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The analysis of dynamic nonlocal longitudinal dielectric response properties of a slab of quantum

plasma in a magnetic field H (perpendicular to the plane slab faces) is carried out here with use of a

thermodynamic Greens-function formulation of the random-phase approximation (RPA). The
magnetic field Green's function for the slab incorporates magnetic field effects in terms of a closed-

form integral representation, and the boundary condition of specular reflection is imposed in two al-

ternative ways, in terms of (I) a partial eigenfunction expansion, and (2) an image series of infinite-

space Green's functions. The RPA integral equation is solved for the direct slab dielectric function

subject to Landau quantization, with results expressed in terms of the density perturbation response

function 9P =5p/5V which depends on both z and z because of the lack of translational invariance

perpendicular to the slab faces (parallel to 8=Hz). Correspondingly, A depends on two conjugate
wave-vector transform variables q, and q,

'
which are interpreted as indices for rows and columns of

A' regarded as a matrix. The magnetic field dependencies and nonlocality of both the diagonal and

nondiagonal elements of 9F are thoroughly examined here. Applications of this work to the Landau

quantized nonlocal slab surface-plasmon dispersion relation are discussed.

I. INTRODUCTION

The substantial growth of research on solid surface
properties in general has brought with it an intensified in-

terest in dynamic solid-state plasma response phenomena
near surfaces, and several serious efforts have been direct-
ed at determining the role of nonlocality in the theory of
dynamic plasma response properties near solid surfaces.
The object of this work is to determine the effects of Lan-

dau quantization of electron orbits due to an ambient

magnetic field on the nonlocal dynamic longitudinal elec-

trostatic dielectric response properties of a slab of quan-

tum plasma of finite thickness, with the magnetic field
perpendicular to the plane slab faces. A thermodynamic
Green's-function' formulation of the random-phase ap-
proximation (RPA) is employed in the description of
Landau-quantized plasma dynamics, subject to the
boundary condition of specular reflection of the electrons
at the slab surfaces. The Green's function developed for
use here, which should have broad utility in other prob-
lems involving electron dynamics in a plasma slab subject
to Landau quantization, incorporates magnetic field ef-
fects in terms of a closed-form integral representation
which is useful for obtaining both low- and high-field lim-
its, and it is presented in two alternative but equivalent
forms which impose on the Green's function the boundary
condition of specular reflection at the slab faces: (1) a
partial eigenfunction expansion and (2) an image series of
infinite-space Green's functions. The slab Green's func-
tion is used to determine the magnetic field dependence of
the density of a thick semi-infinite quantum plasma as a
function of chemical potential.

It is appropriate to observe that there are two distinct
and different breakdowns of spatial translational invari-
ance involved in the problem at hand. One is associated

with the fact that the magnetic field drives the electrons
into circular orbitals, thereby violating conservation of the
direction of the momentum vector: Since the magnetic
Geld is taken perpendicular to the slab faces here, this
breakdown of spatial translational invariance occurs in
the plane perpendicular to the field and parallel to the
plane slab faces, and it is accompanied by the introduction
of a characteristic magnetic field Green's-function"' fac-
tor C(r, r ') [vectors are denoted as r=(r, z), where the
overbar r denotes the projection of the vector onto the
plane of the slab faces perpendicular to the magnetic
fiel],

G(r, t;r', t') = C(r, r ')6 '(r r', z,z', t t'), —— (1.2)

leaving the rest of the Green's function
G '(r r', z,z', t t') effecti—vely —spatially translationally
invariant in the plane perpendicular to the magnetic field
(and parallel to the slab faces), since the magnitude of the
associated momentum is conserved with a magnetic field
as well as without (G ' is independent of gauge P as well).
Since displacements along the field H=Hz (such as occur
in superposing images of the infinite-space Green s func-
tion to impose the boundary condition of specular reflec-
tion) do not affect the exponent r HXr '=r.H.
X(r '+ztt), the function C(r, r ') is unaffected by such
displacements, and the same function C(r, r ') character-
izes the exact slab Green's function as well as the
infinite-space Green*s function, embodying all r +r '

dependence for both cases. Moreover, the ring diagrams'
of the RPA involve C(r, r ') in the form
C(r, r ')C(r ', r) =1, so the dielectric properties are deter-

C(r, r ') =exp{i[(e/2)r H Xr ' —p(r)+p(r ')]],
which embodies the [r+r '] and gauge (P) dependencies
of the Green's function G(r, t;r't'), where
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mined by a convolution integral of two
6'(T r—',z,z', t t—') functions and they are effectively

spatially translationally invariant in the plane perpendicu-

lar to the magnetic field and parallel to the slab faces;
consequently the dielectric properties can be described in

terms of a single wave-vector transform variable q conju-

gate to [r r—'], as one should expect physically in a spa-
tially homogeneous magnetic field.

The other breakdown of spatial translational invariance
is associated with the specular reflection of electrons at
the slab faces, resulting in nonconservation of momentum
perpendicular to the slab faces and parallel to the magnet-
ic field. This breakdown of spatial translational invari-
ance parallel to the field is an essential feature of the
problem at hand and the dielectric properties of the slab
correspondingly lack spatial translational invariance in
the direction perpendicular to the slab faces and parallel
to the field. Our analysis of the magnetic field depen-
dence of the slab dielectric function is carried out in terms
of the RPA density perturbation response function
9P =5pi5V employing transform techniques developed by
Newns and using the Landau-quantized slab Green's
function discussed above. Since the slab dielectric func-
tion lacks spatial translational invariance along the field z
direction, 9F depends on both z and z' in an essential way
or, alternatively, it depends on two conjugate ~ave-
number transform variables q, and q,': Viewing 9F as a
matrix whose rows and columns are indexed by q, and q,',
respectively, the nondiagonal elements are generally non-
trivial and are evaluated in detail here along with the di-
agonal elements. Following Newns'sz designation of the
diagonal and nondiagonal parts of 9P by D and —A,
respectively, we write

~(q~qs~qx ~v) =D(q~qztv+ ~ (q~qg~qs '»)
~

'4&x

and construct closed-form convolution-integral represen-
tations for both D and —A in terms of Green's func-
tions. Special attention is given to D in the thick semi-
infinite slab limit, where it is seen to be simply related to
the magnetic-field-dependent RPA bulk infinite-space
longitudinal dielectric function tap~(q, co)'. Very extensive
evaluations of the nondiagonal elements —A are carried
out here, and the relation of these elements to two-
dimensional density perturbation response is carefully ex-
amined. It should be noted that these detailed evaluations
of nondiagonal elements can be employed to enrich the
body of information we have developed concerning the di-

agonal elements of a slab of finite thickness by using the
identity

D (q,q, ;v) = g A (q, q„q,';v),

position of these studies. It should be noted that the pres-
ence of slab boundaries adds considerable complication to
the solution of the RPA integral equation for the inverse
dielectric function and we have discussed this in another
paper: Our intention here is directed at the construction
of a closed-form solution for the direct dielectric function
of the slab in a normal magnetic fiel rather than its in-
verse. The inversion procedure involved in formulating
the slab surface-plasmon dispersion relation in a magnetic
field will also be reviewed, with emphasis on Newns's "di-
agonal" approximation in which nondiagonal elements
—A (q, q„q,';v) are neglected, although our detailed
evaluation of such nondiagonal elements provides the
basis for a more refined and accurate analysis of the roles
of the magnetic field, nonlocality, and spatial inhomo-
geneity in the surface-plasmon spectrum. It also provides
the means to analyze dynamic, nonlocal inhoinogenous
surface interactions of the slab magnetoplasma, as well as
its correlation and exchange phenomena, and we shall dis-
cuss these applications in later papers.

II. UNCORRELATED ONE-ELECTRON GREEN'S
PUNCTION POR A SLAB OF QUANTUM PLASMA

IN MAGNETIC FIELD

In order to incorporate the magnetic field in an analyti-

cally tractable manner, we shall formulate the longitudi-
nal dielectric response function of a slab of Landau-
quantized plasma in terms of thermodynamic Green's
functions. ' The uncorrelated one-electron thermodynamic
Green's function for a slab (in magnetic field) is developed
in this section in terms of a partial eigenfunction expan-
sion and an image-series representation, and it is applied
to the evaluation of magnetic field effects on the uncorre-
lated density of a semi-infinite (thick) slab. The magnetic
field is perpendicular to the plane slab faces throughout
this work (Fig. 1).

A. Partial eigenfunction expansion
of the Green's function for a slab

plasma in magnetic field

The calculation of the uncorrelated one-electron
Green's function for a slab of quantum plasma in magnet-
ic field may proceed from the differential equation for
the spectral weight' function M '(Ã, z,z'; T) of

which Newns observed to be the condition that the density
perturbation vanish at the slab surface.

Two brief conference papers were presented earlier to
summarize the results of our studies of the slab Green's
function in a magnetic field, and of the dynainic nonlocal
and inhomogeneous longitudinal dielectric response func-
tion of a slab of quantum magnetoplasma. Our intention
is to set forth here a much more detailed and thorough ex-

FIG. 1. Plane slab of solid-state plasma in a magnetic field
perpendicular to the slab surfaces.
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po—H g i+(+i W '(R,z,z', T)=0,
aT.

(2.1)

and the differential equation above involves z +z' only as
it is associated with the presence of the slab boundaries.
Of course, we still have the sum rule

M '(R,z,z'; T =0)=5(R )5(z —z') .

[The notation of Refs. 1 and 4—6 will generally be main-

tained here, except where otherwise noted. The magnetic
field is perpendicular to the planar slab boundaries, with
H=Hz and the plane of the boundaries being the (x,y)
plane. 20 position vectors in this plane are denoted as
r=(x,y), whereas 3D position vectors are denoted as
r (r,z}=(x,y, z) For .wave vectors in 3D we use

q=(q, q, ), and for 2D we use q=(q„,q„), etc. Q and v
are frequency variables, whereas T, ti, and tz are time
variables ( T =t, —t2). We take Landau-level energy
separation (A'-+1} to match spin splitting in most of this
work. Cyclotron frequency cu, =eH/mc, po eA/2——mc, H
is the magnetic field strength, m is the effective mass, the
Fermi-Dirac distribution function fo(ai) =(1+e+ ~')

g is the chemical potential, thermal energy P '=kgT0
(kz is the Boltzmann constant, To is absolute tempera-
ture in degrees Kelvin), ~= iP, th—e unit step function
rl+(x) =1 for x & 0, and =0 for x &0, and the Pauli spin
matrix o&——(0 i). Other notation is defined in the text or
in Refs. 1 and 4—6 (generally, we employ standard nota-
tion). ]

This differential equation may be Fourier-transformed
with respect to R as was done in the infinite-plasma case.
However, the slab plasma boundary conditions, which we
take to represent specular reflection of electrons at the
slab boundaries (z=O and d; z'=0 and d), introduce

I

G '(R,z,z', r —t') (where R =r r—', T =t r'—},which was

developed in Ref. 1(a). It should be noted that dependen-

cies on gauge and on r+ r ', insofar as it is associated with

the magnetic field, have already been eliminated, so the
use of Ref. 1(a) for H=Hz perpendicular to the slab faces
yields (we take fill throughout this paper, except where

otherwise indicated)

Vy 1 a2 112 co& (X'+ F')
2m 2m azz 8

This satisfies the boundary conditions if p =(nm/d)
(n =1,2, 3, . . . ), and if P„(z')=0 for z'=0 and z'=d.
Since the eigenfunctions satisfy

sin(p, „z)= —p,„sin(p z),
az2

it is clear that P '(p~, R;T) satisfies the following equa-
tion, which is identical in form to the corresponding
infinite-space equation:

p~ m doc (X+I')
2m 2m 8

poHo—i+ /+i P '(p, R; T)=0 .
T

(2.2)

The solution of this infinit-space equation for
W'(p,„,R;T) is given in momentum space R~P [see
Ref. 1(a)] as if there were no boundaries, so we may use
the known-infinite-space result

M '(p, P;T) =K exp[i (g poHcr—& p /2—m)T]

toc T
)& sec

—ip & AT
exp tan

m Cuc 2

(2.3)

Thus, going back to position representation, the spectral
weight for the slab Green's function is given by

essential spatial inhomogeneity into the prqblem through
the requirement that the electron wave functions and
Green's function shall all vanish at the slab boundaries.
The concomitant dependence of the Green's function on
z+z' will first be represented here through a partial
eigenfunction expansion with respect to the direction
parallel to the magnetic field. Since the Green's function
must vanish at the slab boundaries, we also must have

P '(R,z,z', T) =0 for z =O,d, and z'=O, d .

In order to expand sV' in the complete set of eigenfunc-
tions referring to the direction parallel to the field, we em-
ploy eigenfunctions of the Hermitian operator a /az,
which vanish at the boundaries, setting

W '(R,z,z', T)= g sin(p z)P„(z')P '(p,„,R; T) .

P T

d P 2

M'(R, z,z';T)=K+sin(p z)P„(z') J 2e' exp i g poHoi — T—
(2~)2 2m

In the limit T~O we have

cT
&(sec

I' cT
exp —i tan

mac 2
(2.4}

sV'(R, z,z';T=O)=K+sin(p z}P„(z')I exp[i(P R)]=K+si (pnz)P„(z')5(R),
(2n )

where 5(R ) is a two-dimensional delta function. Since the sum rule dictates that

W '(R,z,z'; T =0)=5(R)=5(R )5(z —z'),
we have
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5(z —z')=E g sin(p z)P„(z'),
n=1

whence Pn(z'}—+sin(p~z') (by orthogonality}, which appropriately vanishes at z'=0, and z'=d. Note that E must be so
chosen to give the eigenfunctions proper normahzation to unity, so that IC =2/d. Thus, we then obtain the spectral
weight for the slab Green's function in magnetic field as

M'(R, z,z', T)=—g sin(p, „z}sin(p z'}
d n=]

e.zX 2
8 SCC

(2n. )z

r

p p2 NcT
exp i g —p~o3 — T exp i —tan2' ma)c 2

(2.5)

Note that the integral f [d P/(2m) ]( ) is just the corresponding infinite-plasma integral [see Ref. 1(a)], and we may
write it as Po(p,R; T) in the notation of Ref. 1(a). Hence, we have

P'(R, z,z';T)= —g sin(p z)sin(p z')Po(p~, R;T) .
d n=i

Since %so(p,R;T) denotes the corresponding infinite-plasma spectral weight function with no boundaries, it is clear
that the slab Green's functions 6 ~ & and 6

& ( are given by the partial eigenfunction expansion

6 I & (R,z,z', T)

6 i ((R,z,z', T)

6 lo&(p'= —g sin(p z) sin(p z'} ' —,
n=1 10( pzn»

(2.6)

where 6 &o&(p~,R; T) and 6 ',o((p~, R;T) are the infinite-space Green's functions, as if no boundaries were present, and
are given by [Ref. 1(a)]

6 lo (p,„,R;T}

6 io((p
'=exp(i(T) J

i [1—f—o(ro) ]
ifo(~)

—lCi)Te

»

dzP 2
gclpT

gled

Xexp j p g» +

cue ~
Xsec

p 2

exp —i tan
ma)c

a)c ~
2

(2.7)

or, alternatively, one may execute the P integral as the Fourier transform of a Gaussian to obtain

6 io (p,R;T)

6 io((p~ R'T}

—
~ [1—fo(~)] —co)T

ufo(ro)

2 2
l07T Pns roc c~X dT'e'" exp i p~cr3+ — T' . , exp

»Cl 2m 4@i sin(io, T'/2) 4 tan(~, T'/2)

(2.8)

In all of the T integrals the contour must be understood as being slightly displaced off the real axis such that it becomes
the standard inverse Laplace-transform contour upon rotation through 90 .
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8. Image-series representation of the Green's function for the slab plasma in magnetic field

In this section the uncorrelated one-electron Green s function for the magnetic field problem is developed using an
image-series technique appropriate to slab boundaries. This is an equivalent alternative representation to the partial
eigenfunction expansion given above. This image-series representation of the Green s function is particularly useful in
cases where the slab is thick, when only a small number of images are significant in the calculation of the Green s func-
tion.

The basic infinite-space Green s function for a bulk plasina in magnetic field without boundaries, which will be em-

ployed in the construction of the image Green s function for the slab plasma, is known to be given in position representa-
tion by 6 'io [Ref. 1(a), A'= 1]

6 io) (R,z,z'; T)

6 10((R,Z, Z; T)

+. d i [fo(~)—ll
=exp(i(T) ', , 'e

lg O(~f

' 1/2

dT' e'f +~, T n2'm niobe —ip,&~ &'
e

00 2m i T' i sin(co, T'l2)

+exp
imm, A

cot(co, T'/2) exp, (z —z')'

Gio)(R, Iz —z'I;T)
6 io((R, I

z —z' I;T) .
(2.9)

—6 ', o(R,z, 2nd z'; T)] . —(2.9a)

This satisfies the Green s-function equation in z~[O,d]
I

+ 00

6 '&o(R*
I
d —2nd —z'

I
'») 6 '&o(R,

I
d —2nd +z'

I

The above infinite-space Green's function can be em-

ployed to obtain the finite slab Green's function by super-

posing a series of such infinite-space Greens functions
where the source points are distributed at appropriate
image-source locations in accordance with finite-slab
boundary conditions (specular reflection) which dictate
the vanishing of the Green's function at the faces of the
slab (with H perpendicular to the slab faces).

The appropriate superposition of infinite-space Green s
functions to achieve vanishing of the resulting slab
Green's function at the slab faces is given by

+ 00

6 i(R,z,z', T)= g [G io(R,z, 2nd+z';T)

since only one source point n =0 occurs in this funda-
mental interval at z'. Moreover, it is manifestly periodic
in z,z' with period 2d. Since 6 io is the infinite-space
Green's function (no boundaries), we have

+ 00

6 i(R,z,z';T)= g 6 io(» Iz —2nd —z' I;T)

—6 io(R, I
z —2nd +z' I;T) . (2.9b)

To show that 6 i(R,Z,Z', T) as given by this image series
does indeed satisfy the boundary conditions at the slab
faces, we note the following.

(a) 6 i(R,z,z';T) is odd under z~ —z, and therefore
6'i(R, z=0, z';T) vanishes at Z=0 (To prove this, set
z~ —zand n~ n.)—

(b) 6 i(R, z =d, z';T) vanishes at z =d, since we have
6 i (R, z =d, z'; T) given as

6', (R, Iz'+(2n —1)d I;T)— g 6 io(R, Iz' —(2n —1)d I'») .

If we now put n ~ n in the seco—nd series on the right-
hand side, and recall that the entire Green's function has
period 2d, then it is clear that the second term on the
right-hand side just cancels the first term, so that the
Green's function vanishes at z =d, as it should.

I

(c) Having proved in (a) and (b) that 6 i(R,z,z', T) van-
ishes at z =O,d above, one may invoke similar arguments
to prove that it similarly vanishes at z'=O, d (one can
probably prove the latter by reciprocity as well).

The equivalence of this image-series representation of
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the Green's function with the partial eigenfunction expan-
sion given above for the Green's function may be estab-
lished using the Poisson sum formula. The image series is
especially useful for the case of a very thick slab, for in
this case only the first few terms of the image series are
needed for an accurate approximation to the Green's func-
tion.

C. Evaluation of density fox a semi-infinite
medium in magnetic field

The density may be calculated from the Green's func-
tion using

N= i Tr—f d r lim lim lim 6 i&(r,z,r', z';T),
T-+0 s'-+z y'~p

terms of the image series [Eq. (2.9b)] contribute, whence

6 i(R,z,z;T)~6 lo(Z
I
z —z'

I
T)—6 'io(~

I
z +z'

I
T) .

The first term just corresponds to the infinite-bulk-plasma
expression for density in quantizing magnetic field, and
has been evaluated earlier. "' The second term provides
the contribution of the only active image for the semi-
infinite plasma, and it represents the effect of the
bounchuy on the expression for density. Thus the density

p is given by

p=p1+p2 ———i lim lim lim Tr
T-+0 s~g' 7~7'

X[6', o(r r', —Iz —z' I;T)

(2.10a)
—6'io((r —r ',

I

z+z' I;T)] (2.10b)

and an uncorrelated evaluation of the density will be ob-
tained using the uncorrelated Green's function above. In
the semi-infinite thick-slab limit (d 00 ), only the n =0

I

where the infinite-bulk-plasma expression for density p,
has been evaluated in Ref. 1(a) as (restore R here)

T

dco dx;~z diaz —iPz2(xl2m ) d P —iP
2 fiCOzx

pi =2, fo(co)r)+(co) e'"' e
2

exp tan
(2ir)2 mfico, 2

and evaluation of the Gaussian momentum integrals yields
'2 ' '1/2

m fico'

i tan(iiico, x /2)
(2.11a)

The second term p2, which arises from the image and represents the effect of the boundary, may be similarly evaluated
as

3
dco dx;P2= —2 0 cO 'g+ co 8
$3 2m' 2i7

1/2
m fico,

exp
i tan(fico, x /2)

—27tlZ 2

fPlx
(2.11b)

Thus the semi-infinite slab density p in magnetic field is given by
1/2

0

fo(co) '
+& ds „, v ~ 2mp=2 dco i)~(co) e"'

—ice+a 27rl 277 s

m Ace,
1 —exp

tanh(iso, s /2)

—27?lz 2

R2s
(2.11c)

In the nondegenerate case, we may put fo(co)
-+e~'e i, so that the co and s integrations are Laplace
transform and inverse. Then one immediately obtains

' 1/2
2 exp(gP) v n 2m

2m P

X
m Ace,

(1 e
—2mz jPtf

)
tanh(fico, P/2)

(2.12)

This nondegenerate evaluation of p has the requisite prop-
erties of vanishing at the bounding surface z=o and ap-
proaching the infinite bulk value deep in the medium as
Z~ (I) ~

The evaluation of p for the semi-infinite medium in the
degenerate case involves the evaluation of the s integral of
Eq. (2.llc), which is, in fact, a prototype of many in-
tegrals which occur in this work. The s integral is an in-
verse Laplace transform whose integrand is responsible
for two distinct types of contributions associated with the

two distinct types of singularities of the s integrand,
namely (a) a branch cut along the negative real axis with a
branch point at the origin, and (b) isolated singularities
evenly spaced along the imaginary s axis at
s =s„=+i2nn/fico, These two. types of singularities re-
sult in contributions which are (a) monotonic in magnetic
field dependence and (b) oscillatory in the de Haas —van
Alphen (dHvA) sense, respectively. We will first consider
an evaluation appropriate to low magnetic field
fico, /$~~1, and later discuss an alternative evaluation
procedure appropriate to higher-field strength.

For low-field strength (fico, g& g) in the degenerate lim-
it, we separate the s integral into a branch-cut contribu-
tion denoted by the subscript I and isolated (pole) singu-
larity contributions denoted by the subscript C„. At low
field the branch-cut contribution may be approximated by
replacing 1/tanh(fico, s/2) by the leading term of its
Laurent expansion [but one can not go much further with
this Laurent expansion in the branch-cut integral for
reasons discussed in Ref. 1(a), p. 57], obtaining pr=pi~+ p21-, where
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r

QP S ~ 7T

r 2iri 2m

g3/2

3/2

(2.13a}

cept for the fact that here the s integral represents a
Bessel function of half-integer order, which is an elemen-

tary function [see Ref. 7(b), Vol. I, p. 245, Eqs. (33} and
(35), and Ref. 7(a), Vol. II, p. 15, Eq. (5) and p. 79, Eq.
(14)]. This low-field approximation is just the zero-field
limit quoted by Newns as follows (pb„~i,

—=p&r):

1' 3 I

dN S us
r 2n.i 2n.

' 3/2

e
—2m@2/4 s

3 slii(2pFz) 3 cos(2pFz)
pr =Pbui 1 —

(2 )3
+

(2 )2
(2.14)

m iii sin(2z3/2m g/iri)

2V ~(2m)'"z'

+ 2 (2.13b)
R g'/2 cos(2z3/2m glori)

2 n.mz

The details of integrating p&r have been discussed in Ref.
1(a) (Appendix I), and the integration of P2r is similar ex-

(except that one must bear in mind that pF —V'2m( in-
volves magnetic field corrections through the implicit
dependence of g on applied field), which has the requisite
properties of vanishing at the bounding surface z=O and
approaching the inf»ite bulk value deep in the medium as
z~ ~ by way of a Friedel-Kohn "wiggle. "

The de Haas —van Alphen oscillatory terms arising
from the isolated singularities of the s integrand are more
interesting for our purposes. Integrating by parts on co,
these terms are given by pdH„A ——g„pc, where

" da) dfo() ds exp(s~) 2 2/Si—2m@ / s)
~ 2~& s tanh(%co, s/2)

(2.15}

The contour denoted by C„ is a small circle about the nth isolated singularity at s =s„=+i 2mn/Ace, ( n =1,2, . . . , ao ).
Since the s integrand has a simple pole at s„, the integral is readily evaluated by residues as

~ ~ ~

~

ds exp[+i (2irn co/fico, )] ~c 2mz2
. ( . )= 1 —exp

2iri (+12irn /~, )3/2 fico, ' i 2n n

and the ensuing co integral may be performed for finite temperature as indicated in Ref. 1(a) (Appendix I) with the result

pdHvA g Pc
m 3/2(~ )1/2

n PA'

3~ ma)~z 2

4 1m R
+

n '/ sinh(2m nA/co, P)

2mn g 3m 2mn gcos — —eos
C C

(2.16}

w»ch has the requisite properties of vanishing at the bounding surface z=O and approaching the infinite bulk value
deep» the medium as z~ ~. It should be noted that the effective dHvA oscillation phase is dependent on distance z
from the bounding surface.

Considering an alternative evaluation of p appropriate to higher-magnetic-field strength in the degenerate ease, we
rewrite the integrand of (2.1lc}by introducing the expansion

Ao), s
tanh

00 ACO~ S= g g exp (+1—1 —2r)
+ r=0 2

The evaluation of pi is then straightforward, and the detailed result obtained in Ref. 1(b) is given by (zero temperature)

(2.17a)

For p2, the associated s integral represents a Bessel function of half-integer order [Ref. 7(a), Vol. II„p. 15, Eq. (5)] which
is elementary, —J 1/2(z) =3/2/n cosz/z' The ensuing co .integral at zero temperature is elementary and it yields the
result

m co~

21/2++ ~+,~, 2~2m z
(2.17b}
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It should be noted that p2 cancels p& at z=o, and p2 van-

ishes at z~ac, as one should expect. Moreover, the low-

field limit of this expression in which g,~f (associated

with the close packing of Landau eigenstates) correctly
yields the zero-field result for p2. The quantum strong-
field limit (fico, /g~ 1, all electrons in the lowest Landau
state) is given by the leading terms in pi and pz, namely

1
p =pb„iq 1 — sin(2pFz)

2prz
(2.18)

where pb~k
——(m~~ co,g'~ )/(2'~ m iri ) is the bulk density

expression in the quantum strong-field limit. [The bulk

density expression here in the quantum strong-field limit
has a different functional form than does pir for low
magnetic field in Eq. (2.14) due to differing functional
dependences of number density on chemical potential in

the two cases. Nonetheless, both represent the same phys-
ical quantity, bulk density. (As elsewhere in this paper,
the chemical potential referred to is understood to be the
one appropriate to the ambient-magnetic-field strength in
the case considered. ).] It is clear that there is Friedel-
Kohn "wiggle" behavior here, albeit one dimensional
(parallel to the field) due to the extremely high field.

III. LONGITUDINAL DIELECTRIC RESPONSE
OF A SLAB OF QUANTUM PLASMA

IN A MAGNETIC FIELD
PERPENDICULAR TO THE SLAB

This study of the longitudinal dielectric response prop-
erties of a slab of quantum plasma in a magnetic field
(perpendicular to the slab faces) is undertaken within the
framework of the random-phase approximation (RPA).
Using a Green s-function formulation of the longitudinal
dielectric function e, we generalize Newns s description of
longitudinal response properties of a slab in terms of the
density perturbation response matrix 9F=5p/5V to in-
clude magnetic field effects associated with Landau
quantization. In the thick semi-infinite limit the diagonal
part of 9F is seen to be determined by the bulk infinite-
space plasma dielectric function in the presence of an am-
bient magnetic field, as was found to be the case in the
zero-field limit. This result is valid for degenerate solid-
state magnetoplasmas as well as for nondegenerate gase-
ous magnetized plasmas.

A. Formulation in terms of the density
perturbation response matrix

The description of longitudinal dielectric response
properties of a slab of quantum plasma in magnetic field
in the random-phase approximation devolves upon the in-
tegral equation"' for the inverse dielectric function
J (1,2}=5V(1)/5U(2),

E(1,2)=5(1—2) —i f d(3) f d(4)u(1 —3)

XG i(3,4)6 i(4, 3+)&(4,2)

slab boundaries and magnetic field perpendicular to the
slab which has been evaluated in terms of a partial eigen-
function expansion as well as an image-series representa-
tion in Sec. II. The presence of the slab boundaries and
the concomitant lack of spatial translational invariance re-
sult in substantial difficulty in solving for K(1,2), and our
efforts at solving the integral equation exactly for E(1,2)
are discussed elsewhere. It is simpler to write the solu-
tion for the direct dielectric function e(1,2}=5U(1)/
5V(2), which is inverse to E(1,2) in the sense that

3K 1,3e32 = 3e1,3K 32

(3.2)

e(1,2) =5(1—2) —f d (3)u (1—3)9P(3,2) . (3.4)

[It should be noted that 9t =5p/5 V as defined here differs
from the corresponding density perturbation response
function 9t defined by Newns by a minus sign. This is
a consequence of the fact that our potentials are just
the negatives of the potentials defined by Newns, since
we define potentials in accordance with the usual Poisson
equation V (potential) = —4n (charge density), whereas
Newns's potentials are defined to satisfy V (potential)
= + 4ir(charge density) and are thus clearly just the nega-
tives of our potentials. The concomitant difference in
sign between our 9F response function and Newns's coun-
terpart is clearly evident in the 9F term of Eq. (3.4), which
carries a minus sign explicitly, whereas the corresponding
term of Newns's Eq. (46} carries a plus sign instead. This
difference in sign between our SF response function and
Newns's counterpart applies to both the diagonal part D
and the nondiagonal part —A to be defined below by
9P(q, q„q,';v) =D(q,q„'v)5, —A (q, q„q,';v). ] The po-

larizability 4nao(1, 2) may be recognized as

4irao(1 2)= —f d(3)u(1 —3)9t(3 2) . (3.5)

The thermodynamic Green's function and dielectric
response functions (both inverse and direct} which we
have been dealing with here are antiperiodic and periodic,
respectively, in regard to time with period

iP= i lks—To, and, o—f course, time integrals are ex-
tended over the fundamental interval [O,r] In particular, .
e(1,2) is periodic and may be represented by a Fourier
senes

The solution of the RPA integral equation for the direct
dielectric function e(1,2) is given explicitly by

e(1,2) =5(1 2)+—i f d(3)u (1—3)6 ', (3,2)6 ', (2, 3+},
(3.3)

and this may be expressed' in terms of the density per-
turbation response function

%(1,2)—:5p(1)/5V(2) = iG ', (1—,2)6 ', (2, l+)

as follows:

(3.1)

[u(1—3) is the interparticle Coulomb potential], where
6 i is the uncorrelated Green's function in the presence of

1 'GATVe(1,2)= —g exp i (ri —i2) e(ri, ri v)
v even

(3.6)
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where the Fourier-series coefficient is given by

.KV
K(ri, r2,'v) = dT exp —i T e(r, ,r2 , T.),

0

( T =ti —tz) or, alternatively,

e(ri, r2', v) =5 (ri —rz}—f driu(ri —ri)9F(ri rz, v),

where

T 5p(3)
9t(rq, rz, v}= dT exp in.v—

0 7

(3.7)

C.] This Fourier-series coefficient is discontinuous across
the real frequency axis, and that discontinuity may be
used to obtain the corresponding spectral weight function
of the Martin-Schwinger spectral representation"' of the
periodic response function. However, we may alternative-

ly go directly to the corresponding retarded physical
response function by noting that its Fourier transform is

given by the Fourier-series coefficient evaluated above the

real frequency axis [Ref. 1(a), p. 10, footnote 6], involving

the replacement nv/v .~Q+i e .Thus, the Fourier
transform of the retarded physical response function

epbys(ri, r2&Q) is given by

1'

i —dT e ' ~'G 'i(rz, rz, T)
0

X G 'i(ri, r&., T} . — (3 8)

epi, y,(ri, rz, Q) =5'(r, —r, )

r3U r~ —r3

[Equations (3.6) and (3.7) here, along with Eq. (1.30ff} of
Ref. 1(a} and Eq. (1) of Ref. 4, employ a convention that
differs from the usual one given by Eq. (I.l 1) of Ref. 1(a)
and Eq. (5.19) of Ref. 1(c) in that the sign offrequency v is
reversed. This reversal of the sign of frequency does not
affect the real part of the response function which is an

even function of frequency. However, this sign reversal

negates the imaginary part of the response function since
it is an odd function of frequency. These comments
should be borne in mind in interpreting the results of thi's

work. The even (odd) properties of the real (imaginary)

parts of the response function are discussed in Appendix

X&(ri, rz, v~(r/n )[Q+ie]),
(3.9)

where 8F(ri, r2, v~(rim)[Q+ie]) is the retarded physical
response function representing the density perturbation.
%e nova explicitly construct the density perturbation
9t(r,z, r ',z';v) by substituting Eq. (2.6) into Eq. (3.8), and
obtain [note that all Green's functions appearing below
are the G io Green's functions appearing in (2.6) and (2.7),
and they refer to the uncorrelated infinite-space Green's
function as if no boundaries were present; for notational
convenience we hereafter drop the subscript "10" and
drop the prime, and write G 'io~G]

9P(r,z, r ',z', v) = f f exp[i(k —k ') (r —r ')]4 dk dk'
d (2n ) (2ir)

g sin(k, z) sin(k, z') sin(k, 'z)sin(k, 'z')F(k, k„k ', k,';v),
AL &Ok' &0

where k„k,' now play the roles of p~,p,'„+nm/d —of Eq. (2.6), and

F(k,k„'k ', k,';v)= i f d—t e ' ~'G&(k, k„' t)G&(k 'k,';t) . —

(3.10)

(3.11)

In accordance with the prescription discussed above to obtain the retarded physical response function we must now put
v~(r/m)[Q+ie]and , for convenience we write this as v~v+i5 [with 5=(~/n. )e]. It is also useful to express the t
integral f dt( . ) in terms of half-time axis in)egrals as was done in Ref. 1(a). Thus, for the integral

F(k,k„k ', k,';v+i5) we may set dt = dt+ di, and be assured of convergence,
0 0 00

iF(k, k, ;k ', k,';v+i5) = dt exp i (v+i5—)t —G & (k, k, ; —t)G & (k ', k,';t)
0 'r

'r

+ dt exp i (v+i5)t —G—&(k,k„t)G&(k ', k,';t) . —
OC 'r

(3.12)

(v i5)t G, (k, „k-t)G,-(k', ;k; )r
'r

Following the procedures of Ref. 1(a), this may be rewritten as

iF(k, kg, k ', kg, v+i5) = — f dt exp

+ f dtexp (v+i5)r G, (k,k, ; r)G, (k ', k,';t}—, (3.13)
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where we have translated the second t-integration variable through r (to get to the origin as a limit), and we have used
the antiperiodicity properties of G & and 6 &.

The physical response function for the slab of quantum plasma in magnetic field is therefore given in the (r,z) repre-
sentation by

~( g )
l4 f d k d k i($ $ ) (r p )

2 2

r z;r ',z'; +is = e
d (2n. ) (2n )

X g g sin(k, z) sin(k, z') sin(k,'z) sin(k, 'z')
k

g ~
—lf(Q —tf)G k, ] 6 t k& ~ t

(3.14)

Newns has pointed out that it is advantageous to em-

ploy the spatial Fourier representation defined by

d2f(r,z) =—g f e @'cos(q, z)f(q,q, ),
d e )0 (2m. )

(3.15a)

where
d

f(q, q, ) = dz f d r e'e'"cos(q, z)f (r,z),
0

(3.15b)

and q, =(2n + 1)n/d ( n.=0, 1,2, . . . ) for functions which
are odd (antisymmetric) across the slab in the sense that

f (r,z) = f(r,d —z), de—scribing antisymmetric potentials
and antisymmetric surface-plasmon modes. [A similar
development for even (symmetric) functions f(r,z)
=f(r,d —z) and symmetric surface-plasmon modes is
given by Newns (Ref. 2, p. 3313) and Yildiz (Ref. 3, pp.
215 and 216). For even symmetric functions
f ( z}=+f(d —z), one should replace Eq. (3.15a) by

f(r,z)= —g 2}e f 2e '~ cos(q,z)f(qz),=2 r.r-
d e, ,o

'* (2~)2

where q, =2nn/d, n =0, 1,2, . . . , and 2)e =1 for q, &0
with ge = —,

' for q, =0.] We will discuss symmetric and
g

antisymmetric potentials again in Sec. V belo~. It should
be noted that in the semi-infinite "thick" limit d ~ 00, the
parity of the potential does not matter and both the an-

tisymmetric and symmetric surface-plasmon modes have
the same characteristic frequency. Confining our atten-
tion to odd (antisymmetric) functions, we apply this spa-
tial Fourier representation doubly to the z and z' depen-
dences of 9F(r,z, r ',z', v).

Recognizing that there is effective spatial transiatjonal
inv~mce in the plme peqendiculm to the magnetic
field, so that A(r, z, r ',z';v) depends on r r' to the ex-—
c»sion of r+r ', we further introduce the infinite Fourier
transform with respect to the variable (r r'). Thus we-
obtain

d d
R(q, qg, qg,'v)= f d (r r') f dz f dz'e'—&' ="cos(qgz)cos(q, 'z')SP(r, z;r', z', v) . (3.16}

We shall employ Eq. (3.10) here in a slightly modified form, by relaxing the summation restrictions on k, and k,', thus
extending these sums over negative as well as positive k, and k,'. The effect of this is to spuriously double each series,
and since two such doublings are involved we must compensate for the spurious quadrupling by dividing by 4. (There
will be no change in the restrictions q, & 0, q,

'
& 0.) Thus we use

f d k d k t(K —k ').(r r')—2 2

r,z;r,z;v 2'd (2m) (2m)

X —,
' g g sin(k, z) sin(k, z'}sin(k,'z) sin(k,'z')F(k, k„k ', k,';v),

al1 k
(3.17)

and substitution into (3.16) involves the integrals Pk„k, ,q, ) evaluated below

4f

I (k„k,',q, )= f dz sin(k,'z) sin(k, z) cos(q,z)= —(6k, z +5k, k
—5k, z

—5k, k ) .
0 4 k, k +q k jk —q k, —k —q k, —k +q

(3.18)

Thus we obtain the result
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d'k
~(q, q„q,';v)= g g —,', f F(k,k„k+q,k,';v) (5k, k

gal1 k
k', —k —q k', q —k k', k —q

k
—5k +5+q, — —q, q —k k, k —q

(3.19)

On using the property that the function F depends only on the modulii of its arguments, (3.19) may be simplified as

N(q, q„q,';v) = —, g F(k,k„k+q,k, +q, ;v)5, F(k—,a,k+q, y;v) F(k—,y, k+q, a;v)
(2n )

g

(3.20)

where a =—,(q,
' +q, } and y = —,(q,

' —q, }. (Here we have
noted that the restrictions q, &O,q,

' &0 eliminate certain
terms. ) Equation (3.20) together with the expression given
above for F(k,k„k ', k,';v) in terms of the magnetic field
Green's function serve to generalize the development of
Newns to include effects of Landau quantization in the
case when the magnetic field is perpendicular to the slab
surface. Considering 9P(f,q„q,';v) as a matrix in the in-
dices q, and q,', Newns identifies the "diagonal" part
D (q,q, ;v}and "nondiagonal" part A (q, q„q,';v) as

since k, =no lii with

and also q, = (2n +1)n /ij with

f,
"

aq,
q 0

and

9F(q,q„q,';v) =D (q,q, ;v)5, —A(q, q„q,';v), (3.21)
5,~ 5(q, —q,

'
} .2m

d

Now we have
where

e2 $2k + xl

D(q, q, ;v) = f z g F(k,k„k+q, k, +q, ;v)
(2m )

(3.22)

cj k
+q~v

(2m )

dik= —l gr e i (svfv)t-
(2n )

A(q, q„q,';v)= [F(k,a, k+q, y;v}
e d k
4 (2m)

XG (lt, —&)G, (k+q;t)

iI ( —q, v—) = iI (qv), — (3.25)

+F(k,y, k+q, a;v)] .

(3.23)

The characterization of A (q, q„q,';v) as being "nondiag-
onal" is somewhat misleading since its diagonal elements
are, in fact, generally nonzero, A (q, q„q v)&g0. A factor
e has been inserted into both parts of 9P(q, q„q,';v} in ac-
cordance with the recognition that a description of dielec-
tric response properties requires the charge-density pertur-
bation, which may be obtained from the density perturba-
tion by multiplying by e (since the former is given by the
charge-density —charge-density correlation function,
whereas the latter is given by the density-density correla-
tion function). It should be noted that in the semi-infinite
limit 1—+ 00, we have the diagonal term as

i 4n 5(q, —q,
'

)I(q—,v),
and the seini-infinite-medium result can finally be written
as

9F(q,q„q,';v) =D(q, q, ;v)5(q, —q,
'

) —3 (q, q„q,';v),

where

D ( q, q, ;v) = i n e I(q;v)—
(3.26)

(3.27)

where I(q, v} is the corresponding quantity for an infinite
quantum plasma in magnetic field as given in Ref. 1(a), p.
11, Eq. (I.33). Thus in the semi-infinite limit d~oo, we

have

d'k +"
+q, ,+q„V

d~k +f g F(k,k„k+q, k, +q„v)5

d k~4ir5(q, q,
'

) f i F(lt, &+—q;v),
(2m }

& (q,q„q,';v) = [ F(k,a,k+q, y;v)
e d k

(2m )

+F(k,y, k+q, a;v}],
(3.28)
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9P 's(q, q„q,';v) =D(q, q, ;v)5 (3.29)

where

where a= ~

(q,'+q, ) and y= —,(q,
' —q, ). We shall hence-

forth adopt Newns's notation, which involves dropping
the factor —ni.n (3.27) so that

(which differs from our identification by a factor of
—m). )

This important result may be restated in terms of the
bulk infinite-space RPA longitudinal dielectric function
in magnetic field eRpA(q;v), since its relation to I(q, v) is
given in Ref. 1(a) as

D(q, q, ;v) =ie2I(q;v) (3.30)
i 4me

eRpA(q;v) =1+ I(q;v),
g

(3.31)

for the semi-infinite medium. (In order to make contact
with the notation of Newns, we note that the diagonal

part 9F 's(q, q„q, ;v} may be written in the semi-infinite

limit as

2

D(q, q, ;v) = [e"(q;v) —1]
4m

(3.32)

A'~'s(q, q„q,';v) =D (q, q„v)5(q, —q,
'

)

or, alternatively,

9P~'s(q, q„q,';v) =D(q, q, ;v) 5

iI«e I—(q;v) 5
2m

for the semi-infinite medium in magnetic field.
» accordance with our discussion above for obtaining

the corresponding retarded physical response function
9P(q, q„q,';v+i5) in terms of half-time axis integrals, we

may now identify D(q, q, ;v+i 5) in the semi-infinite limit
as (using Newns's notation)

D ( q, q, ;v+i 5)=I'e'I(q; (r/I«) [A+i c])

where we have used the equivalence of 5(q, —q,') with
(d/2m)5, . But Newns introduces a factor of conveni-

qgqg

ence 2/d in all his transforms, so that if we follow his no-

tation we must replace (d/2n )5, by (1/Ir)5 „whence
qgqg qq '

9F+'s(q, qg, qg ,v)~ 'ie I(q—;v)5, . It must also be borne
g g

in mind that Newns's 9F function is the negative of ours,
so that in his notation we finally have
9F 's(q, q„q,';v) =I'e I(q;v)5, . [See the note following

qgqg

Eq. (3.4).] Now Newns identifies D(q, q, ;v) as the coeffi-
cient of 5, , so that according to his notation

qgqg

9p 's(q, q„q,';v)~&(q, q„v)5

=ie ( —W)+W(),
where [in the notation of Ref. 1(a)],

f dt e l (Q —IK)gf G (1, t)G

t e
—IQ+rc)t dik

00 (2Ir)

(3.33)

(3.34a)

(3.34b)

whence Newns's identification for &(q,q„v) is given by

&(q,q„v)~ieII(q;v}

Similarly, the nondiagonal part A (q,q„q,';v+i5) of the
retarded physical response function may be written as
(Newns's notation)

A(q, q„q,';V+I'5) = — I [I'(k,a,k+q, y;v+i5)+F(k, y, k+q, a;v+i5)],e d k
4 (2Ir)I

where

(3.35)

iI:(k,k„k ',k;;v+i 5)= — f dt e "n ""G (k,k„t)G (k ', k,';t)—
+f dt e-""+"''G,(k,k„—«)G, (k', k,';I) (3.36)

la=7(q. +q. )* )'= 2(q* —q. ) . (3.37)

It should be noted that we have made the correspondence
(5'/'r)(v+«5)~A+I e. This COIIlplctcs thc idcIltlflcatloI1
of both the diagonal and nondiagonal parts of the retard-
ed physical response matrix in terms of Green's functions
in the case when a magnetic field is present.

B. The structure of the diagonal matrix elements
of the physical density perturbation response matrix

for a semi-infinite medium
[cva1uation of D («I,q„v+i 5)]

In accordance with the discussion in the preceding sec-
tion, we may identify the diagonal part of the physical
response matrix D(q, q, ;v+i5) in terms of half-time-axis
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integrals in the semi-infinite limit as (using Newns's nota-
tion)

D ( q, q„v+'i 5)=ie'I(q, q„(~/n)[Q. +is])

where

D, (q, q, ;v+i5) = —e ImI(q, q, ;(~/n. )[Q+i s]) (3.38c)

=ie ( —W&+W&), (3.38a) and

with v+&5~(rjir)[Q+is]. Here, J(q, q, ;(T/m)[Q+is])
is the corresponding quantity for an infinite quantum
plasma in magnetic field which is related to the bulk
infinite-space RPA longitudinal dielectric function in
magnetic field eRp~(q;Q) by Eq. (3.31), and this quantity
has been analyzed thoroughly [see Refs. 1(a) and 1(b)]
both in regard to its mathematical representations and
also in regard to the associated physical implications of its
structure concerning dynamic and static plasma screening
phenomena for the infinite-bulk Landau-quantized plas-
ma. We shall not recount here the associated bulk-
infinite-plasma physical properties in a magnetic field,
which may be found in Refs. 1(a) and 1(b). However, we
shall draw on these references for a few of the principal
mathematical representations of I(q,q„v+i5) already
developed therein, and refer the interested reader to these
references for further detailed discussion of the represen-
tations and their physical significance. It should be noted
that D (q, q„v+i 5) consists of real and imaginary parts as
follows:

D(q, q, ;v+i5) =Di(q, q„v+i5)+iD2(q, q, ;v+i5),
(3.38b)

Dz(q, q„v+'i5)=e R eI(q, q, ;( T/m)[Q. +i s]) .
(3.38d)

In the notation of Ref. 1(a), one may alternatively write

D((q, q„v+i 5)~— 4m Q(q;Q)
0 (3.39a)

which is directly proportional to the bulk free-electron po-
larizability for an infinite plasma, and

Di (q,q„'v+ i 5 ) +—Sm

q
I (q;Q), (3.39b)

which is directly proportional to the imaginary part of the
bulk dielectric function for an infinite plasma. Explicit
formulas for Q(q;Q)/Q and I (q;Q) are given in Ref.
1(a), Eqs. (I.37) and (L38), and (II.40), (II.41), and (II.42).

It should be noted that D( and ImI are even functions
of Q, whereas Di and ReI are odd functions of Q. The
integrals involved in I(q;(rjm)[Q+is]) have been ex-
plored in Ref. 1(a), Eqs. (II.40a), (II.40b), (II.41), and
(II.42) with the results (P means principal part below)

1
s ImI(Rq;(r/n)[(}IQ+is]) =p f f, , R(co, (rico', ((iq),

dco dco' co' fo(co)
2n2m' Q'~ —co' ~ (3.40a}

1
ImI(Ag(~/m)[RQ+iz]) =—.P dT~ 1 dco dco' ~ ~ fo(co)

(e c(Q+u'')T —
e

—i(Q —u'}T)
2i L 2m 2m 3 (3.40b)

1 d~ fo(~)
3

ReI(Aq;(~/~)[&Q+i s])= ,
' f-2''

(3.41}

where

f +~d f +~ d, „„2isin((}iso'x /2);(„~~i( n 2m
00 co (2~)i ix

'
], /2

medico,

i tan(irico, x /2)

y~ q
i cos(co,y/2) —cos((}ico,x/2)

2

/exp exp —i-
4x 2m (co, /(}i)sin((}ico,x /2)

(3.42)

Corresponding to this one may develop exact expressions [Ref. 1(a), Eqs. (III.1), (III.34), (III.35), and (IV.1)] for both
Di(q;v+i5} and Di(q;v+i5) as follows:

' 1/2
fo(co) ' +s ds n'" 2m

Di(q, q„(~/n)[Q+is])= eif dco— i .e'"
C

(3.43)

where N is expressed in terms of half-time-axis integrals as [Ref. 1(a), p. 30, Eqs. (III.34) and (III.35)]
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00

T exp —EAT
0

—q, 2 ~ Aq
i cos[(co, /2)(2T i A—s) ] —cosh(Aco, s /2)

exp [(2T —iAs) +Pi s ] exp
8ms c

I

—
qg Aq

~ cos[(co, /2)(2T+i As)] —cosh(Aco, s /2)—exp [(2T+iAs) + s ] exp
Sms 2m co, siilll ~s 2

(3.44)

and, alternatively [Ref. 1(a), p. 23, Eq. (III.1)],

Di{q,qg, (r/'ir)[Q+ie])= e—iPf fdco dco' co' fo(co)
2n' 2nQi '—(co')i

l~ 2l sm x 2 l~iy/2 g, 2mX x ye' e
(2ir)i ix

m Acoc —i' fP» yX —. expi tan(Aco, x/2) 2m 4x

iq ~A cos(coqy /2) —cos(Acoqx /2)
Xexp

2m coc sin(Aco, x /2)
(3.45)

The corresponding exact expression for Dz{q,q„(v /ir) [Q+i s]) is given by [Ref. 1(a), p. 38, Eq. (IV.1))

2

Di{q,q, ;(i/ir)[Q+ie]) = co,
2 2m

' 3/2

y e —le/2

"dco f s+'" ds, 1 sinh(A'Qs/2) —q, i z
2mi v s tanh(i)ao, s/2) 8ms

I J

Aq
~ cosh(Aco, s /2) —cos(co,y/2)g exp

2mco, sinh(Aco, s/2)

(3.46)

It is very useful to have available a low wave number power-series expansion of Di {q, q, ;(i /ir)[Q+i e]), which may be
obtained from Ref. 1(a), pp. 23 and 24, Eq. (III 4). The first few terms of the low-wave-number power expansion of D&
are given by

2 co

Di (q, q, ;(~/n )[Q+i e] )= —q,
mQ

e 2pco

m(Q —co, )

z3e cK

m 204

where p",cJ",cc" are defined by

q 4e'o"
m c

1 1

Q —(2co, ) Q —co,

Qz9 e + 30 +~c
m (Q —co, )

e cT g g e O' 0 +Qp
+ '

2 2Q2 2 2 (Q2 2)2

(3.47)

fo(co) ' +s ds „, n'~' 2mp" =2 dco i)~(co) . e"'
+s 2n.i (2ir)' s

1/2
m Aco~

tanh(Aco, s /2)
(3.48a)

' I/2 2fo(~) i ~+s ds ~&~i 2m m (Aco, )cr" = dco i)+(co)
0 f3 —i~+s 2iri (2ir)s s [tanh(Aco, s/2)]

(3.48b)

1/2fo(co) i +s ds „,n'" 2m mAcoc 2a"= dco i)+(co) .e"'
+s 2@i (2ir)i s tanh(Aco, s/2) s

(3.48c)
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[It should be noted that p" has the significance of the bulk unperturbed density in the absence of any surface for the in-
finite plasma in a quantizing magnetic field; the parameter a here should not be confused with a= —,(q,'+q, } in the
nondiagonal elements. ] These integrals may be evaluated in the degenerate case [see Appendix I of Ref. 1(a)] in terms of
a branch-line contribution (denoted by the subscript I'), and isolated pole contributions (denoted by the subscript C„),
with the results [I'(x) is the gamma function of argument x]

' 3/2
m 2
2n.

' 3/2
2 g'/2 m

fi' 2n.

' 3/2
2 g'/2 m

2ir

1

3I ( —, )

)2g1
/2

6I ( —, )fi

)2gl/2

cos[(2mn /fico, )g —3ir/4]

v n sinh(2&n/%co, P)

m / (fico, }2/ ~ cos[(2irn/fico, )g 5m/4—]
2m Pi)r „ i n / sinh(2n n/%), P)

m +(fm, )'/ ~ cos[(2nn/i)ico, )g—3ir/4]

npfii „ i v n sinh(2ir n/Ace, p)
mi/ (fico, )2/2 ~ cos[(2irnlfico, )g —5ir/4] 1—

2m Pfi „, n'/ sinh(2ir n/%co, P)

m / (Aco, )'/ g.p:

2m n/fico, P
tanh(2&n /fico, P)

3%co, cos[(2mn /%co, )g Sn/—4]'
4irg n 2/ sinh(2ir n /fico, P)

The corresponding evaluation of p",cr",a" in the nonde-
generate case yields [Ref. 1(a), Appendix I]

1 /2
e~)' 2~'/2 2m
g' (2~)' p tanh(fico, p/2)

"

%),/2
tanh(fico, P/2)

One can readily obtain other useful exact expressions
for Di(q, q, (~/n)[Q+is]} and D2(q, q, ;(rA.)[Q+is]) in
terms of a Bessel-function representation and a Landau-
series representation, as well as evaluations in the quan-
tum strong-field limit, nondegenerate limit, semiclassical
limit, and classical limit, from work already carried out in
Refs. 1(a) and 1(b), etc. Thus the quantum magnetic field
effects in the diagonal part of the response matrix
D(q, q„'(r/m)[Q+ie]) have been exhaustively evaluated,
and we turn our attention to the evaluation of the nondi-
agonal part of the response matrix, A(q, q„q,';v+i5),
next.

IV. EVALUATION OF THE NONDIAGONAL PART
OF THE DENSITY PERTURBATION RESPONSE

MATRIX A(if, q„q, ;v+i5)

sity perturbation response matrix A(q, q„q,';v+i5) In.
the semi-infinite limit, where the diagonal part
D(q, q„v+i5} has been seen to assume its bulk infinite-
space form, the "nondiagonal" elements play a central
role in describing the boundary induced loss of spatial
translational invariance and its impact in changing the
longitudinal dielectric properties of the medium. In this
section we develop an evaluation of A (q, q„q,';v+i5) in
closed form and examine its close relation to the two-
dimensional density perturbation response function in
magnetic field. Specific results are presented for A in a
low-wave-number power expansion, and for higher wave
numbers we develop expansions of A in terms of (a) a
modified Bessel function series and also (b) a Landau
series. The role of quantum magnetic field effects in A is
carefully accounted for at every stage of our considera-
tions. The zero-field limit is also discussed.

A. Closed-form expression for A (if,q„q,'; v+i 5)
at arbitrary field strength and its relation

to two-dimensional response

It is very useful to connect the nondiagonal part of the
density perturbation response matrix A to the tue-
dimensionaI density perturbation response function in the
limiting case when q, ~0 and q,

' ~0. Considering A as
given by Eq. (3.23) (we take e ~1 here as well as iii—+1),

It is clear from the considerations of Sec. III that
boundary-induced changes of the longitudinal dielectric
response properties of a finite medium are in part
transmitted through the nondiagonal elements of the den-

A(q, qg, qz,'v) = —, [F(k,a,k+q, y;v)
d2k

(2m )

+F(k,y, k+q, a;v)], (4. 1)
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where

a =—,
'

(q,
' +q, ) and y = —,

'
(q,

' —q, )

and [Eq. (3.11)]

1

F(k, k, ;k ', k,';v) = i—f dt exp

(4.2)

Recognizing that the infinite-space Greens function in
momentum space [as given by Eq. (2.7) with no boundary]
becomes the two-dimensional Green's function when
momentum along the field vanishes [as given in Ref. 4,

. (10)], we may introduce the "ring diagram" integral
I (q;v) of the two-dimensional density perturbation
response function [Ref. 4, Eq. (5)] to make the identifica-
tion

xG (k, k, ; t)6—(k', k,';t), A(q, 0,0;v) = (i —/2)I (q;v) . (4.5)

we note that when q, =q,' =a=y=O, one has

i d k
d (q, o,o;v) = ——f f de exp

2 (2n. )z 0

x 6, (k,O; t)—
xG, (k+q, O;t) .

(4.3)

(4.4)

This connection provides a very valuable check of calcula-
tions of lime 0 lim, A(q, q„q,';v) (for both real and

&z q,
' ~o

imaginary parts when v~v+i5) in a variety of represen-
tations and approximations, and this is exploited
throughout our work in this section. This connection of
A (q,0,0;v) with two-dimensional response is in fact just
one aspect of a broader relationship between A(q, q„q,';v)
and two-dimensional response properties, as we shall soon
SCC.

The explicit construction of 3 (q,q„q,';v+ i5) will now
be undertaken using Eqs. (3.35) and (3.36),

2

A(q, q„q,';v+i5)= —f dt e " ""f G (k,a; t)6 (k—+q, y;t)

2 ),a; —t +q, y;t + a~y (4.6)

[Here, (a~y) means that one should add terms of the same form as the preceding ones, but with the roles of a and y in-
terchanged. It is clear that A is symmetric in a and y as well as being symmetric as a matrix in the indices q, and q,'.]
The Green's function involved here may be written as [Eq. (2.7)]

6, (k,k„t)
g~

6 & (k,k„t)

—t'(1 —fo(to) ) —l CtPf

ifo(~)

t'e'"'exp —i p o3+, 2m t' sec co, t' 2 exp —i mao, tan co, t' 2 (4.7)

Defining the integrals W& and W&,

W) —— t e '[ "] ~,a; —t G» +q, y;s
21T 2

W, =f dt e ""+""f 2
6 (k;a; —t)6 (k+q, y;t),

CO 27r 2

it is readily seen that

A(q, „q'qv+i5) = (W'& —W )+—(a~y) . (4.8)

It should be noted that W& and W& as defined here differ from their three-dimensional infinite-space counterparts dis-
cussed in Ref. 1(a) by deleting fdk, /2m and setting k, ~a in the first 6 function and setting k, ~y in the second 6
function. Following the procedures of Ref. 1(a), p. 18, we may evaluate W& and W& as defined here as follows (note that
t +T as a change of a "—dummy" integration variable):

=f dTf f e "n+" "' fo(a))[1—fo(to')]Q(to, a)', q,a,y), (4.9a)

(4.9b)
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where

Q((o,(o';q, a,y)= f dT f dT'e'" e'" P(T, T';q, a,y),
and

P( T T~.q a y) e i(a—l2m)Te (iy—I2m)T'P2D(T Ti q)

(4.10)

(4.11)

T T'd k ip+—cr&(T+T') c

(2n ) 2
'

2

ik — otic T
Xexp tan

a)c
exp

i(—k+q)2 otic
tan T'

a)c
(4.12)

The quantity P2 (T, T';q } is in fact just the corresponding quantity involved in the density perturbation response func-
tion of the two dim-ensional plasma (as our notation is intended to suggest}, and it is discussed and evaluated in Ref. 4,
Eq. (13). This establishes a broad relationship between A (q, q„q,';v+i5) and two-dimensional response. The existence
of such a relationship should not really come as a surprise, since the correspondence of W& and W& as defined here with
their three-dimensional infinite-space counterparts was seen to involve the deletion of fdk, /2m (along with selection of
special values for k, as indicated above); such a mathematical manipulation clearly reduces the dimensionality of the
problem by 1 {with appropriate qualifications}, leaving a problem which is essentially two dimensional, as reflected in the
occurrence of P (T, T';q) here. The final evaluation of P (T,T',q) is carried out in Ref. 3, Eqs. (I.3-16)—(I.3-21),
with the result

iq
2 sin(oi, T/2) sin(co, T'/2)

moic sin[(coc/2)(T+ T')]

Setting T+ T'=x and T —T'=y, me have

'1r a)c

(2iy)2 i t a[n( ei/c2)(T+T')]
(4.13)

+O2 +CO Q f X '

CX
Q(oi, co';q, a,y)= dx dy exp i (o — +oi' — —exp i (o—

00 —CO 27tl 252 2 2@i

2
p

2p$2

arc )q
2 cos(cocy/2) —cos(cocx /2)X, . exp (4.14)

(2ir)2 i tan(cocx l2) m(o, 2 sin(o2, x l2)

Comparing this with the corresponding quantity Q2D(co, a)';q) of the rue-dimensional density perturbation response func-
tion [as given in Ref. 4, Eq. (15)], we find an alternative description of the broad relationship between the nondiagonal
elements under analysis here and two-dimensional response in the form

Q( (o~',q, a, y)=Q (co a /2m, o2' y—/2m, q)=r—eal . (4.15)

The construction of A =A(q, q„q,';v+i5} may now proceed with the use of Eqs. (4.8), (4.9), and (4.15). The detailed
manipulations are fully explained in Ref. 3 and the result may be stated as follows:

ir(O+co'-cu+ r'a)

0 2%' 2''

X[Q (co—a /2m, co' —y /2m, q)+Q {ro—y /2m, co' —a /2m, q)] . (4.16)

Introducing Eqs. (4.14) and (4.15) and further following the manipulations detailed in Ref. 3, we treat two distinct terms
in (4.16), the first one involving [fo(co)] and the second involving [ fo(co )]. The (o—integral of the first term yields a
5(T —x l2 —y/2) function so that the y integral may be carried out immediately, and the second term may be treated in
a similar manner, arith the result

—4iA (q, q„q,';v+i5)= 2 f dao fo(co) f e'"
2m

00 Q/2 f2
X dT exp iT 0— + +i e W(x,x +2T)0 22?l 2'

2 f d f ( ) f X ei(u —y2I2m)x

2%

X f dT exp iT 'Q — + +iE P (X,X —2T)+(a~y), (4 17)
0 2@i 27?l
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m Q)~ @i cos(co,y/2) —cos(co,x/2)
W(x,y) = . exp

O'ITl tan(cdqx/2) 2mcoq sin(coax/2)
(4.18)

This closed-form result for A (q, q„q,';v+i5) is valid for arbitrary wave number, frequency, magnetic field strength, and
statistical regime (temperature}. It serves as our basis for all further expansions of A in special circumstances.

The zero-field limit of A is readily obtained by putting co,~0 in W(x,y}„whence

W(x,x+2T)= . exp
m lg

2s'lx 2m X
L

and then the T integral of Eq. (4.17} is seen to yield the Erfc function. Redefining the x integration variable by s =ix,
this integral then yields the inverse-square-root function [Ref. 7(b)I, p. 267, Eq. (14), and also p. 23» Eq (4)1 The multi

pie vaiuedness of this function requires careful consideration, and the details of the selection of branch are fully ex-

plained in Ref. 3. The result for Re A at zero magnetic field is given by

m 2m rl+[a /2m +(m /2q 2)(QN&+q i/2m)i co]—
ReA = dao fo(a)) r)+(r0 a —/2m ) +(Q~ Q—) +(a~y ),

8m q2 [a~/2m +(m/2q 2)(Q r+q /2m) —co]'~

(4.19)

where Q~„ is the shifted frequency

QNr Q ——a /—2m +y /2m,

and rl+(x }= 1 for x & 0 and r)+(x }=0 for x &0. Evaluating this in the zero-temperature degenerate case, we have

(4.20)

2m
—2

' 1/2
'~

a m
—2

2m
Q~y+

' 1/2
m

~ 2

n. +~"+ 2m 2-2 ~" 2m

' 1/2 —2

o. +~
2nl

+(Q~—Q) r)+(g —a /2m)+(a~y), (4.21}

which is consistent with the zero-field result of Newns.
A detailed comparison with Newns's result is given in
Ref. 3, Appendix Ill. (In comparing Eq. (4.21) with cor-
responding zero-field results of D. E. Beck [Phys. Rev. B,
4, 1555 (1971), Eq. (8a)], we find Beck's result to closely
resemble the structure of Eq. (4.21), but with slight
discrepancies which may be due to a misprint. }

The correctness of our choice of branch for the square-
root function may be verified by noting that Eq. (4.5) re-

quires that

ImI (qD, Q+i )=e2ReA (q,0,0;Q+i ),e (4.22)

with q, =q,' =a=y=0, and this is further related to the
two-dimensional plasmon dispersion relation through

2$'e 4me1= ImI (q,Q+ie)= ReA(q, 0,0;Q+ie) .

1=2e gq/Q (4.25)

8. Low-eave-number power expansion
of A (it, q„q,';v+i5)

The nondiagonal part of the density perturbation
response matrix A (q, q„,q'; v+i 5) may be developed in a
low-wave-number power series in (fiq /mao, )" by expand-
ing the exponential factor of W(x,y) of Eq. (4.18). Such
an expansion renders the T integration of Eq. (4.17) ele-

mentary, and produces a result of the form

or, noting that 2D density is given by (Ref. 4) p2D= mg/m
(A'~1), our choice of branch confirms the known 2D
plasmon frequency Q =2me~p Dq/m. Such confirma-
tion would have been spoiled by making an incorrect
choice of branch

ReA (q,0,0;Q+ie)~gq /2mQ. (4.24}

and the corresponding 20 plasm. on dispersion relation is
gi.ven by

(4.23)

For low wave numbers (q /2mQ«1) our choice of
branch yieids

A (q,q„q,';v+i5) = g A (n) where A (n) cr. (q )",
n=0

(4.26}

in which the terms A (n } are classified in accordance with
their dependence on integral powers of q . It is straight-
forward to develop a general expression for A (n) in terms
of an ro- and x-integral representation, but it is tedious.
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Furthermore, the identification of these particular integral
representations in terms of those integrals which occur in
the low-wave-number description of the two-dimensional
density perturbation response function requires substantial
familiarity with the latter. For these reasons the reader is
advised to consult Refs. 3 and 4 for the fully detailed
evaluation of A (n), and we will just state the results for
A(0), A(1), and A(2) below, for arbitrary magnetic field
strength. For A (0) we find

4i—A (0)= . [p (g ) —p (g„)]+(a~y),
Q~y+l 6,

(4.27)

where p (g) is the two-dimensional density as a function
of chemical potential, and g, =g —x /2m is a shifted
chemical potential. With s =ix and A'-+ I we have

p2 (g)=2 I deofo(co g)—

+'~+5 ds
X .e . 4/8—&~+5 2ni 4n tanh(ro, s/2)

For A (1) we find

4iA—(1)=—
—2

[~2D(g ) ~2D(g )]+
&2D(g &' (g„) p' (g ) p' (g„)

(4.29)

For A(2) we find

i o' (g ) o' (g„) p (g, ) p (g„)+' +(&~y),2m' Q r —co +is co

where o' (g) is proportional to the two-dimensional average Landau orbital energy (including spin) as a function of
20

chemical potential, and g„ is again a shifted chemical potential,

2D ire+5 ds mc 2

(g) = dec fo(co g) — e'" (4.30)'~+5 2s'l 4m'[tanh(co~s/2)]

—2

4iA (—2) =
Cgc

(0 )—p (g„)+-,&' (g.)——,'x' (g„)]Q~y+ E E

—2

2m cue
&2D(g ) +

Q~y+CO~ +le

2D( g 2D(g )
+2D(g )+

—2

2m 6)c

—2

+
4 &mcoc

(g„) 2D u (g )p' (g„)+ " —p' (g )+
ay Nc+~~ c Nc

[lu' (g )+2o' (g )/~, +p' (g )/2 —p' (g„)+2o' (g„)/~, —p' (g„)/2]
Oay+ ~c +~ E

—2

4 2m Coc

2

[p' (g„)+2o' (g„)/~, +p' (g„)/2
Q~r —2cog+l 5

—p' (g )+2o' (g )/co, —p' (g )/2]+(a~y), (4.31)

(4.32)

where we again have shifted chemical potentials, and the two-dimensional integrals p, (g) and 1' (g) are defined as

+i'~+5 ds men, [cosh(co, s/2)]
i2 (g) = de fo(co g) .e'"—

—l~+5 2mi 47r [sinh(~ s/2)]2

+b oa +5 ds m co, cosh(co, s /2)
X (g)= dc' fo(ra g)—. e*

—~+5 2~i 4~ [sinh(lo, s/2)]

and they are related by

p' (g)=x' (g)+-,'p' (g) .

(4.33)

(4.34)

The two-dimensional integrals p2 (g) and o2 (g) have already been evaluated in Refs. 4 and 3, and the results are tabu-
lated here in Appendix A along with the evaluation of p (g) and X (g). [It should be noted that the real and imagi-
nary parts of A (n) are readily separated in accordance with the prescription 1/(x+i 5) =P(1/x)+i ms(x)].
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C. Expansions of 2 (f,q„q,'; v+i 8 ) in terms of (a) a modified Bessel-function series and (b) a Landau series

In order to determine the structure of A (q,q„q,';v+i 5) for arbitrary wave numbers, we expand the exponential factor
of P (x,y) of Eq. (4.18) in a modified Bessel-function series using the identity

exp[x cos(co,y /2)] = g I„(x)e

This expansion renders the T integration of Eq. (4.17) elementary, and we obtain the result

A (q,q„q,';v+i5) =—

roc + 1+ ' g . [Z(")(g„}+~(")(g„}]+(~-)), (4.35)
81T Qgg)r

—tl ff)d + l e

where we again have the shifted frequency Q~r and also the shifted chemical potentials g~, gr, and Z("'(g) and g(")(g)
are defined by the two-dimensional integrals

+( +s ds sinh(n co, s/2) qi
Z(")(g)=f d~f, (~ g) f— .e'" '

exp I„(q 2/[2ma), sinh(a), s/2)]), (4.36)—i tm+5 27rt t tt)ds 2 2m Cod ta togs 2

+2 +s ds cosh(neo, s/2) q
i

y'"'(d)= J dtc fc(st —g) f s' exp f„(g /[2mct, stnh(st, s/2)]) . (4.37)—l cu+S 2&i t COdS 2 2mCOd CDds 2

The real and imaginary parts of A (q, q„q,';v+i 5) may be separated in accordance with the prescription
1/(x+is) =P(1/x)+mi5(x).

Por low- snd/or (ntermedtate-magnet)c-fte)d strengths (when many Landau levels are populated, lhc, «t) the zero-
temperature iiegenerate hmit of Z'"'( ) hss lwen evaluated in Ref. 4 and it consists of two parts: the first term Z'"';( f )

represents a semiclassical limit of Z'" (g) in which quantum magnetic field effects sre completely neglected (hut classical
magnetic field effects are nevertheless present), snd the second term ZdH„A(g) represents low- and/or intermediate-field
dHvA oscillatory corrections,

Z "((p)=Z ";((p)+ZI(H ~((p) ~ (4.38)

Recounting the results of Ref. 4 (()I-h 1 ), we have

Z~;(g)=ti[J„((2q g/mto, )'j )] (4.39)

(„) ft)c n 2mkjtoc-
ZdH. A(k) =

1/2

J„((2q 2g jmto, )'~ )[J„ i((2q g/mao, )'~ )—J„+i((2q g/mto, )' )],
Kr mcoc,

(4.40)

where the periodic linear "sawtooth" function
[(m —y)/2]~, (Fig. 2) is defined as (n y)/2 in the —funda-
mental interval 0 &y & 2' and is periodically repeated out-
side this interval.

The low- and/or intermediate-field strength evaluation

g("'(g) =g'"';(g)+g'"', (g)

may also be carried out using the procedures of Ref. 4,
but it is simpler to note that the only difference in the s
integrands of Z'"'(g) and g(")(g) is that Z'"'(g)
-si nh(n cos /2), whereas g(")(g)-cosh(neo, s/2) with the
other s-integrand factors being identical. For low fields
this corresponds to Z~(g)-n f))s 2/, whereas g "';(g}
—1, and since an s-integrand factor of s can be induced
by differentiation with respect to g, we have the low-field
relation (R~ 1 }

whence

g(") (g) = f dg'[J„((2q ~g'/mes, ')'~')]' (4.42a)

' f dxxJ„(x),
ig

(4.42b)

g(");(g)= [J„((2q g/mt0, )'i )
toe

—J„ i((2q g/mf0, )'~ )

XJ„+i((2q gjma), )' )] . (4.43)

and performing the x integral [H. Margenau and G. Mur-
phy, Mathematics of Physics arid Chemistry, 2nd ed. (Van
Nostrand, Princeton, NJ, 1967), p. 121],we obtain

d fgcmt Z()g) (~)SCB11 (4.41) The evaluation of gdH„~(g) is most simply carried out by
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and with Eq. (4.42a) we immediately obtain

{n)
( )

ir —( 2irg/co, )

gdHvA 0

X [J„((2q 'g/m t0,'))~'}]' . (4.45)

using a slight variation of the procedures of Ref. 4, which

is developed here in Appendix B. This yields ()rt~ 1 )

gdH. A(0) =
n), fr (2m /le—o, )

2
{n)g;(g),

per

(4.44)

FIG. 2. Periodic linear "sawtooth" function [(n —y)/2]~,
=(m —y)j2 for 0 gy ~2m in the fundamenta1 interva1, which is

periodica11y repeated outside the fundamental interval.

Finally, we present exact evaluations of Z{")(g) and
g{")(g) which are most useful at higher-magnetic-field
strengths (when few Landau levels are populated; )rico, -g
for the degenerate case and %co, —kT = 1/P for the nonde-

generate case). These exact evaluations involve expansion

in terms of a Landau series, which is the series form that
would emerge in correspondence with a Landau eigen-

function expansion of the Green's function. The to:h-
niques involved in generating the Landau series are exhib-

ited in Ref. 4, where it is shown that Z{")(g) is given by
(A'~1)

exp

00 CO~

Xg g ', [I-„"(q /2mn)c)] t)+(2r+1+1)fo (2r+1+1)—g
{) (n+r)! 2

—t}+(2n+2r+1+1)ft) (2n+2r+1+1) —g2
(4.46)

Recalling that the only difference in the s integrands of Z"(g) and g{")(g) is that Z{")(g) sjnh(itni s/2), whereas
g'"'(g)-cosh()tn), s/2) (a difference of exponentials versus a sum of exponentials), we find that the Landau-series
development of g'"'(g) differs from that above for Z'"'(g) by changing the difference of the two terms in large square
brackets in Eq. (4.46) into a sum of the same two terms (Ref. 3) (&~1),

1 qg'"'( )= — exp
2 2m', 2m&)c

00 a)c
Xg g ', [1.,"(q /2m', )] ri+(2r +1+1)f{) (2r +1+1)—g

il +r!

+ri+(2n +2r +1+1)fo (2n +2r+ 1+1)—g2

These results for Z{")(g)and g'"'(g) are vahd for all wave
numbers, statistical regimes (temperatures), and magnetic
field strengths, but they are most useful at high fields
when only a few Landau levels are occupied, since the
unoccupied levels do not contribute to Eqs. (4.46) and
(4.47).

—l=e (Q), (5.1)

l

~=Pp/PP' may be used to determine the effects of the
magnetic field on the slab surface-plasmon dispersion re-
lation as formulated by Newns in terms of A'. Newns's

dispersion relation is given by

U. THE SI.AS SURFACE-PI. ASMON DISPERSION
RELATION IN QUANTIZING MAGNETIC FIELD

Our analysis of the magnetic field dependence of the
dynamic nonlocal density pertarbation response matrix

e (Q)=
d

E (g,gg, tb; Q+&E)

&z qz

where e&(Q) is defined as (put (r/n)[Q+ie]~. Q+ie)

(5.2)



NORMAN J. MORGENSTERN HORING AND MUSA M. YILDIZ 33

and E ' is the matrix inverse of (labeling matrix rows

and columns by q, and q,', respectively)

—A (q,q„q,';Q+i s) (5.4)

E may be revrritten as

E(q,q, q';Q+i s) =4n[b(q', q, ;Q+i s)5, /rie

—A (q, q„q,';Q+is}],

with the definition of the diagonal elements 6,

(5.5)

d(q, q, ;Q+is)= [q +q, +4nD(q, q, ;Q+is)] . (5.6)
4

We have expressed this in a form which is valid for both
antisymmetric modes [f(r,z}= f(r, d —z)—] and sym-
metric modes [f(r,z)=f(r,d —z)] as well. For antisym-
metric modes, q„q,'=(2n+1)mid (n =0, 1,2, . . . , ao)
and riq

——1. For symmetric modes q„q,
' =2nrrld

g
1(n =0, 1, . . . , 00) and i)z 0 ———, and ri& &0

——1. Supress-

ing the explicit appearance of the matrix indices q, and

q,
'

(as well as q, Q, etc.} and also ri&, we have symbolical-

1

E '= (5—A) '= 6 ' g (lL 'A)"
00

4~ 4 .=0

[b, '+ b, '(b, 'A)+ 5-'(5 -'A }'-+ ] -.
-

(5.7}

The leading term 5 ' on the right-hand side yields the
"diagonal" approximation, in which nondiagonal elements
A are neglected, as

q q' I&g

E '(q, q„q,';Q+i s) =
q +q, +4nD(q, q„0+is)

(5.8)

Forming [e&(Q)] ' in the diagonal approximation yields

E(q,q„q,';Q+is) =q 5, /rie +4m'(q, q„q,';Q+is) .
S S

(5.3)

[It should be noted that Newns's notation will be em-

ployed throughout this section, and his 9F in Eq. (5.3) is

the negative of ours. ] Recognizing that

9P(q, q„q,';Q+i e)= D(q, q„Q+i s)5, /rie

(5.1 la)

(b) Symmetric modes, Q~Qs,
' —1/2

Np—1= 1—
0

2
COp1—

a)c
2 2

—1/2

1 —cop/(Q —c0, )
' 1/2

g coth
1 —a)q lQ

In the thick limit d ~ oo, Eq. (5.11) yields

Qg =Qs =(fgp +co~ )/2,

and in the thin limit d ~0, Eq. (5.11}yields

Qg =-co~, Qs =c0, +2me'PzDqlni,

(5.11b)

(5.12)

(5.13)

where p =pd is the two-dimensional density.
In the case of the semi-infinite limit d~oo, we have

gz —+ (d/n2. ) I dq„so that the sum in Eq. (5.9) also be-

comes an integral, and we obtain the semi-infinite
surface-plasmon dispersion relation as

The essential feature of this consideration was the merg-
ing of the discrete states for electron motion across the
slab (characterized by discrete k, =nm. /d with d finite)
into a continuum of states for d ~ 00, so that the replace-
ment g» ~(d /m)I'dk, could be inade. It is

worthwhile to observe that the very same consideration is
valid for a finite slab provided that the electron dynamics
are described classically: this is to say, that in the transi-
tion from a quantum description of electron dynamics to
a classical description of electron dynamics for a finite
slab, the discrete set of states for motion across the slab
merges into a continuum (even for d finite} and the re-
placement g» ~(d/n ) I dk, can be made. Hence, if we

employ a semiclassical model which treats electron
dynamics on a classical basis, but averages with respect to
an initial Fermi distribution, Eq. (5.10}is valid for a finite
slab on the understanding that e"(q, v) is to be taken as
the semiclassical limit of the magnetic-field-dependent
bulk infinite-space RPA dielectric function. On this basis
we have used Eqs. (5.9) and (5.10) to determine the local
limit of the magnetic-field-dependent slab surface-
plasmon dispersion relation (further detail is supplied in
Ref. 8) as follows:

(a) Antisymmetric modes, Q~Q„,
' —1/2 2

' —1/2

—1= 1—COp 1— Q)p

0 0 —a)C

qd 1 —a)p l(Q —co, )
' 1/2

)(tanh
1 —cop/Q

[e~(Q)]
q +q, +4irD(q, q, ;Q+is) dq,

2q 1

(q +q, )e"(q, Q)
(5.14)

2
[e"(q;v) —1] .

4m
(5.10)

We have already shown that, in the semi-infinite limit
d ~ ao [Eqs. (3.22)—(3.32)],

e d2k +
D(q, q„'v) = J g F(k,k„k+q, k, +q, ;v)

(2n )

The structure of this dispersion relation was studied in the
absence of a magnetic field by Ritchie and Marusak as
well as by Newns, and the magnetic field dependence of
it was partially explored by Cheng and Harris. ' %e have
employed Eq. (5.14) to carry out a low-wave-number
analysis [Eq. (3.47)] of magnetic field effects in the nonlo-
cal semi-infinite surface-plasmon spectrum and have
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2 2 2 20=-cop+coc g cop +coc

2 2 QP —Q) Pgs 2

4
' 1/2

63 —Np C

2
COp

(5.15)

where s2
—=p" /a" [Eqs. (3.48)]. This mode suffers heavy

natural damping for co, & co~ {surface-plasmon damping'
in a quantizing magnetic field is analyzed in Ref. 15). A
similar analysis' of quantum magnetic field effects in the
nonlocal shift of coupled semi-infinite surface-
plasmon —surface-optical-phonon modes was presented in
Ref. 14. Furthermore, there is a nonlocal semi-infinite
surface Bernstein mode near Q -2co, as given by

2II(2, )=(2coc) +-
my&COC C

(5.16a)

found the following results"' (further detail is supplied
in Refs. 11 and 12): The principal semi-infinite surface-
plasmon mode in magnetic field and its linear wave-vector
shift are given for co~ & co, by

polarization properties of the medium: this ddiciency can
be remedied by the incorporation of the nondiagonal ele-
ments set forth in detail in this paper. Moreover, this de-
tailed information specifying the longitudinal dielectric
response properties of a bounded solid-state slab magneto-
plasma also provides the means to analyze its dynamic,
nonlocal inhomogeneous surface interactions, ' and its
exchange and correlation phenomena. Such applications
will be reported separately.
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where s~ ——p" /cr" [Eqs. (3.48)] and

c =(1—cop/3co, )—(1
cop /4co, )— (5.16b}

APPENDIX A: T%'0-DIMENSIONAL INTEGRALS
p (g), cr n(g), p (g), and X {g)

Such Bernstein modes for propagation perpendicular to
the magnetic field are undamped in the bulk, "' but the
surface Bernstein mode under consideration here does
suffer natural damping. '3

The few examples which we have just discussed are the
simplest illustrations of the usefulness of the material
developed here in analyzing quantum (and classical} mag-
netic field effects in the nonlocal, longitudinal, electrostat-
ic slab surface-plasmon spectrum. We have extended
these considerations to include the effects of retardation
associated with the finite velocity of light for the thin-slab
limit of a two-dimensional plasma in several studies
relevant to inversion layers, ' ' and much important re-
lated 2D work of other authors is cited in the comprehen-
sive review article on the electronic properties of two-
dimensional systems by Ando, Fowler, and Stern.

Rcmmtly, several important papers by Gumbs and his
collaborators have treated problems relating to the linear
longitudinal dielectric response properties of a bounded
solid-state slab plasma in a quantizing magnetic field
from a different point of view. Their work includes stud-
ies of the nonlocal surface magnetoplasmon spec-
trum, ' and static shielding by a magnetoplasma near a
surface, and it embodies an effort to account for the
role of "qu mtum interference term" counterparts of our
nondiagonal elements —A (q, q„q,';v). The fully detailed
evaluation of the nondiagonal elements —A(q, q„q,';v)
which we have presented here provides the basis for a
more refined and accurate analysis of the roles of the
qu uitizing magnetic field, nonlocality, and spatial inho-
mogeneity in the surface magnetoplas mon spectrum,
natural damping, dynamic screening, and static shielding.
In this connection, it should be noted that the neglect of
nondiagonal elements in obtaining the semi-infinite
surface-plasmon dispersion relation Eq. (5.14) yields a
description of nonlocal surface plasmons in magnetic field
which ignores surface-induced changes of the dielectric

Exact evaluations of p (g) and cr (g) have been
developed in Ref. 4, with the results (%~1 )

pz (g)=(mco, /m) g r}~(rco,)fo(rco, —g),
r=0

(Al)

p»(g) cosh(co, s/2) I 1+ [sinh(co, s/2)] IX (g)+
2 [sinh(co, s/2)]

cosh (co,s/2)
sinh (co,s/2)

and thus we verify that

x (g)+ —,'p' (g)=p (g) . (A3)

This identity will be employed to evaluate X (g) after we
have evaluated p (g). The evaluation of p (g) is best
done by employing Ref. 4, Eqs. (28) and (31), with p (g)
as given by Eq. (4.32), which yields (iri~1)

o' (g) =(mco, /m') g rI+(rco, )fo(rco, g)rco, . (A—2)
r=0

Approximations appropriate to low- and intermediate-
magnetic-field strengths for p (g) and cr (g) are also
given in Ref. 4, Eqs. (43) and (44), res ectively. Further-
more, nondegenerate evaluations of p (g) and cr (g) ap-
pear in the same reference, Eqs. (46) and (47},respectively.

Our treatment3 of p (g) and X D(g) will start with the
verification of the identity Eq. (4.34). In terms of the s
integrands involved, we have

cosh(co, s/2) p2D(g) cosh(co, s/2)

[sinh{co s/2)] 2 sinh(cops/2)

cosh (co,s/2)
+ZD(g)

sinh (co,s/2)



3918 NORMAN J. MORGENSTERN HORING AND MUSA M. YILDIZ 33

{{c' (g)=co, g r)+(rco, )fo(rco, g—)
F=0

dz s~) s mcoe cosh (coez/2)
e ~

~

'e 2ir& 4ir sinh (co,z/2)

The integral co about the origin is given by (x =co,z/2)

~

~ ~
dz m dx z 1

'0 2mi 2' '0 2ni (tanhx }i

m dx 2~ 1 1
. e +—+analytic

2% ~0 27Tl ~3 x

=—(r +—)
Pl

where j(s} has isolated singularities at s„=+i2nn/. Ace,

and is periodic with period si. Following Ref. 4, Eqs.
(35)—(44), we have

ds e .
( }

gs„dz egs gs

'0{0"si"i 2mi s ~'0 2@i z+sn~0 n

(82)

The substance of the low- and intermediate-field approxi-
mation is that z-1/g«se 1/~e so that z+s„~s„
and then

/ST

eO)(z}
Sn ~0 2&l

whence

{5coe n(2' —irg /%co, )

m' 2
z

0 21Tl
(83)

{{c (g)= g rl+(rcoe)fo(rcoe —g)(r +-,' }.
F=0

Since yzD(g) =p, zD(g) ——,
'
p (g) we have

(A5)

Approximations of yzD(g) and X (g) appropriate to low-

and intermediate-magnetic-field strengths and nondegen-
erate evaluations may be obtained using Ref. 4, Eqs. (42)
and (45).

This is clearly the dHvA oscillatory term

n' —(2irg j{ricoe )
JdHvA

2

(85)

Noting that

'. e&J z,
0 2&l

whereas the first term on the right-hand side of Eq (82.)
yields the semiclassical limit when evaluated for low field
by using just the leading term of the Laurent expansion

ds e&'
Jsem; = j(S}.

c0 2%i S

APPENDIX 8: REMARKS ON THE EVALUATION
OF THE dHvA OSCILLATORY PART

OF rO-DIMENSIONAL INTEGRALS
FOR LOVE- AND INTERMEDIATE-FIELD STRENGTH

We wish to point out that the techniques developed in
Ref. 4, Eqs. (35)—(44), for evaluating two-dimensional in-
tegrals at low- and intermediate-field strength can be ex-
pressed in a more convenient form for obtaining the
dHvA oscillatory part. Using the notation of Ref. 4, we
consider integrals of the general form J

~ ~1()= J (86)

we have

fico, ir —(2~$jiri{o, )

m' 2
(87)JdHvA ~s "semi

per

and applying this to g{"'(g) yields Eq. (4.44) (A'~l). The
full result for J at low and intermediate fields in the
zero-temperature degenerate limit may be written as

J= ~ O~ e JS (81)
ii{ro, fr—(2rrg/Ace, )

2
J; . (88)

ci

per

APPENDIX C: EVEN AND ODD PROPERTIES OF THE REAL AND IMAGINARY PARTS OF 9P(F,s,F ',z';v+ie)

We shall prove here that the real and imaginary parts of 9P(r,z, r ',z'; v+ie) are even and odd functions of frequency v.
We write Eq. (3.14) in the form (v-+ —v}

I d k I d k {{x—K'i.{rr'}-
d (2n) (2m}

Xgg&(k„k;;z,z') —J die "' " '"G, (k,k„c)G (k', k,'—; )c
k k ~

+ I
L

(Cl)
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with the definition

II(k„k,';z,z') =sin(k, z)sin(k, z')sin(k, 'z)sin(k, 'z') = II(k,', k„z,z') .

Noting that

6, (k, k, ; —t)=6', (k, k, ;t); G, (k, k, ; t)—=G, (k,k„t),
we have

9F'(r,z, r ',z', —v+i e)

i4 k';Cg g)(-, —, )

d (2m) (2n)

(C2)

Xg g Il(k„k,';z,z')
k

te"'"+' '6 k, ,; —t 6 ', ,';t

0f dte "' "+'e'G (k, k; —t)6 (k'k''t)
h

(C4)

If we now interchange t~ t and k—~k ' and k,~k,' and employ Eq. (C2), we find

9F (r,z, r ',z', v+—ie)

ei(k —X '3 ~ (r —r '3

d (2m) (2m )

X++II(k„k;; ,zz)
k

—J dt e "'"+'"6 (k, k, ; t)6((k '—,k,', t)

dte"' "+'"G
& (-k, k, ; —t)6 & (k', k,', t )

0
(C5)

and comparing with Eq. (3.14) we have

9F'(r,z, r ',z', v+ie) =9—F(r,z, r ',z', v+ie), (C6)

and

Im9P(r, z, r ',z', v+i e) =—Im9F(r, z, r—',z', v+i e)= odd

whence

Re9F(r,z, r ',z', v+ie) =R~—(r,z, r ',z';v+i e) = even

(CS)

so that Re9P is an even function of frequency v whereas
Im9P is an odd function of frequency v. These even and
odd properties are quite general for 9P
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