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It is pointed out that the Kohn-Sham orbitals, for the exact interacting ground-state energy and

density for the external potential of interest U {r),are simultaneously the optimum orbitals of the ex-

act exchange-only computation for the modified external potential u{r)+U,{r), where u, {r) is the
correlation potential. This theorem is used to derive necessary bounds that the exact density-

functional-theory correlation energy must satisfy in terms of approximate correlation energies which

are obtained from available data. Numerical examples of one of the bounds is given with respect to
the surface correlation energies of jellium metal.

In the Hohenberg-Kohn-Sham density-functional
theory, ' it is E,[p]+E,[p] which has to be approxi-
mated for variational calculations, where E,[p] is the
universal exchange-energy functional of density p and
E,[p] is the universal correlation-energy functional of p.
In this paper we focus upon the definitions of E,[p] and
E,[p] and then exhibit necessary bounds that the exact
E,[p] must satisfy in terms of available data.

E,[p] is commonly defined explicitly or implicitly in
density-functional theory as

E.[pl =E[p]-E*.[p],

are the exact values for E,' [p] and E, "[p],where

E' [p]=E[p]—E'.[p] (4)

E.""[pl=E [p) —E."."[p)

(Note that for atoms and molecules, E,[p], E,'[p], and

E, [p] have all been defined to be negative here. )
In Eq. (4), E„',[p] is the exact "exchange-only" total en-

ergy ' for external potential V. That is,

E„' [p]= (4'
~
T+ V„+g u(r; )

~

4'),

E[p)=(qt
~
T+V + gu(r;)

~
4),

where T and V» are the kinetic and electron-electron in-
teraction operators, respectively, and where

E„,[p]=(4
~
T+ V„+g u(rt)

~
4),

where p comes from 4, the interacting ground-state wave
function of external potential V= g,. u(r;), and where 4,
which also yields p, is the corresponding Kohn-Sham
ground-state single determinant. Note that 4 is generated
by the full exchange-correlation potential. xo signifies ex-
change only.

Equation (3) is a natural choice for the definition of the
exchange-only part of Eq. (l} in that the gradient expan-
sion exists ' for the nonclassical repulsive part of Eq. (3)
and this nonclassical part has also been shown to scale
homogeneously. " That is, E [1{p(1(r)]=M [p(r)].

An active area of density-functional-theory research
concerns the generation of accurate functional forms of
E,[p). For this purpose, numerical estimates of E,[p)'s
are presently available for ground-state Coulomb p's but
only by using data obtained outside of density-functional
theory. Specifically available as good estimates of E,[p J

where 4' is that single determinant which is constrained
to be a ground state of some noninteracting Hamiltonian

of the form T+ g,. tu'(r;}, and which simultaneously

minimizes ( T+ V«+ g,. u(r;) ). The potential w'(r) is

restricted to be local.
In Eq. (5),

E."."[p)= & ~'HF
I
T+ V + g u(r; } I @HF} (7)

where 4HF is that single determinant which minimizes

(T+ V„+g,. u(r;) }, without further restriction. Note
that while 4' and 4HF, as well as 4, are all determined by

p, in general 4, 4', and 4HF are all different, and only
(4

~ P ~
4) =p, where p is the density operator. The den-

sities p' and pHF are generally different from each other
and different from p.

The exact value of E, "[p] is often available when p is
the ground-state density of an atom or a small mole-
cule, ' ' and the exact value of E,'[p] is available for a
variety of atoms. 7' In contrast, exact values for E,[p],
the density-functional correlation energy of interest, are
unavailable for comparison. '

E, [p], based upon the Hartree-Fock reference point,
is the traditional quantuin chemistry definition of the
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correlation energy for external potential V, and E,'[p] is
the correlation energy based upon the reference point of
Aashamar, Luke, Shadwick, and Talman (see also Refs. 6
and 7).' lt is the purpose of this article to exhibit neces-
sary bounds, in terms of E,'[p] and E, "[p], that the exact
E,[p] must satisfy. We shall also discuss the tightness of
the bounds.

The main rigorous bounds are

E.[p] «' [p]«.""[p]

and we shall prove that

0«,'[p] —E,[p]= I [p'(r) —p(r)]u, (r)dr —52,

&+ g,. w(r; ), with iu(r) restricted to be a local potential.

Throughout this minimization process it is assumed that
the u, (r} retains its ground-state form, always correspond-
ing to the ground-state density p, thereby playing the role
of a component of the modified external potential. Thus,
while 4' is the constrained minimizing single determinant

for the interacting Hamiltonian T+ V„+g,. u(r;), 4 is

the constrained minimizing single determinant for the dif
ferent interacting Hamiltonian

T+ V„+g v(r;)+ g u, (r;) .

Thus, unless u, (r) is a constant, it follows directly that'~

where 52 is a positive number, so that

0&E,'[p] E,—[p] & J [p'(r) p(r)—]v, (r)dr .
E-[p] E'.[P—]=5i 5» o

(10)
or equivalently

(12)

Actual numerical bounds on E,'[p] —E,[p] may thus be
obtained via Eq. (10) because u„p, and p', are now avail-
able for atoms, ' ' ' where v, (r} is the correlation poten-
tial associated with the ground-state density of u (r) which
is p. The rightmost inequality in Eq. (8) results from the
fact that E'„, has the local potential restriction associated
with it while E„," is unrestricted in this sense. (For two
electrons, the inequality actually becomes an equality be-
cause the Fock potential is local for two electrons. )

Equation (9) and the leftmost inequality in Eq. {8) are
now proven. For the key starting point in the proof, we
now state the theorem that the Kohn-Sham 4 is the
minimizing single determinant of the interacting
exchange Only c-alculation for the modified externa! po ten
tia! u(r)+u, (r), where

v, (r) =5E, [p]/5P(r) .

That is, 4 j.s that single determinant which minimizes

& 4
~
T+ V„+y u (r;) ( 4)

—&e'~ T+V„+gu(r, ) ~e'}=5,, 5, &0. (13}

And it also follows that

&4'~ K+V„+gu(r;)+ gv, (r;) ~4'}

—&C
~

r+ V„+g u(r;)+ g u, (r;)
~
e& =5, ,

5q&0 . (14)

Now, add Eqs. (13) and (14). Obtain

p'r —pr U, r r= &+ 2&0.

& ~+ V.,+ y u(r;)+ y, (r;))
Equations {12)and (15) yield

E„,[p]—E„',[p]= f [p'(r) —p(r)]u, (r)dr —52&0 . (16)
and is simultaneously constrained to be the ground state
of some noninteracting Hamiltonian of the form Finally, the combination of Eqs. (1) and (4) with Eqs. (12)

TABLE I. Jellium-metal surface correlation energies as a function of the %igner-Seitz radius r, . In
the table 0 is the total surface energy for the fully correlated system; o„,and 0„', the surface energies in
the exchange-only approximation with o„,determined for densities that minimize the total energy and
cr„', for those that minimize the total exchange-only energy; cr, and o,' are the corresponding surface
correlation energies.

%'igner-Seitz
radius

r, (a.u.}
Surface energies {ergs/cm )

&xo

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

'See Ref. 8.
'See Ref. 18.

—664'
187'
278'
240'
189'
146'
113'
89'
71'

—1549
—288

—7
56
65
58
50
41
33

—1643"
-332'
—26b

491
57'
55b
47'
39b
33'

885'
475'
285'
184'
124'
88'
63'
48'
388

979
519
304
191
132
91
66
50
38
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and (16) proves Eq. (9) and the leftmost inequality in Eq.
(8).

The rightmost side in Eq. (9),

TABLE II. Theoretical values for the Hartree-Fock (conven-
tional wave function) and exchange-only (density-functional-
theory) correlation energies E,""and E,', respectively.

f [p'(r) —p(r)]u, (r)« —52,

is a positive number which is the difference between two
numbers that are always positive and generally small in a
relative sense. Hence, Eq. (9} dictates that while E,[p]
should always be more negative than E,'[p], the former
should be reasonably close to the latter, at least in a rela-
tive sense. We expect in general, however, that E,[p]
should be farther from E,' [p] than E,' [p] is from
E, "[p]. Namely, the rightmost bound in Eq. (8} should
be tighter than the leftmost bound. That is,

E,' [p]—E.[p] & E.""[p]—E' [p] .

Atom

He
Li
Be

'See Ref. 23.
See Ref. 20.

'See Ref. 13.
~See Ref. 21.
'See Ref. 22.

Atomic number
Z

0.0843'
0.0906'
0.1887"

00843 '

0.0913'
0.1899"

Correlation energies (Ry)
Hartree-Fock Exchange only

EHF

Equation (17) is conjectured because 4' and 4HF are
minimizing determinants with respect to the same Hamil-

tonian, T+ V + g,. u(r;), while as stated earlier, 4 is
the minimizing function for a different Hamiltonian,

T+ V«+ gu(r;}+ g u, (r;) .

As a numerical illustration of the leftmost inequality of
Eq. (8) we consider the corresponding surface correlation
energies 0,[p] and er,'[p) of jellium metal (for the surface,
we have replaced E, by rr, and E,' by o,'). The surface
energy o which is the work required, per unit area of the
new surface formed, to split a crystal in two, involves the
difference in energies between the split and unsplit crystal.
Consequently the surface correlation energy is positive,
since the correlation energy of the uniform electron gas of
the unsplit crystal is lower than that of the lower electron
density system at and about the surface of the split crys-
tal.

The results quoted in Table I are gleaned from the work
of Mohammed and Sahni, ' and Sahni and Ma. ' The
work of these authors for the total surface energy tr[p]
for the fully correlated system and the total surface ener-

gy er„',[p] in the exchange-only (Pauli-correlated) approxi-
mation is variational in nature. (A fully self-consistent
optimized local-effective-potential calculation of the
jellium-metal surface physics problem in the exchange-
only approximation has yet to be performed, as has the
more formidable fully self-consistent Hartree-Fock calcu-
lation. } The accuracy of the results of these authors is
guaranteed both by their use of physically realistic wave
functions as well as the application of the variational
principle for the energy. For details of these calculations,
we refer the reader to the appropriate references. '

In the second column of Table I we quote the results
for the total surface energy over the metallic range of den-
sities, r, =2—6, where r, is the VA'gner-Seitz radius. This

is the sum of the surface kinetic energy of a system of
noninteracting electrons, the surface electrostatic energy,
and the surface exchange-correlation energy as determined
by the nonlocal wave-vector analysis scheme of Langreth
and Perdew. ' In the next two columns we give the
exchange-only results cr„,[p] and cr„',[p] (which are the
sum of the surface kinetic, surface electrostatic, and non-
local surface exchange energies}, the former' being deter-
mined for those orbitals which minimize the total surface
energy, and the latter' for those that minimize the total
exchange-only surface energy. In the last two columns we
give the corresponding correlation energies o, [p] and
er,'[p]. We observe that a,' closely approximates the "ex-
act" result rr, with cr,

'
being greater than er, as expected

on the basis of Eq. (8). The difference between o, [p] and
o,'[p], on the average, is about 5% although for higher
density metals it is as high as 10%. Finally, the fact that
the bounds are as tight as they are is indicative of the ac-
curacy of these variational calculations.

For atoms and molecules, as mentioned earlier, results
for the density-functional-theory correlation energy E,[p]
are presently unavailable. Consequently, it is not possible
for us, at present, to demonstrate the extent of the in-
equality E,[p] &E,' [p]. However, it is possible to demon-
strate the extent of the rightmost inequality of Eq. (8),
E,'[p]&E, . In Table II we present values for E,' and
E~~ for the atoms He, Li, and Be based on many-
parameter correlated wave-function calculations2 2 for
the nonrelativistic ground-state energies. E, " is greater
than E,' by less than 1%.
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