (o', ij„r)P,(a, p, r)=0, ,

(1 P; PP) W; ~(a,—p, r)P, (a, p, r) =0,
(1 P; P&"P&') W; "'—(a, p, ,r)P, (a, p, r) =0,

and we choose

(35)

where a is a, p, or r, and (a, P} denotes any of the three
pairs of spins.

The detailed balance condition is

and again we have A,~=2 for all a.
The right-hand side of the master equation is

LP=gg P '+P ' ''+ g P '' 2h (r}a, ,
i a

P, ~a,.

where

P " ' =P,(a, p, r)W; ~(a, p, r),

(38)

P is now

P; PI'P P, (a, p, r)
P, (o, p, r)

(36) If i =2n +1, the contribution is again zero, as pairs of
terms with the same P' ' factors cancel. The case of
i =2n proceeds as before with

8' V
M (cr) (39)

We use the same RG transformation and find the follow-
ing recursion relations:

Y V

A(x'} =x' +7x

A(x') '=2x +6x
(37)

(41)

where x =e
To calculate M2„, 2„+&.a2„+&.M&„+& 2„+2, we make

use of the symmetry under relabeling of the Ising spins.
%'e thus choose to consider the a with a matrix

where

x U (1/x)U U U

W(1/ )U3UyV(1/x)U
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X

1/x
F=

1/x

X

1/x 1/x x

x x 1/x
x3 x 1/x

1/x 1/x x

x' 1/x

1/x x
1/x 1/x

1/x 1/x

1/x 1/x

1/x 1/x
1/x x
x 1/x

1/x 1/x

1/x 1/x

x 1/x

1/x x

1/x x
x 1/x
1/x 1/x

1/x 1/x

Near the fixed point we again have

M M"'=(1/v2)~M' '
for all of the M'~', M' t ', and M'~& '. Thus,

(42)

(43)
and we find z =2 again.

We now consider extending the above arguments to
q=2 with nt &3. We have not yet been able to show
that all of the above generalizes for arbitrary nt. The A,

for the fields can be easily shown to be 2, and the terms
with i =2n+1 in the RG transformation of the right-
hand side still vanish, but the lack of an explicit form for
the M' ' makes it hard to show that in general
M M' '=( I/v 2)AM' ' for all the possible M' '

If we conjecture that this still holds, then it is clear that

the method generalizes to any number of coupled Ising
models. A recent paper by Forgacs et aI. analyzes the
dynamics of the Potts model using a Migdal-type recur-
sion method. They consider energylike perturbations
from equilibrium and find z =2 independent of q.

The result z =2 for the one-dimensional Potts model is
further supported by extending the domain-wall diffusion
arguments of Cordery et al." to the case of the Potts
model. They regard the relaxation time as the time re-
quired to flip a cluster of spins of size g' by the motion of
a domain wall across the cluster. It is clear from the form
of the Potts Hamiltonian that the flipping of the spin at a
domain wall does not change the energy of the system and
so it has a transition rate of order unity. The usual
random-walk arguments imply that the number of steps
required to move a domain wall a distance g is g . Since
the time for each step is of order unity, we see that r= g
and we find z =2, which agrees with the result obtained

by the RG arguments given above.
We also considered a slight generalization of the four-

state model which allows the four-spin interaction term in
the Hamiltonian to appear with a new field L, which
may, in general, be different from E. We again find
z =2, suggesting that this result may be valid for any
one-dimensional model, provided the dynamics can be ex™
pressed in terms of Ising spin flips. We conclude, at least
for the cases 2, 4, and 8, that the dynamical critical ex-
ponent for the Potts model in one dimension is 2 for both
energylike and magneticlike perturbations.
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