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Transport properties of an incommensurate system
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The exactly solvable model of Grempel, Fishman, and Prange of a particle in a potential having
two periods is discussed. If the ratio of the periods is a typical irrational the states are all localized.
A convenient form for the Green s function of the model is given and used to obtain a simple ex-

pression for the ac conductivity. In the one-dimensional case, the frequency and temperature depen-
dence of the conductivity is found and the crossover to Mott phonon-assisted hopping is discussed.
An expression for the transmission coefficient is found and its length dependence and resonances are
considered.

I. INTRODUCTION

Recently Grempel, Fishman, and Prange in a series of
papers' i have discussed an interesting, exactly solvable
model of quantum motion in an incommensurate poten-
tial. In one form the model is a tight-binding model

(r„—s)a„+W(a„,+a„+,}=0,

Using the (nonconvergent) Fourier expansion

tanx =2 sin2X —2 sin4x. . .

we find

U, = —i(e' 5, i
—e ' 5„ i)

+i(e" 5, i e'—5„ i)+ (1.5)

where a, is the amphtude of the wave function on site n,
W is the nearest-neighbor hopping matrix element, e is
the energy, and t„=t an[(a —nr)/2], where a is a phase
and r/2sr can be rational or irrational. The model (1.1)
was solved by Grempel et al. ' by noting that it is
equivalent to a kicked oscillator and they showed that the
model (for most irrational s) has only localized eigenstates
(in all dimensionsi). This is a result of the special form of
the site energies t, The m. odel is related to the Lloyd
model for disorder —the distribution of site energies for
most irrational s is a Cauchy distribution and the locali-
zation length and average density of states are the same as
the Lloyd model.

Further insight into this model can be obtained by con-
sidering its dual. Assume r=2srp/N, where p and N are
coprime and are the convergents of the irrational s /2' of
interest. The irrational case is then obtained in the limit
p, N~ Oo. To obtain the dual of (1.1) we introduce

(1.2)

and on substituting in (1.1) we find the equation for the
Q~

[2Wcos(m~) —e]a +g U,a +,——0,

Then the dual of (1.1) involves long-range hopping and we
would expect the dual states to be extended.

This model provides an interesting case in which the
transport properties of a system possessing localized states
can be discussed in some detail. In Sec. II we give the
solution of the tight-binding model (1.1) and discuss some
properties of the solution. This section is mainly given
for completeness and follows the work of Grempel et al. '

quite closely. In Sec. III we discuss the Green's function
for this model. The Green's function has also been ob-
tained by Pastur and Figotin by a different method. In
Sec. IV we use the Green's function to obtain a simple ex-
pression for the ac conductivity and discuss its frequency
and temperature dependence. The low-frequency conduc-
tivity at zero temperature has been discussed by Prange
et al. and Pastur and Figotin and our results are in
agreement with theirs. In Sec. V we discuss Mott hopping
conductivity for this incommensurate, localized model.
In Sec. VI we derive an expression for the transmission
coefficient of a fmite length of the incommensurate sys-
tern and discuss the conductivity, its length dependence
and its resonances. Most of our results in this paper are
for the one-dimensional case but the model (1.1) is solv-
able in all dimensionsi and number of our results can be
extended to higher dimensions.

N —1

U g lwrT~

II. TIGHT-BINDING MODEL

The model (1.1) was solved by Grempel et al. '
by not-

ing that it is equivalent to a periodically kicked oscillator.
For our purposes it is simpler to solve the model directly,
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although the procedure is not very different. As noted
above we take r =2irp/N, where p and N are the conver-
gents of the irrational number r/2n of interest. The po-
tential then has period N and the irrational case is ob-
tained as the limit p, N~00. We first investigate solu-
tions in which a„+~——a„. These provide a complete set.
Introducing the Fourier transform

dimension pre note that

—QNV„=VN „————e r"sin(p, n ),
n

where

cosh(y )cos}u=e/2 W, sinh(y)sing = 1/2 W .

(2.12)

(2.13)

ikn1a„= e uk,
N

where k =2@i/N (1=1.. .N) in (1.1) we obtain

g e'»"u»(t„—e+2Wcosk) =0 .
k

(2 1)

(2.2)

The eigenstates have been discussed in detail by Prange,
Grempel, and Fishman. For most irrationals they are ex-
ponentially localized with a localization length y '. This
is the case of interest in this paper. The integer v can be
regarded as the band index for N finite or as the center of
the localized state in the limit N~ 00. From (2.8) it fol-
lows that the average density of states is

Following Grempel et al. let s—2Wcosk =tanV(k)/2
and this equation can be written as

e uk&~e
ikn —s —(i/2) V(k) -i [e—nw —V(k)/2]i r~ ~ —e

k

(2.3)

—{i/2) f 2a —V(k +w) —V(k) )~k+~=~ke

Using the conditions u»+2 ——u», u»=u» we set

—ivk+iP{k)
Qk =e

(2.4)

(2.5)

where u» ——u»cosv(k)/2. As r is of the same form as k,
we can set k+r=k' in the second term of (2.3) and ob-
tain the relation

1 Bv,
p(e) =

2% Be

This can be shown to be identical with that in the Lloyd
model.

More general solutions of (1.1} can be obtained as fol-
lows. The potential t„has period N and thus the unit cell
has N sites and we expect N bands of states. From the
Bloch theorem we can write a„=e's"as „, where

as „+~——as „has the period of the unit cell and the wave
vector q [ (n/N) —&q &(rr/N)] labels the states within
each of the N bands. Proceeding as above the eigenvalue
condition replacing (2.8) is

where v is an integer and ((}(—k}= —}t)(k). From (2.4} we
find a v~ 2rrl =———g tan [s—2Wcos(k+q)] .

2

&k
(2.14)

(t(k+~) P(k)=v—r a+ , [V—(k+—~)+V(k)] 2ml, —

where l is an integer. Introducing the Fourier series

N —1

V(k) g V i»n

@=0

E —1

((}(k)=g (()„e'"",
n=l

in (2.6}we find

a vs+ 2irl =—Vo(s),

P„=—(i /2)cot(n r/2) V„,

(2.6)

(2.7)

(2.8)

(2.9)

where Eq. (2.8) is the eigenvalue condition. For later pur-
poses it is convenient to introduce

g( k) } g V
sin(nk)

" sin(nr/2)
(2.10)

From (2.5) and (2.7) the (unnormalized) wave function can
then be written as

As the band index v varies from 1 to N, vr (mod2ir} takes
on the values (2n/N)l (I = 1. . .N) but not in this order.
Thus vr for two neighboring energy bands (in energy) will
differ by 2n/N (mod2n) and thus from (2.10) the energy
bands are separated in energy by 1/pN. For a given band
the wave vector q lies between +m/N and thus the energy
width of a band is of order I /N2. In the limit N-+ 00 for
typical irrationals we get a discrete spectrum of localized
states. A much more detailed discussion of the eigen-
states is given in Ref. 2.

For a discussion of transport properties it is useful to
know how the states are distributed in space and in ener-

gy. The eigenvalue of the state localized at site v is deter-
mined by (2.8} and we discuss the formula in the case
where r/2m approaches the golden mean. Then r is ap-
proximated by r=2n f»/f»+}, where the f are Fibonacci
numbers (fo ——f, =1) and the unit cell is of length f»+}.
Suppose we have a localized state v centered at site v and
consider the state v+fz which is localized f~ steps away.
The difference in energy of these two states is given by

Vo(s„+f ) Vo(e—„) +fp~=(mod2m)

7f 7'—CK

tf —V &

(2.1 1)

=+(—1)}'2m (mod2n ),
+1

(2.15)

~ eika+i@k)
N

k

where we have used the relation f»f~ =f»+ g~
+(—1 gf» z. If p & k we can expand (2.15) and find

These eigenstates can be shovvn to be orthogonal. In one e +f, —s =+(—I ~f» r/pf»+}-(2.16)
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where p is the density of states. For large k and p,
f~-P+'/~5 where P= —,'(1+v 5) and

A (k) —A (k —~)e
( —1) ( —1)

(2.17) —i [()(» —r/2) —V() /2 1 ( ( ~ ~ ~)

We note the following special cases:
(i) p =0

~ s„+(—E„~ -r/2~p so that states which are
nearest neighbors in space have a large energy separation.

(ii) p =k
~
s„+/ —s„~ —1/pV 5f» so that eigenstates

which are near neighbors in energy have a large spatial
separation.

These results will be useful in the discussion of hopping
conductivity. They are special to the case where r/2m ap-
proaches the golden mean but similar results should apply
to other quadratic or common irrationals. Equation (2.17)
does not take into account all the energy levels because the

fz do not cover all the integers but does include the levels
closest in energy to a given level which are of most in-
terest to us.

III. THE GREEN'S FUNCTION

The Green's function is the solution of

(t —s)G~„+ IV(G +i „+6 i „)=5

and this can be solved in a similar manner to that used in
Sec. II. G~„does not depend on m nbu—t we can take
the Fourier transform on m and write

This can be solved by expanding A(k) in a Fourier
series

W —1

A(k)= g e' A„
n'=0

and it is found that

n
~n

sin[ —,
' [a—V()+(n' —n)i]I

(3.7)

c„cosI —,[Vo r(m ——n'}]J
G „=g p

sin[ —,
' (a —Vo —n'r) ]

(3.8)

This can also be written in the symmetric form

G~„=c c„gcot[ —,
' (a —Vo n'r)]F— „I'„

n'

+ —,
' sin(a mr)5— (3.9)

where E„ is given in (2.11) and c„=cos[—,'(a —nr)].
After some straightforward algebra we find

G.„=—g e'"'-"'G(k),
k

(3.2}

where G(k) still depends on n Substit. uting in (3.1) and
following the same steps that led to (2.3) we obtain

g( (m n)
— —i Vk /2 — —i ~~ —mr —Vk /2

[G»&
k

The Green's function depends on e most importantly
through the Vo(e) under the cotangent. The functions I'
are weakly dependent on e. The F„-e "~") for large n

and thus the Green's function is short ranged and propor-
tional to e "~

"
~ for large

~

m n~ . —Replacing~ss+irl, where r} is small and positive we find

i (1+e—&(a nr))] 0— (3.3)
ImG „=rrc c„+5(sin—,'(a —V() n'~))F „—F„

where 6» ——cos[V(k)/2]G». Shifting k to k r in the-
second term and equating the coefficient of e' to zero
gives

-1Vk/2 — i a n~ Vk- /2)
G»e —G», e

'
( 1 + —l(cf—IlT)) (3 4)

We put G» =A (k)e'~'"), where ((}(k) is given by (2.7) and
(2.9) and use the relations

(3.10)

which will be useful in calculating the conductivity in Sec.
IV. The average density of states can also be obtained by
averaging ImG~ over sites m. A different form of the
Green's function has been given by Pastur and Figotin.

IV. ac CONDUCTIVITY

p(k) ——, V(k) =8(k r/2) —,
'

Vo,— —

((}(k—~)+ —,
' V(k —~) =8(k r/2)+ —,

'
V() .—

(3.5)
The Kubo formula for the ac conductivity at frequency

co when expressed in terms of the imaginary part of the
Green's function is

e 8'
o(co) = J de[f (E')—f(e}]+I [lmG„+) ~(e)ImG~+) „(s')—ImG„+i +i(E)ImG „(e')]+(e~e')],

n)Nm
(4.1)

where e'=e —co and f is the Fermi function. Substituting from (3.10) for the Green s function, averaging over the phase
a, and taking the limit as X~ ao gives

2~2 00

o(co)= f de[f (e') —f(e)] g 5(sin I —,[ Vo(E) —Vo(E') —nr] j )H„, (4.2)
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where

H„=g[F +)(e)F „(e')—F (s)F +i „(e')] (4.3)

quencies oiko such that pFoiko=qk(r p—k/qk), where pk
and qk are the kth convergents of7. Thus r=pk/qk+5k,
where 5k =r p—k/qk and is small and positive if k is large
and even and (qk7. ) =qk5k. Substituting these results in
(4.8) we find

F (e}=cosI—,'[Vo(s) —m~]]F (e) .

Using the results (2.7), (2.10), and (3.5) it is not difficult to
show that

2

(y(o)ko)= z e sin (pqk) .
'fTPF EOk 0

This formula applies for frequencies such that

(4.9)

H„=—g e(""sin(k)cos
N ~

l~ —~kol &~kopF/2pF

The conductivity thus has a series of steps at the frequen-
cies o)ko of width given above. From the inequality

X ~ ei[(k(k)-(i'(k))
2

(4.4}
I

where V(k)=V(k, e), V'(k)=V(k, s'}, and similarly for
P(k) and P'(k). This expression does not depend sensi-

tively on oi=s —e' and at low frequencies setting s=e' in

(4.4) we obtain (for N ~ ao )

1
&5k &

qk(qk+i+qk) qkqk+i

we see that

1
PFoiko=qk5k-

A
(4.10)

8„=— e' "sin coske

1T 2

e ")"(sin((un)+ —,
' (5„ i o—5„(o) . (4.5)

where qk is the spatial distance between states differing in
energy by o)ko. The frequency difference between succes-
sive steps is

pF(oiko k+io) r(qk qk+2) (pk pk+2)

At low frequencies the terms with n =+1 do not contri-
bute to (4.2) and substituting from (4.S) we obtain the sim-

ple expression for the average conductivity

e
o( o}i= Ide[f (e') —f(e)]

X+5(sinI —,
'
[ Vo(s) —Vo(e') —nr] [ )

=uk+2qk+i I 5k+1 I
(4.11)

where we have used the recursion relations for the conver-
gents qk =qkqk i+qk q and similarly for pk. Thus the
frequency difference between steps is of order

1
ko —k+20-

PFA+i

Xe-'&~" ~sin'((un) . (4.6)

which is larger than the width of a step.
In (4.9) using qk -1/pz(oko the conductivity is approxi-

mated by the continuous function

The term with n =0 vanishes so that the dc conductivity
is zero. We discuss this formula firstly at T =0 K and
then at finite temperature.

A. 1'=0 K

Introducing the variable s"=e—p, —o)/2, where p, is
the Fermi energy we then have at low frequencies

2

(T(co)- ze r i sin (p/pcs) .e

mpFco
(4.12)

The exponential dependence of the conductivity on inverse
frequency at low frequencies has been obtained by Prange
et al. and Pastur and Figotin. They also pointed out
that the incommensurate case has a smaller conductivity
than ihe disordered case where 0 -~ .

Vo( e) —Vo( e') =2&cd(pF +s"pF ) (4.7) 8. T~O K

where pJ; and p~ are the density of states and its deriva-
tive at the Fermi energy. In the 5 function we can replace
nr by 2ir(nr), where 7.=r/2m and the angular brackets
indicate the fractional part. Then

%e consider the case where k~T ~ co but k~T is much
less than the Fermi energy p. In (4.6) put E=p+e" and
expand

0?/2
c7(co)= f,ds +5[os(pF+e pF) (iir)]—

Vo(s) —Vo(E —co) =2m')(pF+s"pF) .

Then (4.8) is replaced by

(4.13)

)&e-'&)" ~ sin'(pn) . (4.8)
2

(T(co)= I de
2 „+5((pF+s pF)oi

4n ks T cosh2(Pe" /2)
%'e have replaced the sin by its argument which is small.
We now evaluate this formula close to certain special fre- —(nv))e ")"'sin (pn) . (4.14)
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Thus the steps are broadened by temperature and the con-
ductivity is temperature dependent o-T '. Such a
behavior has been discussed recently for systems with lo-
calized states by Azbel et al. The width of steps will
only be comparable with the distance between steps, i.e.,

oiao4 7'pt" -pt"
I toao —a+2o I =tta+2qa+ i I &a+ i I

-prao (4.15)

where we have used qa+i5a+i-1/qa+i-pt toao Thi.s
gives kti T-p~/p~ a high temperature. Thus the steps or
resonances in the ac conductivity are not readily smoothed
out by finite temperatures. However, we have not con-
sidered inelastic effects which would be expected to be-
come important before the above temperature is reached.
These are discussed in Sec. V.

The integral is effectively over the interval
I
E"

I
&keT

which broadens the steps at the special frequencies mko.
From (4.14)

8 2

t (~ao)= e sin (pqa ),—2~&k 2

~Puke TkO

which replaces (4.9) in the case k&T &to. This formula
applies for frequencies

aokii Tps
I
to —toao

I
&

D = —,'g(i —j) W,J. .
J

(5.4)

kg Tp pe) (5.6)

at which this crossover should occur. We have derived
the Mott law for incommensurate systems in the case of
the golden mean but we would expect the same result to
hold for ordinary irrational r

VI. TRANSMISSION COEFFICIENT

%'e maximize the hopping probability 8f with respect
P

to fz and find that the most probable transition is for
fq' (v——5kttTpy) '~ and

~T /T~l/2
$fT P~ Q (5.5}

P

where To y/a——pv 5. This result is exactly the same as
the Mott laws for hopping conductivity in disordered sys-
tems. A more accurate formula for the diffusion constant
can be obtained from (5.4).

The crossover between resonance tunneling conductivity
considered in Sec. IV and phonon-assisted hopping con-
ductivity will occur when the length fz' for the most
probable hop becomes less than the distance qa -1/ptoao
needed to tunnel to find a resonant state with frequency
difference toao. Setting these two lengths equal (ignoring
numerical factors) gives a relation between temperature
and frequency

V. HOPPING CONDUCTIVITY

The model (1.1) and the conductivity in Sec. IV only
take elastic scattering of the electrons into account. At
finite temperatures inelastic effects will be important and
eventually dominate the conductivity. We have not at-
tempted to include inelastic scattering in (1.1) in any de-
tailed way but will attempt to treat it in the same way as
is done in disordered systems. The phonon-assisted hop-
ping rate W&& between localized states of energies s; and sj.
at positions R; and Rj is taken to be

8 TL

2M 1 —T
(6.1)

In this section we discuss the transmission of an in-
cident electron wave of energy c=28'cosk through a
one-dimensional incommensurate system of length L
described by (1.1). We suppose that the incommensurate
lattice is connected at each end to a perfect lattice and the
sites of the incommensurate lattice are labeled 1 to L.
The transmission coefficient TL is related to the conduc-
tance GL, by the Landauer formula

8'g~ ——Ve
—y j Rf -R~ j

—
j e; —a

j /k~ T
(5.1)

In the Appendix we express the transmission coefficient
in terms of the Green's function (3.9) at energy s:

where V is a constant dependent on the electron-phonon
coupling and y is the localization length defined in (2.13).
In the case where r/2m is the golden mean the distribu-
tion of localized states in energy and position has been
discussed above (2.13). Substituting these results in (5.1)
we find for two states a distance f~ apart

—yf —1/k~ Tpf 5—1/k T ~5
(5.2)

2
csin'k GOI. + iT—

where

D =(Gio —e Goo)(e' GLL, +i —GL, + iL+ i)

+(e "GoL, +i —GiL, +i)«'"GL, o
—Gl. +io) .

(6.2)

so that W~ only depends on the distance between the two
sites. In this case the motion of the electrons can be de-
fined by a simple master equation

(5.3)

where I'; is the probability of finding the electron in site i
The diffusion constant is given by

6 is the Green's function for the infinite system and is ex-
pressed in (3.9} in terms of the eigenstates of the infinite
system. Equation (6.2) is an exact formula for the
transmission coefficient of a finite system of length L.
As the eigenstates are exponentially localized, the eigen-
states of the finite system will not differ much from those
of the infinite system except close to the boundaries. We
will find that the transmission due to states close to the
boundaries is small and, thus, (6.2) is an appropriate for-
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G „=g'"„'/5„+G'„,

where 5„=e„—e and

(v)
gmn cm cs+m —v +n v/~p—

(6.5)

We now substitute (6.5) in (6.2). It should be noted that

the terms in S„cancel in the denominator D and we find

4sin k goJ. +i+5~GoL, +i
(v} I

A +5+ (6.6)

where

A =(g lo e goo )(e Gt.t. +i GL+iL +i)

+(Glo —e-kG }(e g,-,„g,) „„} (67)

& =(Gio e "Go—o)«'Gr' +it. —Gt. , +iL, +i ) (6.8}

In A and 8 we have omitted exponentially small terms
-e "~. In order to exhibit the important features of (6.6)
we make the following simplifying but reasonable as-
sumptions. (a) The state v of interest is located deep in-
side the incommensurate system 1 « v «L and set
v =L /2+ v'. (b) The wave functions I'„-e

gLL,'+ ~ -gL,"+i~ + i -e "' "'/p and neglect all phase
factors. (c) The Green's functions G'&o-Goo-GL +it
-GL, +iL, +i are all of order G' inde~dent of L.
With these assumptions goLI+, -e "~/p,
A-e " cosh2yv'G'/p and 8-(G') and the transmis-
sion coefficient has the form

mula for the discussion of the transmission coefficient.
For energies c oot near resonance with a localized state,

the Green's function in the numerator of (6.2) decreases

exponentially with I. like Gol -e ~ while in the denom-

inator D the Green's functions Goo, GLL+&, etc., do not
decrease with I.. Thus, as expected, Tz -e ~ when we

are not near a resonance.
%e now investigate how TI behaves when c is very

close to resonance with a localized mode of energy s„ lo-

cated at v(1&v &L). e„ is related to v by (2.8). We can
now write the Green's function as the sum of two parts,
the first coming from the nearly resonant mode and the
remainder

G „=c c„cot[—,'[a—Vo(e) v—r]JF~ +„„+G'„(6A)
and using a vr+—2~I = Vo(e„) for s close to e,„we can
write this as

Maynard and Akkermans. ' DeVincenzo and Azbel'
have discussed the temperature dependence of the conduc-
tance in this case and the crossover to a Mott-like law.
The conductance at finite temperatures is given by

r

6= e — TL c (6.10)

Bf —rL —2rl I
—zPI „—vl

5s„Tt,(s„)=e
BE

(6.11)

where 5s„-e " is the width of the resonance, e ~i'I "I is
the value of T at resonance and the third factor comes
from the Fermi function. Suppose that the chemical po-
tential p is approximately in resonance with a state s...
where vo is near the center of the sample. Then maximiz-
ing (6.11) with respect to v assuming (s„—p)-1/p

~

v
~—yL —{TQ!T}

we find G-e ', where To is the same as in
the phonon-assisted case (5.5). The temperature depen-
dence is the satne as in the Mott hopping law.

VII. DISCUSSION

We have discussed three types of conductivity (a)
resonant tunneling (Sec. IV), (b) phonon-assisted hopping
(Sec. V}, and (c) transmission through a system of finite
length. Each of these involves a length scale: (a) For
resonant tunneling the length scale is set by the frequency
and is of order I/pro, (b), for phonon-assisted hopping the
length scale is set by the distance for the most probable
hop (ksTpy) '~ and (c) for transmission the size L of
the system sets the scale. The relative values of these
three length scales determines the type of conductivity ex-
pected the shortest length scale being the dominant one.

The incommensurate model of Grempel, Fishman, and
Prange' provides a simple example in which the different
types of transport processes occurring in incommensurate
systems with localized states can be investigated in some
detail.
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where f is the Fermi function. Since T is exponentially
large at the resonances, the integral is dominated by the
resonances and the contribution of a resonance s„at site v
(measured from the center of wire} is

1

cosh2yv'+S„po'e &~
(6 9) APPENDIX

This formula shows that ihe width of the resonances in
TI due to localized states is proportional to e ~ . Exact-
ly at resonance, 5„=0, the transmission coefficient is pro-
portional to 1/cosh 25v' and then localized states located
near the center of the wire (v'-0) give the largest contri-
bution and states near the edges (v'=+L/2) give a negli-
gible contribution to the transmission. These results are
in general agreement with those expected for disordered
systems as discussed by Azbel and Soven, Azbel, and

We derive an expression for the transmission coefficient
of an incident electron wave of energy c=2 W cosk
through a one-dimensional incommensurate system of
length L, described by

(t —e)a + W(a~+i+a i) =0 . (A 1)

%e suppose the incommensurate lattice occupies the sites
1 to L and is connected at each end to a perfect lattice
(t =0). We thus require a solution of (Al) such that
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(A2)

Let 6 „be the Green's function for the infinite incom-
mensurate system which includes the piece L of interest.
Then

D...,=[Gi., —e '"(Go.
,
—&i., )]

(A5)

a =aG „,+PG „,, 2&m &L —1 (A3)
x(e'"61.„,—Gi, +, „,+5, „)

&n, n,
r =2i sin(k)e

Pl )52

(A4)

where n i & 1 and n2 &L. From (A2) and (A3) we see that
(Al) is satisfied for (i) m &0; (ii) m &L +1; (iii}
3 & m &L —2. We are left with the four equations (Al)
for m = 1, 2, L —1, and L. Substituting (A2} and (A3) in
these equations provides four equations for the unknowns

r, t, a, and P. After some algebra we find

+(e "Gon, —Gi., )«'"GL,n,
—GL, +i,n, } (A6)

The index n i must be to the left and n2 to the right of the
incommensurate system but are otherwise arbitrary. We
have conveniently chosen them to be ni ——0, nz L+——1
which eliminates the 5 function in (A6).

The numerator (A5) can be simplified by using the
identity

W(6 +i,„,G „,—6 +i,„,G, , ) —8'(6 „,6 i „,—6 „,6 i „,)=5 „,6 „,—5 „,6 „, .

%e can write

NoL, +i —GLoGr, —i,L, +i GL, —i oGLL yl GmoGm 1,L+1 —Gm —l, OGm I.+I, 0&m &L + 1 .

(A7)

(A8)

If we now use the formula (A7) to shift m to + ao we
pick up a contribution from one of the 5 functions in (A7)
and the remainder vanishes as m ~+ ao. Thus

—1
No, L, +i=~ Go, L, +i

Substituting (A6) and (A9) in (A4) gives (6.2).

(A9)
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