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Light scattering from a dipole near a rough metallic surface
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%'e discuss the resonance fluorescence and absorption spectra pertaining to a dipole near a ran-

domly rough metallic surface. In the framework of a fully quantum-mechanical formulation, the
effects of the rough surface are embodied in the statistical properties of the matrix elements that
couple surface-plasmon and reflected-wave modes. We analyze the dynamics of the system under
the approximation of neglecting the diffuse photon and surface-plasmon (polariton} scattering, yet
accounting for the surface-plasmon and photon coupling to all orders. We find that surface-
roughness induces distortions in the flat-surface Lorentzian line shape toward a Gaussian line shape
as the surface-mughness amplitude increases.

I. INTRODUCTION

Surface roughness is a generic term used to describe de-
viations of a real, nominally flat, surface from the ideali-
zation of a perfectly fiat surface. Its existence has impor-
tant effects on the surface optical properties. For exam-
ple, the irregular surface geometry of spikes and nooks
gives rise to the laser speckle pattern and to large local-
field enhancements. ' The latter effect is believed to
underly the observed giant enhancement in the Raman
cross section of molecules deposited on such a rough sur-
face. Another manifestation of surface roughness is the
coupling between light (photons) and surface modes, e.g.,
surface plasmons (SP) in the case of a metallic surface. s

In this sense a rough surface acts like a grating: It pro-
motes elastic scattering between photons and SP quanta
by providing the surface-parallel momentum mismatch.
This feature has been employed, e.g., to enhance light
emission from tunnel junctions, where the idea is to
convert surface-modes excitation into light.

The details of the roughness depend on the fabrication
method of the surface. These are usually ill characterized.
They take forms such as large [O(10nttt)] "pits and
boulders, " terraces, local defects of atomic dimensions,
lines of dislocations, etc. In the context of a light probe
with a wavelength much larger than a typical scattering
protrusion, the distinction between the various kinds of
rough surfaces is blurred. Consequently, it is natural to
adopt a generic model which assumes a random surface
profile distribution characterized by a few phenomenolog-
ical parameters. The scattering of light from such a
surface has been treated in the literature in classical terms
using one of several approaches such as Green-function
techniques, "o"the separation of the surface region (sel-
vedge} from the rest of space and parametrizing the ensu-
ing coupling between the two, employing the classical
Ewald-Oscan identity, ' and the matching of boundary
conditions across the rough surface. ' In most of
these studies, the surface-roughness amplitude is con-
sidered as small.

The present work goes one step further by considering a
system comprised of a rough surface plus a nearby dipole

(Fig. 1). The focus is on interaction between the dipole
and surface excitations, i.e., the manner in which surface
roughness modifies light scattering by the dipole. This
system occurs in a substantial body of experimental
work. 's A novel feature of our approach is the following:
In a fully quantum-mechanical treatment of the system
the roughness-induced coupling between SP excitations
and light emission or absorption is expressed in terms of
matrix elements which couple the SP and photon modes.
The assumed random character of the surface roughness
is reflected in statistical properties of these matrix ele-
ments, and consequently the surface-roughness modeling
enters via statistical assumptions [Eq. (3.5}]on these ma-
trix elements. These statistical assumptions are consistent
with, yet more general than, the well-accepted model for
surface roughness. ' '" Our approach has several ad-
vantages. (a) It allows us to account for the SP coupling
to light due to surface roughness of arbitrary amplitude,
provided the diffuse light and SP scattering processes are
neglected. This approximation is in keeping with the
focus of this work on the dipole-SP coupling. (b) It allows
us to correctly evaluate the resonance fiuorescence (RF)
spectrum of the di le which mandates the use of a fully
quantized theory. ' (c) It underscores the structural simi-
larity between surface-roughness random fields (elastic
scattering) and surface-generated dynamical fluctuations
(inelastic scattering) treated elsewhere and in an accom-
panying paper. ' The latter are also referred to as the op-
tical Johnson noise. This similarity makes it possible to
simply account for the common situation where both
types of fluctuations coexist (Sec. IV). (d) As will become
apparent below, the quantum formalism leads to a sitnple,
transparent formulation.

The model takes for the dipole a two-level system, '

which is the simplest configuration accommodating one
natural frequency. To eliminate unnecessary complica-
tions we neglect the "diffuse" light scattering' and SP
elastic scattering by the rough surface. The former, for
instance, underlies the laser speckle pattern' which is not
the issue in the present work. The system is driven by a
weak, continuous, monochromatic laser, turned on
abruptly at t =0. The metallic surface is assumed in the
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II. THE MODEL
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FIG. 1. The system under consideration: A dipole, indicated

by an arro~, located at distance d from the z =0 plane. The de-

viations of the rough surface from the average perfectly flat sur-

face at z =0 is denoted by g(p}; see text

first part of this work as lossless. This assumption is later
relaxed (Sec. VI).

To evaluate the dipole RF and absorption spectra we
derive and solve the Heisenberg equations of motion. ' In
so doing the dynamics of the system is completely solved.
One other possible application of our solution is the
evaluation of the modified SP dispersion relation; '
however, this issue is not pursued here any further. All
our results depend only on the form of the statistical as-
sumptions pretaining to the SP-photon coupling matrix
elements. The specifics of the surface-roughness model
are lumped into the second moment of these matrix ele-
ments.

The main result of this work, besides establishing a
fiexible and powerful framework, is the prediction of a
qualitative line-shape change as the surface-roughness-
induced width y, is increased. This width [Eqs. (3.20)
and (4.6)] depends on a combination of SP-photon cou-
pling and the dipole-surface coupling. The line shape is
approximately given by [Eq. (4.5)]

1(m)= J dx f dy exp[ —i(ru —iyz)x yi(ruyiyo)y]

Xexp( ——,'(x —y) y, ), (1.1)

where yD is the surface-renormalized dipole width. When
the roughness amplitude is very small then y, ~&yn and
the spectral line shape (1.1) is Lorentzian. In the opposite
extreme, i.e., y, »yn, expression (1.1) yields a Gaussian
[Eq. (4.7)]. Crude estimates indicate that the Gaussian
line-shape limit can only be approached but never fully
realized. This conclusion, however, does not exclude situ-
ations where considerable line-shape distortion, given by
(1.1), are present. In the particular limit of no dipole, we
recover the reflectivity dip near the asymptotic SP ener-

gy
22

The paper is organized as follows. In Sec. II we intro-
duce the model for a lossless rough metallic surface, and
the ensuing equations of motion are derived in Sec. III.
Section IV is devoted to the derivation of the RF spec-
trum. Since the surface is lossless, the RF spectrum is
particularly simple, i.e., it consists only of a Rayleigh 5
peak. In Sec. V we evaluate the absorption or reflectivity
spectrum, which is considerably more complex. The com-
bination of surface roughness and the optical Johnson
noise and a brief discussion are given in Sec. VI. The Ap-
pendixes contain pertinent technical details.

The system considered (Fig. 1) consists of a dipole near
a rough metallic surface and a weak, continuous driving
laser turned on abruptly at t =0. %e assume the common
random roughness model for the surface's profile, i.e.,
the deviation g(p) of the actual surface froin a perfectly
flat one (Fig. 1) is a stochastic process as a function of the
surface-parallel coordinate p. To simplify the analysis at
this stage the surface is assumed to be lossless. This re-
striction is relaxed in Sec. VI. Finally, the dipole is ap-
proximated by two-level atom' to accommodate one
natural frequency.

The model is constructed in two stages. We first recap
the unperturbed system model, i.e., that of a dipole near a
perfectly fiat surface, and then add to it the surface-
roughness perturbation. Our approach is fully quantum
mechanical. The unperturbed system Hamiltonian Ho de-
scribes the dipole interaction between the two-level system
and the electromagnetic field in the presence of a perfectly
flat metallic surface, treated as a jellium. ' ' It follows
(hereafter carets denotes operators)

A. A
HO=Hw+Hr+H t (2.1)

where the atomic Hamiltonian H„ is

H„=E, /0)(0/+E, /1)(1
f

(2.2)

H~ +fico a ~——a (2.3)

where a and a are the annihilation and creation
operators, respectively, and m runs over all the relevant
modes. In the present context one class of modes are the
reflected-wave modes. They are specified by

=(roi, k~, ,qi, i), where the free-space frequency is
cubi, c(ki+——qi )', ki and qi are the surface-parallel and1/2

perpendicular momenta, respectively, and i assumes two
polarization indices, e.g., s and p polarization. Given a
quantization volume of an infinite rod in the z direction
with a square cross section of area I.~, the ki variable is
discrete and qi is continuous. The other class of modes
m are the SP specified by m =(k~~, i) where k~~ denotes the
surface-parallel momentum component, again quantized
in a square of area I. . For a one-interface configuration,
only p-polarization SP modes are admissible. In the
sequal we always omit the polarization index in conjunc-
tion with SP to avoid cumbersome notation. Finally, the
interaction dipole term H;„, has been evaluated else-
where, ' and has the form

H;„g=g(&& a 8+fiQ' 8 a ) . (2.4)

In (2.4) the dipole operator is defined by 8=
~
0) ( 1 ~, and

the coupling matrix elements Q~ depend on the dipole
distance from the surface 1 (Fig. 1).

Surface roughness couples the flat-surface reflected-

with
~
0) and

~
1) denoting the atom's ground and excit-

ed states, respectively, and Eo and E& the corresponding
energies. The electromagnetic field-surface Hamiltonian

HF has the standard mode decomposition
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waves modes and SP modes by providing the momentum
mismatch between the two. Consequently, the full model

Hamiltonian H is (Fig. 2)

H=H0+ g [AV, (k((, A, )a i at(+i)iV,'(k((, &)& ()&i.],

(2.5)

where the matrix element V, (k~~, k) couples a SP mode
and a reflected-wave mode specified by k~~ and A, , respec-
tively, and pertains to a given member of the random sur-
face ensemble denoted by e. An explicit model46 of
V, (k~~, A, ) and the form (2.5) are elaborated in Appendix
A. In (2.5) and hereafter we abbreviate k~~ by

~ ~

whenever
possible to simplify the notation. The simple structure of
(2.5) corresponds to the physical picture that a photon can
be created, via the surface-roughness coupling, at the ex-

pense of one SP quanta and vice versa. As pointed out in
the Introduction, we neglect in (2.5) terms of the form
a ja„and &i, a~ which represent "diffuse" scattering of
light and SP, respectively, in keeping with the focus of
this work on the light-SP coupling via the surface rough-
ness.

The random nature of the surface profile g(p), (Fig. 1)
is reflected in the properties of the matrix elements. For
one, the subscript e in V, (k~~, A, ) indicates that for fixed k~~

and k, the matrix element is a random number over an en-
semble e of surfaces. By the same token for a fixed en-
semble member e, the matrix element V, (k~~, A, ) behaves
erratically as a function of the surface-parallel com-
ponents: For fixed k~~ and ki varying or for fixed ki and

k~~ varying, the matrix element has a highly irregular
behavior. The surface-paraOel momentum component is
singled out since a rough surface emits or absorbs
surface-paralle/ momentum with a random amplitude.
These features are explicitly borne out by the common
surface-roughness model introduced by Elson and
Ritchie (Appendix A). The structure of (2.5), however, is
quite general. All subsequent manipulation depends only
on this structure and the statistical properties of V, (k~ ~, A, )

just described and formulated in the next section.

III THE EQUATIONS OF MOTION
AND STATISTICAL ASSUMPTIONS

Our strategy is to solve the Heisenberg equations of
motion corresponding to the Hamiltonian (2.5) in the
weak driving-field limit, given the statistical assumptions
on the SP-photon couphng V, (k~~, A, ) specified below.

Straightforward algebra yields the equations of motion:

B(—t) = i ei—DB(t) i —g Qi ai (t)+g Q~'~ a~~(t)dr
k

It

(3.1a)

dt
—"i,( )=—'

i,"g( )—'
i, ( ) —'g, ( ~(, ) ()( ),

(3.1b)

dt
u[[(~)= —i][u][(i) —«[[B(~)—i y V (k~( ~)ui. (~)

Po= 10& l~&&~l «I
such that the coherent state

~

a ) satisfies

(3.2)

(3.3)

For reasons that will become obvious shortly, we solve
(3.1) by first eliminating ai (t) from (3.1c). Formally solv-
ing (3.1b) gives

~ ~

ai (t) =e ai —i Qi dre i B(r)
0

i g V—,(q~~, A, )I d~e "
a~~(~) . (3.4)

When the third term on the right-hand side of (3.4) is in-
serted into (3.1c) we are led to the following statistical as-
sumptions (P is an arbitrary smooth function):

(3.1c)

The initial conditions at r =0 are that the atom is in its
ground state

~
0) and the radiation field has no photons

except in mode L of the weak continuous driving laser.
The corresponding initial density matrix p0 is

LASER
REFLECTED

'tNAV FS

( V, (k~~, A, )),=0,

g V,'(k(), A, ) V, (q~(, A, )e

(3.5a)

DIPOLE ve (k„,) }
=5i, q, g ( V, (k)), A, )( e, (3.5b)

SURFACE
PLASMONS

FIG. 2. Schematic Aow chart of the couplings in the lossless
rough metallic surface model. The notation for the coupling
matrix elements is defined in the text. The driving laser, indi-
cated by a wiggled arrow, is directed at the "dipole" box, to
highlight the distinction between dynamic dipole —reflected-
wave interaction (Qq} and the dipole s interaction with an ex-
traneous driver.

=&i,„,i, g V, (k(), A, ) V,'(k~),p)P(k)~) . (3.5c)
II

The first equation (3.5a) is obvious. The 5 factors in
(3.5b) and (3.5c) are motivated by the statistical nature of
the surface-parallel momentum transfer discussed in Sec.
II: For fixed k the k~~ dependence of V, (k~~, A, ) h»
presumably a random phase [see, e.g., (A5)], and therefore
the sum on the left-hand side of (3.5b) is dominated by the
absolute squares; likewise for (3.5c). The statistical as-
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sumptions (3.5) are at the basis of all subsequent deriva-

tions.
Note that would we try to eliminate all(t) from (3.1c)

and insert it into (3.1b); the term corresponding to (3.5)
would be

g V, (k, l, A, ) V,'(kll, P)e

This term, however, does not generate a 5i &
factor since

the surface-perpendicular momenta components in A, and
p, are not affected by the statistical nature of the surface
roughness and hence can be different. Phrased different-
ly, surface roughness does introduce correlations among
reflected-wave modes with different qi, but sharing the
same ki. Consequently, although the equations of motion
(3.1) are symmetric with respect to the reflected waves
and SP modes, their solution given the statistical assump-
tions (3.5} is not, since surface roughness introduces ran-
domness only in the surface-parallel momenta. The par-
ticular modeling of the surface roughness is included in
the specifics of the matrix element

~
V, (kll, A, )

~

.
With use of (3.4) and the statistical assumption (3.5b),

insertion into (3.1c) yields (rt is an infinitely small num-
ber)

—QQi V,'(kll, A, )I dec B(r)+J(t),

(3.6a}

J(t)= —Q I
V.«ll ~) I' f, «e

(3.6b)

To solve (3.6} we invoke now the Markov-Born approxi-
mation twice '' W. ith regard to the J(t) term the justifi-
cation is provided by the following argument. The A,

summation includes summation over the surface-
perpendicular momentum component. This induces an
infinitely slow falloff, in ai~, of the matrix element

V, (kll, i, ) [Eq. (A9}]. Therefore the function

Ji(t —~)=g
~

V, (kll, A)
~

e

f, (kll) =g Qi V,'(kll) A, )
COD —Ng+ l 'g

(3.8)

8ll+&}'ll = —Q I V. (kll ~)
I

1

N~~
—COg+E'g

with the surface-roughness noise term FR given by

~R(kll t)

(3.9)

(3.10)

Equation (3.7) is interesting in several respects. (a)
Note first that no "weak roughness" approximation has
been invoked. Only the statistical properties of the matrix
elements V, (kll, A, ) were used. (b) Expression (3.9) (essen-
tially the Fermi golden rule) yields the modified SP
dispersion relation due to the surface roughness alone.
This comment becomes obvious by considering the ensem-
ble average of (3.7) [using (3.5a}] in the absence of a di-

pole ' '
(Qll ——0}. The additional correction to the SP

dispersion relation due to dipole can be derived by insert-

ing into (3.7) the solution for B(t) [Eq. (3.22)], and
evaluating the proper Green function. 26 The corrections
to the SP dispersion due to the diffuse light and SP
scattering have been neglected from the outset, as dis-
cussed in the Introduction. (c) The static noise term

f, (kll) has a simple physical origin implied by its expres-
sion (3.8): It represents a process where the dipole emits a
photon which then is reabsorbed by the rough surface and
converted into a SP. This is a second channel for the di-

pole to create a SP, in addition to the direct coupling term

Qll. (d) The dynamic noise term I'R, Eq. (3.10), is due to
the direct SP-driving laser coupling (Fig. 2). It therefore
enters a SP-driving term and gives (3.7) the appearance of
a Langevin equation. In the presence of other uncorrelat-
ed noises, e.g., the optical Johnson noise, we expect addi-
tional additive terms (Sec. VI).

Before proceeding further we solve (3.7) formally by us-

ing again the Markov-Born approximation. The justifica-
tion at this stage is similar to that employed for isolated
atoms, i625 i.e., typical all md yll are veV large compar&
to the Rabi frequency associated with B(t). In the long-
time limit (@lit »1) this yields

is very sharply peaked in t —v, allowing us to approxi-
mate under the integral sign in (3.6b},

—Iolllt ~ s( )
—IG9ll{T—f) ~

all(t) = 1
[Qll+f, (kll)]B(t)

~D —~~+ ~'VR

The same argument holds true for the term in (3.6a) in-

volving the B(t) factor, since again the summation over
the surface-perpendicular momentum component is non-
statistical. Therefore in the Markov-Born approximation
and the long-time limit, (3.6) takes the form

—lSgf ~e a~, (3.11)

where we used (3.10), and to simplify the notation we as-
sumed

dt
—all(t) = —t'(coll —5ll

—i7 ll)all(t) 5~I+Jr~~-Erg ——const . (3.12)

—i[Qll+f,(kll)]B(t)+FR(kll, t), (3 7) Assumption (3.12) can be relaxed.
Similarly, by inserting (3.11) into (3.4) and using (3.5c),

we obtain straightforwardly
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a„(t}=Q,(g)e "ax—i[Q'(A, )+f,(&)]
—j(~~—lg}(t—V} ~

dre (3.13)

N, (A, )=1+imR(ki, qi)g I
V, (q~~, A, )

I

NII
—QPg —l fg

1
Q,'(A)=, Qi+i g V, (q((, A, )f,(q)))—

qlI
~II —D —&XR

(3.14)

1f, (A, )=g V, (q((, A, )Q))
~II

6)D —QP
II + l Pg

(3.15}

The R (k~,qi ) factor in (3.14) is defined by
5t,~,k f dq„&(toi, to„)=—&(ki„,qi) and we ignored —as

throughout —principal value contributions.
Expression (3.13) separates explicitly the terms linear

and bihnear in the fiuctuating matrix elements V, (k~~, A, ).
The bilinear terms are expected to fluctuate over the en-
semble substantially less than the linear terms, particular-
ly if a smoothing summation is involved such as in (3.14).
We therefore approximate

Q,'(x) = & Q;(x) &, =Q&,

and consequently

"at,

(3.16)

i [Qi+—f, (A, )]f dre " 8(r) .

(3.17)

—9(t)= i(~ &—~ y+—f }&(t}'—y Qx&l, e ak,
dt

—(~II-i@&}(t-r}—t ~ Q~~ dre p&(k~~, r}
II

(3.18)

where

~D+&)'D =~ sp+ & (7'sp+)'Rw }

1
~sp+i3 sp= —g I Qi( I

II
coD —6)II +If'

7'Rw=Re ~QQf. Q~,8(~x—~D}

(3.19}

and

At the expense of more complicated expressions (see
below), approximations (3.16) can be relaxed.

With the aid of (3.11) and (3.17) the effective dipole
operator equation is obtained by insertion into (3.1a) and
invoking the Markov-Born approximation. The result is

FIG. 3. Schematic representation of the roughness-induced
terms in the dipole effective equation of motion (3.18). (a)
represents the collisional noise term f; (3.20). The dipole SP
coupling (QII) and the dipole —reflected-wave coupling (Aq) are
indicated by two parallel lines, and the roughness-induced cou-
pling V, by a dashed-dotted line. The dipole is indicated by a
circle, the SP modes and reflected-wave modes (photons) by a
triangle and cross box, respectively. Thus (3a) depicts a process
where the dipole emits a photon, which is converted by V, into a
SP, to couple back to the dipole. The same process in reverse is
also contributing. (b) represents the driving terms in (3.20). The
wiggled arrow stands for the driving laser. Using the same pic-
toral symbols as in (a), the extraneous laser can either directly
drive the dipole, or create a SP via the intermediary of the rough
surface, which drives the dipole.

Qff. (~)f:= '
. +

~ "t ~ii+'» i. D ~+tn—
II

[Q& ~,«~~, 7 )Q~~]S(~n ~~)rx2n— (3.20)
(t0D to~~} +}'z

The dipole operator equation of motion (3.18} is a key
result of this work. The effect of surface roughness is to
renormalize the widths and shifts and to introduce two
noise terms, i.e., the "collisional noise" f; and the additive

driving-term noise which involves Ftt. The physical inter-
pretation of these noise terms as suggested by (3.10) and
(3.20} is the following: The collisional noise term
represents a back-reaction of the dipole on itself [Fig.
3(a)]; the dipole emits a photon, which is converted into a
SP by the surface roughness and then couples back to the
dipole. The reverse route is also possible, hence the two
terms in (3.20). The I'z term [Fig. (3b)] represents the
contribution of driving the dipole by first converting a
driving-laser photon into a SP quanta via the rough sur-
face and the ensuing SP field drives the dipole. The f; is
time independent since only elastic scattering are mediated
by the rough surface (in the long-time limit). The struc-
ture of (3.18) is identical to that encountered in the con-
text of the optical Johnson noise, ' which makes it simple
to combine the effect of the latter with surface roughness
(Sec. VI).

The dipole operator equation of motion (3.18) can be
formally solved, and upon insertion back into (3.11) and
(3.17) it leads to a closed-form solution of the problem.
These straightforward steps yield (in the long-time limit
t}D ))1)
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8(r)= —i y[Nini+f, '(A)]age " I drexp[ i—(Q)D Q—7$ b—D —iyD f—;)(t —7)],
A.

0
(3.2la)

1f,'( A, ) =g V, (qadi, A, )Oii
Ng —QP~~+ l gg

(3.2lb)

Similarly
t

A (~ k)()+C (~ k(~) drexp[ i(~a ~i, ~D iyD—+f }(r )]—
Il o a

(3.22a)

where

A, (A, ,kii) = V,'(kii, A, )
co&—~~~+iy„'

C, (A, ,k)() =—i[A()+f,(ktl)][NxQg+ f,'(k)]
COD —CO)(+ l gg

(3.22b}

(3.22c)

Expressions (3.21) and (3.22) are the working relations for the next two sections. When sandwiched with (3.2) they im-

ply that the dipole and SP respond with the driving laser frequency. Obviously, all the operator solutions depend on the
particular ensemble-member index e either through a multiplicative factor, or the time integrals in (3.21}—(3.22).

IV. THE RESONANCE FLUORESCENCE SPECTRUM

The quantized-field formalism used hitherto is necessary to evaluate the effects of surface roughness on a dipole s
resonance-fluorescence (RF) spectrum. The definition of the RF spectrum SitF(coi }for a stationary system is

See(met= tire — iee(mt ) a t(t)at(t) tea(mt )))
1

t~m
(4.1)

where the extra angular brackets in (4.1) denote an ensemble average and
~

iRF(coL }& corresponds to the initial density
(3.2) with the weak driving laser of frequency ror . The mode A, in (4.1} is any reflected wave outside the specular direc-
tion. Inserting (3.17) into (4.1) gives

e

See(mt)= iim iee(tet ) ~Qt+f, tt )
~ f dee B (t elB(t) iee(mt )—

llt—+ co 00

which calls for the calculation of the dipole-dipole correlation function in the long-time limit.
To evaluate (4.2) we use (3.21) and (3.3). This yields

+Retmtt=
I a I'+mt™tt( I

&t+f t~t I'I &t~t+f; t~t I' J, d* catt(~ trna™t+tra+f:™I
X 1 dt'exit[ i(ma™t—it'a+f;)p—'j),

(4.2)

(4.3)

where the dipole frequency shift bn has been omitted for simplicity. The ensemble average implied in (4.3) can be easily
carried out using the method outlined in Appendix B. The result is

SRF(~i ) =
I
&

I
'@~i.—~L, }I& I l f4+f.(~)]Pet~i, +f'(~)] I '&Io(~i, —~c, }

+&1[f4+f.(~)][&iIIi.+f'(~)] I'f:&.Ii(~~,—~c)I (4.4)

where [from Eqs. (84) and (B5)]

Io(u)= I dx f dy exp[ i (co iyp—)x]—
0 0

&& exp[+i (a)+i yD )y]

Xexp[ ——,
' (x —y) y, ],

dI i (co)= Io(a) ),
dco

y,'= &(f,')'& .

(4.5)

(4.6)

Expressions (4.4}—(4.6) are the results of this section.
The 5(coi —coL ) factor expresses the fact that in the ab-
sence of any source for inelastic scattering only the elastic
scattering mediated by the surface roughness takes place.
This is the Rayleigh 5 peak. Surface roughness modifies
the "line shape, " which is the co-dependent multiplicative
factors in (4.4). For an isolated dipole or a dipole near a
flat surface (without Johnson noise) the line shape is a
Lorentzian. In the presence of roughness the line shape is
given by a combination of ID and Ii, Eq. (4.4). The line
shape Io has the following limiting forms:
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1
for }'D »'Ye s

&0(co)- +/a
exp( —co /2y, ) for yD «y, .

(4.7)

The change of the line shape, from a Lorentzian to a
Gaussian with the increase of the roughness-collisional
width y, [Eq. (4.7)] is a central result of this work. We
emphasize that this feature does not depend on the specif-
ic roughness model.

It is particularly interesting to estimate where both lim-
its of (4.7) are realized. For this purpose we deduce from
(3.19) and (3.20) the following order-of-magnitude esti-
mates for the two widths involved:

r. p[Q~~][Qi, ]& I
v

I
& (4.8)

7.=[ I Q~~ I ]'p+[ I Q. I
]'(1+& V,'&p}p'. (4.9)

[ I Q~~ I
]~p for a "near" dipole,

VD
f I

Qi
I
]~(1+& V, &p)p' for a "far" dipole.

(4.10)

By juxtaposing (4.8) and (4.10) it is possible to analyze
the two limits of (4.7). The Lorentzian limit, i.e,
y~ &&y„can be realized readily for both near and far di-

pole configurations. For a near dipole (4.8) and (4.10)
y~~ld I [Q()11»pl [Qi,] I & I V. I & Fo« far dipole we
distinguish between two situations. (a) In the "small"
roughness limit, defined by & V, &p «1, comparing (4.8)
and (4.10) yields

I [Qi,] I »p I [Q~] &
I

V, I
&. (b) In the

"large" roughness limit, defined by & V, &p »1, the com-
parison of (4.8) and (4.10) gives 1[Qi]1 & I V,

I
&

»p I [Q~] I
. All these inequalities can be readily realized

due to the fact that at small distances from the surface
(within the SP field range} Q~~ dominates, and at large dis-
tances it decays exponentially. Thus the Lorentzian limit
1s peIvasive.

The Gaussian limit of (4.7) is more difficult to realize,
if at all, according to the following considerations. For a
near dipole, the condition yD «y, implies, by using (4.8)
and (4.10}, th«

I [Q][]1«pl [Qi] I &
I

V. I & However,
the very definition of the near dipole regime as embodied

I

In (4.8) and (4.9} the square brackets indicate a "typical"
value of the matrix element and p,p' are uninteresting
generic phase-space density factors. Expression (4.9) sug-
gests the distinction between the regime when the dipole is
"near" the surface, i.e., when the SP field dominates, and
the regiine when it is "far" from the surface when it is af-
fected predominantly by the reflected waves. Consequent-
ly,

in (4.10} stipu»tes th« 1[Q((]l »pl[Q~]l & I V.
I

&

which is incompatible with the starting inequality. Hence
eve conclude that the Gaussian limit probably cannot be
realized for a near dipole. For a far dipole we again dis-
tinguish between two situations. (a} In the small rough-
ness limit, i.e., & V, &p«1, expressions (4.8) and (4.10)

I [Qi,] I «p I [Q((] I &
I
v. I

&.

when combined with the definition of the far dipole re-
gime as embodied in {41()} le

I [Qi] I'» I [Q((] I'p
yields & V, &p»1, in contradiction to the starting hy-
pothesis of small roughness. (b) In the large roughness
limit, i.e., & V, &p»1, expressions (4.8) and (4.10) yield

I [Qi] I & I v. I &p « I [Q((] I

inition of the far dipole regime implies

1[Qi] I »pl [Q~~]1, which, when combined with the
above inequtb)ity yield & V, &p «1 in contradiction to the
starting hypothesis.

The foregoing analysis can be summarized by the con-
clusion that the Lorentzian limit of (4.7) is almost always
realized, whereas the Gaussian limit is not at all. This
statement, however, does not rule out situations when

y, =y~, characterized by a substantial distortion of a
Lorentzian line shape.

V. THE ABSORPTION OR REFLECTIVITY SPECTRUM

The absorption spectrum is intimately connected to the
reflectivity spectrum in the following way. Denote by
E'ER (roc) the deviation of the perturbed system (flat surface
plus the roughness and an interacting dipole) reflectivity
from that of the unperturbed system (flat surface and a
noninteracting dipole), as a function of the probe-laser fre-
quency mo. Then

tb)t (me)= )(m —, H,",'(problaseer, system—
)))y~to io df

(5.1)

where i 0 denotes the incoming flux (dimensionality:

energy/[time X (length) ]), and H ';„",'(probe laser, system)
is the interaction per unit area. The extra angular brack-
ets indicate ensemble average. The average in (5.1) is over
the density matrix pertaining to the perturbed system and
represents the average rate of flux removal from the spec-
ular direction by the perturbation. The connection to the
absorption spectrum, ' ' defined as the rate of energy
removal from the specular direction, is now derived.

In the present context (Fig. 1) the interaction Hamil-

tonian between the probe laser and the system, h;„„and
the related areal interaction density H', „",' are

(ip obe1, y }=fiQ,( ' 8 + ' 8)+RQ[ V,'(k,L) ' ",+ 'V, (k,L) ' " ], (5.2a)

and therefore

H,",'(probe laser, system)=fiQoii(e 8 t+e 8)+A'g[W, '(k~~)e o ~~+8;(k~~)e a~~] . (5.2b)

These expressions are obtained by considering the expectation value of (2.5) with a density matrix of the type (3.2). The
new symbols in (5.2) are Qo ——Qi La is the Rabi frequency (dimensionalities: 1/time}, n is the areal density of the di-
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poles [dimensionality: 1/(length) ], and W, (k])=a'I', (k]],A, =L)/L (dimensionalities: a is (length} ', I,(k]],A, ) is
(length)]~/time, W, (k]]) is I/[timeX(length) ]). The second term on the right-hand side of (5.2b} represents the
photon-SP coupling per unit area, which is the reason for the I /I. factor in W, (k]]). This is in keeping with the quanti-
zation volume assumed throughout, i.e., an infinite rod with a square cross section of area I. . The subscript e in (5.2) is
a reminder that at the end of the calculation and ensemble average must be taken.

Use of (5.2) in (5.1) in the linear response (since the driving laser is weak) gives

]AB f dre QR [8(t +) 8 (t}]+y ~ W (q]])W (k]]}[ ])]](t +) q]](t)]
k il'qll

+Qo y„L.'W,'(k]])[8(t—~),a t]](t)]

+))og )v (t)~)~)[a)~)~(r
—r),t) (t))] )„~)) (5.3)

and
~ i~~ & is the initial state of the unperturbed system, i.e., the vacuum state of the radiation field and the two-level sys-

tem in its ground state. In the absence of surface roughness, only the common first term on the right-hand side of (5.3)
survives. In the other limit of the surface roughness only the second term in (5.3) contributes. Expression (5.3) is a gen
eralization of these two limits.

To compute (5.3) we use the explicit expressions (3.21) and (3.22) and the results of Appendix B. The relevant correla-
tion functions are

lim lim « i„~
~
[8(t),8 (t'}]Ii&t]&&=pe

'"" [( I Q]).+f (~) I &Io(toD —to]),)+&
I Q]),+f'(~)

I f &I](tonfico f ~ao

lim lim ((iztt ~X, [a], (t),aq (t')] ~i„t]&&
I~co f'~co

=g e "
f (X,A, (A, ,k]])A,'(A, ,q]]) &+ (X,B,(A, ,k]])8,'(A, ,q]]) &Io(cop —top)

(5.4a)

+ (X,B,(A, ,k]])8,'(l, q]~)f;&I, (to —coD )+2Re[(X,A, (A„k]])8,'(X,q]]) &I& (t0D —t0 )

+ (X,A, (A,,k]])8,'(A, ,q]])f;&I3 (CoD —tag)]), (5.4b)

lim lim ((i&~ ~X,[8(t},a], (t')]
~

i&~ &&t~c t'~e

=pe [(X,[Q]),+f,"(A)]A,'(A, ,k]])&I2(con —tag)+ (X,[Q]),+f,"(A)]A,'(A, ,k]])f;&I3(cog) tot))

+ &Xe[Qz+f~"(~)]8~(~ k]])&Io(tea —~z)+ &X~[Qz+f~"(~)]8~(~ k]])fe &I](~D ~k) J ~ (5.4c)

In (5.4), X, denotes an arbitrary random variable over the ensemble and from [(B6)and (B7)]
1/2

1

y . 2. exp[ (co iy, )—2/2y—2 ],I2(co)=

I3(co)= Iq(co) .
d

d67

Expressions (5.4) when inserted into (5.3) yield the central result of this section. As it is evident, the general line shape
is quite complex since the r)]]) dependence [the time integral in (5.3} yields trivially mq ——coo] resides in the I;(co) integrals
and the various averages over the ensemble. The discussion of the lineshape is deferred to a later publication. Note
again that Eqs. (5.3)—(5.4) are valid for an arbitrary roughness amplitude.

We conclude this section by considering a special limit of (5.3), i.e., when no dipoles exist. In this limit only the
([~],

,

(t),~ ~ (t')]X, & correlation contributes with the result:
&II
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2(riche (,l.
~

8",(kil) ~ ~
V, (kil, A, )

~
)5(cog —a)0)

i((,R (co()}=
II

(0 coll) +'Y)(

This results suggests a peak around coo-cusp ——co&/v 2 due the preponderence of SP modes around the asymptotic SP
energy' cosp. The width of the peak is the larger of y„or o, where cr (Appendix A) pertains to (

~
V,

~
) and denotes

the roughness correlation function.

VI. THE ADDITION OF OHMIC-LOSS
ErrmCTS AND DISCUSSION

The model discussed so far assumes, for the sake of
simplicity, that the surface is lossless. This assumption is
now relaxed to account for the Ohmic losses and the ac-
companying optical Johnson noise. ' To achieve this we
introduce a coupling between the SP modes and a "'statist-
ical bath, " along the lines of the reservoir-theory an-
satz' '~ (Fig. 4}. This (boson) bath represents the random
currents arising from inelastic collisions between the SP
charge-wave modes and lattice imperfections. This physi-
cal picture is in keeping with the Drude model of metallic
conductivity. Accordingly, Eq. (3.1c) is replaced by the
following two equations:

+F)(((kil, t)+FJ(kil, t), (6.2)

where the optical Johnson noise Fq(kii, t) is given bv'

by kll and bath mode I()I. The statistical properties of
the g(k(, p) are articulated elsewhere, ' and we assume

that (0 t =0)0 (t =0)) =5 pn p(T) where T is the bath
temperature and n p(T} is the occupation number.

The next step is to solve the augmented set of equations
of motion [Eqs. (3.1a), (3.1b), and (6.1)]. Following the
steps discussed in Sec. III, the result for the SP equation
of motion is

d-
dt (})(+7&)]nil( ) t [ II+f (kli}]B( )

Op(t)—= i copO p(t)—i g g(kii,—P)a ii(t), (6.1a) Fg(kli t = Xg (kll ~)e Op,
P

(6.3)

et(i�(t)

= —i
licolic(tt)

—iQIIB(t)

t g—V,'(kii, k, )ct)„(t}—i g g'(kll, p)Op(t),
P

(6.1b)

where 0 p creates a quanta of bath mode p and g (kll, p) is
the coupling matrix element between a SP mode specified

and the approximately constant Johnson noise SP
broadening is yJ [see Ref. 17, Eq. (2.11)]. Comparing
(6.2) with (3.7), and (6.3) with (3.10), we see the similarity
in structure between the optical Johnson noise and the
surface-roughness terms. Equation (3.4) is still valid,
since only the SP modes are assumed to couple to the
"bath" (Fig. 4).

The effective dipole operator equation of motion can
now be derived in a straightforward manner. The result is

(6.4)

li f «e '"ll ' "'
'[F)t(kll, r)+Fg(kll, r)]

all

» qii~ re d~'e Fz(qii, r')
~ ~ Q» ~ V ( g) d

l(ol) le)({—1') —&, —g(gpii err)(g ——p) m

ct)((t) =N~e ct)( —i[Q'(A, )+f, (A, )]f dr e B(~)

(6.5}

In (6.4) and (6.5) we denote yr ——y)((+ y~, and the dipole's
total frequency shift and broadening AD and y~ are ob-
tained from (3.19) by substituting y)t ~yr. The interest-
ing terms in (6.4) and (6.5) are those which involve a prod-
uct of the two noises V, (qii, A, ) and FJ(kll, t). These can be
neglected in the (common) limit of either weak roughness
or weak optical Johnson noise, in which ease, apart from

f„ the roughness and the optical Johnson noises add in-
coherently.

The RF and absorption spectra ensuing from

(6.2)—(6.5) can be worked out using (4.1) and (5.3). Obvi-
ously the predicted line shapes are rather complex and are
not discussed here any further. The expected qualitative
features, however, can be discussed in terms of the
features exhibited separately by the spectra corresponding
to the optical Johnson noise' and surface roughness. For
instance, the RF spectrum is expected to contain, besides
the Rayleigh peak and the resonance fluorescence peak
around co&, an additional broad peak centered around
cosp, the asymptotic SP frequency. The line shapes are ex-
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FIG. 4. The schematic flow chart of the extended model, Eq.
(6.1), including Ohmic-loss effects. Compare with Fig. 2. The

coupling matrix elements are defined in the text and the extrane-

ous driving laser is indicated by a wiggled arrow.

pected to deviate from a Lorentzian, or a product of
Lorentzians, toward Gaussian-type shapes whenever the
roughness amplitude is large enough.

To summarize, we have analyzed the effects of random
metallic surface roughness on light scattering from a near-

by dipole in terms independent of the details of the rough-
ness model. The analysis is confined to the weak driving-
laser field laser and to the discussion of the resonance
fluorescence and reflectivity spectra. Our model accounts
for the coupling of light to the SP excitation through the
intermediary of the surface roughness of arbitrary amph-
tude, while neglecting for the sake of simplicity, the "dif-
fuse" light and SP scattering by the surface roughness.
The inclusion of the latter scattering processes introduces
substantial complications and is deferred to another publi-
cation.

A novel feature of our approach is the use of a fully
quantum-mechanical formulation. One advantage of this
approach is that it leads naturally to the discussion of
surface-roughness effects in terms of the matrix elements
that couple photons and SP modes. The random charac-
ter of the surface profile is reflected in the simple statisti-
cal properties of these matrix elements. This vantage
point appeals to us as very intuitive. It transcends the
specifics of any particular roughness model and neatly in-

cludes the ignorance about what a rough surface really is
into well-defined phenomenological parameters, e.g., y, .
Our framework also lends itself to a complete dynamical
solution of the model which may prove useful in future
applications, e.g., the study of modified SP dispersion re-

lations.
The main result of this work, besides establishing the

usefulness of a quantum-mechanical formalism, is the
new roughness-induced line shapes of the resonance
fluorescence and absorption spectra. The RF line shape is
distorted away from a Lorentzian shape toward a Gauss-
ian shape with an increase of the roughness amplitude.
This result hinges only on the statistical assumptions of
the matrix elements mentioned above. Another interest-
ing result is the discussion of the coexistence of surface
roughness and the optical Johnson noise. The ensuing line

shapes are quite complex, but can crudely be described as
"distorted Lorentzian peaks centered around the RF fre-
quency coD and the asymptotic SP frequency cusp.

"
Our results with regard to line shapes call for an experi-

APPENDIX A: THE ELSON-RITCHIE MODEL
FOR ROUGHNESS-INDUCED COUPLING

The surface-roughness model of Bison and Ritchie
provides a useful guideline for the statistical assumptions
employed in our approach. For this reason it is recapitu-
lated below, using the notation of this work.

The interaction Hamiltonian is of the type hj A, where
the access current hj originates from the deviations of
electron density in a rough surface as compared to that of
a flat surface and A is the electromagnetic potential.
Therefore

0;„,= dU [n (r) no8—( —z}]Ai(r) vsp(r),
C

n(r)=no8( —z —g, (p)} . (Al)

In (Al), no is the constant electron density, terminating
abruptly at the surface located at z =0 (Fig. 1), g, (p) is
the random deviation of the surface profile from that of a
perfectly flat surface, Ai is the reflected waves elec-
tromagnetic potential, vsp(r) is the velocity of the SP
charge wave,

~

e
~

is the electric charge (in Gaussian
units), c is the speed of light, and 8 is the step functions.

In the "small" roughness limit we expand (Al) to first
order in g, (p)

n (r) —no8( —z) = —no(, (p)5(z) . (A2}

Consequently the quantized interaction term takes the
form

Hint= — no dpge(p)Ai(p~z =0)'vsp(p;z =0),
C

(A3)

(A4)

where 6 is the root-mean-square deviation of the rough-
ness height and W(

~ p ~
) is a dimensionless correlation

where the quantization volume, as throughout, is an infin-
ite rod with a square cross section of area I.z By insert-.

~4
ing the spectral mode expansions of Ax and vsp into {A3),
we recover the form (2.4). Note that at this point we
neglected the antiresonant terms. ' Inserting the full elec-
tromagnetic potential into (A3) would give rise to a term
describing the ("diffuse") SP-SP scattering due to the sur-
face roughness.

To complete the model, the statistical assumptions for
the stochastic variable g, {p}are now specified. They are



LIGHT SCA j. IERING FROM A DIPOLE NEAR A ROUGH METALLIC SURFACE 3883

' I/2
i e [ . 4iric2

Pie
n0i

Algal

0

A, (k(( —ki}=f dpi', (p)e

v(k(( )= ( —Wi }[f

W(k(()v(k(()k~~ v4(k(()
F(k )=

(k(( ) +k
(( J

C gg
2

—~~+~~~02 2Z«i, ,q()=
co(ki, qi )

' 1/2

and we used IV;=(e;ko —k(()'f where i =0 is air and
i =1 is the dielectric, ko ——F00/c, t0(ki, q][)
=c (ki +qi )'f, and m is the electron mass. The dimen-
sionality of V, (k((, A, } is (length)[fi/time. Finally the en-
semble average of a product of two matrix elements gives

function. For a popular choice W'(
~ p ~

) =exp( —p /[r ),
typical values of the parameters are o =200—1000 A and
5=10—100 A. The model defined by (A3)—(A4) implies
the following matrix elements:

Vd(k(( (([,)= i C+Ad(k(( kz)F(k(()Z(kz qz} I (A5)
j.

L 2

( V, (k, f(, )V,'(q, (M))=
~
C„ i

6 5„,

& ~( Ik((+q(( —ki —k] I
}

X &(k(()&(q(()

xZ(ki, qi )Z(k~, qq), (A7)

Z«] qi. } q] '"-~] ' ~ qk/k] (A9)

the matrix element (A5), or the correlation function (A7)
are very (infinitely) broad in the toi variable. The
surface-parallel moments exchange, on the other hand, is
constrained by momentum conservation and the surface
correlation length o ' These features motivate the sta-
tistical assumptions (3.5).

and W(
~

k
~

) is the two-dimensional Fourier transform
of W( p ~

). For the above-mentioned Gaussian ansatz of
W(

~ p ) the expression is

u](2k)=ma'e- '"'". (A8)

Expressions (A5) and (A7) highlight the distinction be-
tween the dependencies on the surface-parallel and
surface-perpendicular momenta. In fact, since

APPENDIX B: ENSEMBLE AVERAGES

All the necessary ensemble averages can be evaluated by use of the following general theorem ' for Gaussian stochastic
variables g'(8} with vanishing average:

exp i f" d8J(8)P(8) =exp ——,
' f" d~[ f" d~2J(1[)J(12)(g(1[)g(gi)) (81)

and J(8) is an arbitrary function. It follows therefore that

E2
(exp(itf;) ) =exp ——y,C

(82)

(X,exp( itf;)) =(X,)—(exp( itf;)) it(,X f—;)exp ———y,
t
2

where X, is an arbitrary Gaussian random variable and

y2 ((fC)2)

Using (82} the following simple expressions follow:

Ie(eee —me)=( J dx exp[ —i (rue —rue —iye+f;}x]I dy exp[+i (me —eex+Iye+f;)I])
= f dx f dy exp[ i (coD coi—„iyD)x—]exp[—+i (coD roi+iyD)y]exp—[——,'(x —y) y, ],

(83)

(84)

c
X, f dx[ i(me rax iye+f;)x]f—dyex—p[+—i(cue cox~iye~f;)y]))=(X )—Ie(IDe al +e(}fX)I~(ra &cue},

(85)
dI] (con —coi )= 10(~D —~i.»

' [/2

Ie(rue —rex)=( dx exp[ —((me —mx —~yewf;)x] = — exp[ —(me —mx —iy, )'IIy,'],0 y. 2
(86)
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&. j, d*e*p[ ~)~o ~~ ))—p~f:)x&)=&X.&l, (mo —m, )+(Xf;&1,)~D rg, —),
~ ~

The analytic form of Io(toD —a&q) in two interesting limits is discussed in the text.

d
I2(o&n —cox) . (B7)

d (coD —tax)
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