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We present x-ray-diffraction profiles from a variety of different crystals which are characteristi-

cally diffuse in the direction perpendicular to the surface through which the incident and diffracted
beams pass, but sharp in both parallel directions. %'e show that these effects arise from truncation
of the crystal lattice at the surface. To explain the precise form of the momentum-transfer depen-

dence of the intensity across the reciprocal-space zone, it is necessary to include the effects of sur-

face roughness on an atomic scale. Such measurements therefore allow highly sensitive roughness

determinations to be made. Understanding the origin of these streaks of intensity will have signifi-

cant impact on the practice of x-ray crystallographic determinations of surface structure.

In the classical derivation of the diffraction pattern of a
crystal lattice, it is frequently assumed that the crystal is
infinite in extent; the diffraction peaks are then perfect 5
functions. When finite-size effects are included, the peaks
are found to be broadened by an amount inversely related
to the dimension of the diffracting region of the crystal.
An often overlooked consequence of finite-size broadening
is that, for a crystal with sharp boundaries, a significant
amount of intensity is always scattered far away from the
Bragg peaks and is spread right across the Brillouin zone.

I

The order of magnitude of this intensity is the same as
that arising from a single (crystalline) layer of atoms, and
so x-ray experiments with monolayer sensitivity (now pos-
sible') are able to detect it. We report and explain such
measurements here.

A primitive parallelepiped crystal of dimensions Ni,
Ni, and N3 unit cells with lattice parameters ai, a2, and

a3 diffracts x-rays with an intensity proportional to the
square of the structure factor,
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where the rapid oscillations of the numerator are averaged
out in the limit. Similar results can be readily obtained by
relaxing the conditions on qi or qz. Thus the diffraction
intensity of the finite-sized crystal has diffuse streaks con-
necting all the Bragg points. The diffuse intensity far
from the nodes is of order of magnitude N compared
pvith N at the nodes.

Scattering that is sharp in two directions and diffuse in
the third (referred to as a "rod" of scattering) must arise
from a crystalline object that is localized in one dimension
and extended in the other two. The two-dimensional ob-

jects in the problem under consideration are the faces of
the parallelepiped crystal. The momentum transfer
dependence in Eq. (2) is understood from the fact that the
Fourier transform of a step function is 1/q, which gives
the 1/(hq) dependence of the intensity near each of the
Bragg points. The experimental configuration we wish to
consider is that of a semi-infinite crystal measured with
incident and diffracted beams passing through its surface.
This is commonly called the "Bragg geometry. " In this
case five of the six faces of the parallelepiped become in-
distinct: four because of the edges of the beams are soft
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(in practice) and the fifth because of the limited penetra-

tion of the beam. The Fourier transform of a broadened

step function decays in reciprocal space much faster than

1/q, so the diffuse rods of intensity due to the five soft
faces retract to be localized in reciprocal space at or very
close to the Bragg points. We are then left with only the
sixth component due to the sharply truncated surface.
We will call these features "crystal truncation rods. '*

We now wish to estimate the strength of the truncation
rods in the Bragg geometry. We must first modify Eqs.
(1) and (2) by including the x-ray coherence length, m

(measured in unit cells), of the experimental configura-
tion. This broadens all the diffraction features to 1/I re-

ciprocal units. The Bragg points then have intensity of
order Ni NzNim, while the diffuse intensity is Ni Nim .
A typical penetration depth is 1 )Mm so Ni =10 unit cells
(perpendicular to the face). With m -100 unit cells, this

gives a relative intensity

I(Bragg point)
I(truncation rod)

In a careful experiment with a dynamic range better than
10», the diffuse scattering of the truncation rod perpendic-
ular to the crystal face (Bragg geometry) should be

measurable. It should also be noted that the diffuse inten-

sity, of order E)Sqnt far from the Bragg points, is in-

dependent of the number of layers penetrated into the
crystal (N3). Moreover, XiNim is precisely the intensi-

ty of the two-dimensional diffraction rods that arise from
a single layer of Ni xXi atoms at the surface of the crys-
tal.

Experimental observations of truncation rods are shown
in Figs. 1—4. In Fig. 3, the full intensity of the Bragg
peaks is recorded and seen to be -10 times larger than
the rods as expected. The four materials chosen as sam-

ples, Si, Pt, %, and InSb, represent metals and semicon-
ductors, elements and compounds; their general surface
properties are widely different from each other. Crystals
were accurately aligned to a low-index surface plane and
are designated by that plane. The methods of measure-

ment were quite different in the different cases: for
Pt(111) in Fig. I and W(100) in Fig. 3, a 60 kW rotating
anode source, pyrolytic graphite monochromator, four-
circle diffractometer, graphite analyzer, and scintillation
counter were used to obtain very high signal to back-
ground with modest resolution. ' For InSb(111) in Fig. 2
synchrotron radiation from the DORIS (Doppel-Ring
Speicheranlage) storage ring at the Hamburger Synchro-
tronstrahlungslabor (HASYI.AB) at Deutsches Elek-
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FIG. 1. Crystal truncation rod perpendicular to the (111)face of an etched Pt crystal under a He atmosphere. Measurements were
made with a rotating anode source and four-circle diffractometer. The shaded bar on the reciprocal-space diagram inset shows the
range of the scan which passes through two bulk Bragg reflections. Each point shown has been integrated over its rocking curve, has
the thermal diffuse background subtracted, aud has been corrected for Lareutz [ [slu(28)] '

J aud polarization [cos~(28)+ 1] factors.
The bulk peaks have an intensity around 10 on the scale shown, but have been suppressed because of difficulty in removing the back-
ground reliably. Superimposed on the data are fits of truncation rods both with [solid line, Eq. (3)] aud without roughness [dashed
line, Fq. (2)]. Below are typical rocking scans showing that the rod is peaked above background at different positions.
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tronen-Synchrotron (DESY) was used with a double
Ge(111) monochromator, plane Au filte mirror, two-
circle goniometer, and a position-sensitive proportional
counter; even though no analyzer was used, background
was low because the entire divergence of the incident
beam was held within 5% of the critical angle for external
reflection. For Si(111} in Fig. 4 the focused wiggler
beam line at Stanford Synchrotron Radiation Laboratory
(SSRL} was used with a double asymmetric-cut Ge(111)
monochromator, four-circle diffractometer, 0.5' Soller
slits, and scintillation counter. The W(100), InSb(111),
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FIG. 2. Crystal truncation rods for InSb(111) in ultrahigh
vacuum (UHV). The sample was prepared by sputtering and
annealing for several hours, then transferred in UHV to a dif-
fraction cell (Ref. 3). Synchrotron radiation at HASYI.AB and
a position sensitive detector oriented along the rod were used.
The ~-integrated curve was accumulated in a parallel fashion by
rotating the sample at constant velocity while the detector was
running. Shaded bars on the inset mark the two scans shown,
which are related by a 180' rotation of the crystal about its sur-
face normal. The resolution-limited edge on the left-hand side
of the scans marks the position of the surface: belo~ it, the
crystal blocks rays fram reaching the detector. Just above the
edge is the intensity enhancement expected for rays leaving the
crystal close to the critical angle for total external reflection
(Ref. 15). This small region of each curve has been omitted
from the present fitting procedure but is described elsewhere
(Ref. 16). Fits are shown for Eq. (2) (dashed line, no roughness)
and Eq. (3) (solid line, with roughness).

and Si(111) samples were in ultrahigh-vacuum (UHV) en-
vironmental cells: the Si(111) and W(100) (Ref. 5) were
cleaned by sublimation at 1450 and 2500 K, respectively;
the InSb(111) was cleaned by sputtering and annealing at
700 K. The Pt(111) sample was mechanically polished,
etched in boiling aqua regia, electrochemically etched for
5 h, then annealed at atmospheric pressure under I2 vapor
in Ar at 600 K for 10 min and transfered through air to a
He environment.

Thermal diffuse scattering (TDS) has a functional form
similar to Eq. (2), except that it is diffuse in all three
reciprocal-space directions, and not concentrated along
rods as are the truncation effects we are concerned with.
The TDS is readily seen at the bottom of Fig. 1 as a back-
ground in scans of the sample orientation angle r0. These
data, in which the TDS intensity is comparable with that
of the truncation rod, were taken at positions along the
rod far from the surface plane where the incident and dif-
fracted x-ray beams subtend large angles with the surface
and the penetration depth into the bulk is largest (see Fig.
1 inset). Close to the surface plane, where glancing in-
cidence conditions exist, the TDS background was much
reduced. Appreciable TDS was seen only for Pt(111) and
W(100); the semiconductor samples, having large Debye
temperatures and measured at high-resolution synchro-
tron radiation sources, showed negligible amounts.
Nevertheless, the rod profiles of Figs. 1, 2, and 4 are co in-

tegrated and background subtracted, point by point, to el-
iminate the TDS component altogether. For W(100) in
Fig. 3, the peak counting rate along the truncation rod is
plotted, including the TDS contribution.

The expected functional form of the truncation rod in
Eq. (2) is plotted as a dashed line in Figs. 1—3. The
height has been adjusted in an attempt to fit the data,
since these are not on an absolute scale. Although it does
have the right concave shape, it clearly is an inadequate
detailed description of the observations: the experimental
intensity is more concentrated near to the Bragg points
than expected. It is expected from the qualitative reason-
ing above that a broadened interface region between the
crystal and vacuum would explain this general behavior.
We will now build a model of surface roughness that ex-
plains the observations very well.

If a partial layer of atoms is added to the surface, in
such a way that they occupy sites that are a continuation
of the bulk lattice, there will be interference between the
two-dimensional diffraction pattern of the layer and the
ideal truncation rods of the rest of the crystal. Addition
of a full layer, of course, has no effect as it simply offsets
the starting value of the summation in Eq. (1). A con-
venient way to model roughness that extends to more than
one layer is shown pictorially in Fig. 5. A fractional oc-
cupancy P (with 0 &P & 1}is given to the first added layer,
P to the second, and so on. The distribution of atoms
within each layer is not necessarily random, so this
description would apply to terraced structures also, pro-
vided the lateral extent of the terraces is small compared
with the coherence length of the x rays. The sums over ji
and j2 in Eq. (1) are unchanged since all the added atoms
are assumed to be on lattice sites, so the diffracted intensi-
ty becomes
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FIG. 3. Crystal truncation rods for %(100) in ultrahigh vacuum. The sample was prepared by repeated cycles of sublimation at
2500 K (passage of a current of 250 A for a few seconds) and burning in oxygen at a somewhat lower temperature (Ref. 5). Measure-

ments were made with a rotating anode source and four-circle diffractometer. Peak intensity (not integrated) along the rod is shown

for two orders of diffraction along the same azimuth as the shaded bars in the reciprocal space diagram show. Fits of Eq. (3) (solid

line, with roughness) and Eq. (2) {dashed line, no roughness) are superimposed. The roughness parameter p was fitted independently

for the two diffraction orders.
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The use of an attenuation parameter 0&a&1 in the
second sum is justified because the beam has finite
penetration into the crystal. If the far side of the crystal
were not terminated gently (for example by a sum to a fi-
nite N3), it too would give rise to a truncation rod. How-
ever, since (1—a) «(1—p) in practice, the form of Eq.
(3) becomes independent of the value of a so that the limit
a~1 is valid. The functional form is dominated by the
sharper of the two boundaries, so is given by the value of
P in this case.

The result of including roughness in the calculations
thus corresponds to multiplication of the scattering pro-
file in Eq. (2) by a q3-and p-dependent factor with a mag-
nitude between zero and one. The rough truncation rod
always lies lower in intensity than the smooth one, with
the biggest proportional difference being halfway between
the Bragg positions; the two curves converge as q3 ap-
proaches the Bragg value, 2ml/a3. The modifying factor
has a functional form similar to that which is commonly
used to explain scattering from systems with partial stack-
ing disorder: ' it is broadly peaked at the Bragg nodes,

with a shape that is controlled by the value of p. In the
limit of a sharp interface, when p tends to zero, Eq. (3)
becomes the same as Eq. (2). When p tends to unity cor-
responding to a gradual or very rough interface, the trun-
cation scattering profile tends to (sin —,

'
qa) but its ampli-

tude vanishes. Intermediate values of p give profiles that
are sharper near the Bragg nodes than (sin —,

'
qa ) 2, but al-

ways less so than (sin —,
'

qa )
Figure 1 shows the best least-squares fit of Eq. (3) to

the Pt(111) crystal truncation rod. A roughness parame-
ter p=0.65+0. 1 was used with the fit being visibly worse
at the limits of the error bar. Since the measurements
were not on an absolute scale, and since the active area of
the sample changes over the wide range of this scan (in
which the scattering angle varies from 40' to 80'), a q-
dependent scale factor, with a constant term and one
linear in q, was simultaneously fit. This latter term also
partly accounts for the form factor of the Pt atoms and
for the Debye-Wailer factor that is due to thermal
motions in the crystal. Higher-order corrections to the
scale factor were found to improve the fit slightly but did
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FIG. 4. Crystal truncation rod for Si(111)in ultrahigh vacu-
um, prepared by sublimation at 1450 K and slow cooling to
1000 K (Ref. 4). Measurements were made at SSRL using
focused wriggler radiation of wavelength 1.738 A and a four-
circle diffractometer. Each point is integrated over its rocking
curve and background subtracted. The rod shown is the same as
the upper panel of Fig. 2 extending somewhat further and has a
fit of Eq. (2) superimposed.
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FIG. 5. Lattice model of a rough surface. Fractionally occu-
pied layers reside above the topmost complete layer of atoms.
The occupancies, marked on the right-hand side, follow an ex-
ponential distribution. The example here has P=O. 5.

not affect the value of P; no attempt was made to inter-
pret them further.

Figure 2 shows the same procedure applied to the
InSb(111) data. The two sections of rod are related by in-
version symmetry in the crystal and so can be juxtaposed
(see Fig. 2 inset). They were simultaneously fit by Eq. (3)
with a roughness of P=0.40+0.05. Figure 3 shows the
fit to the W(100) data, where P=0.54+0. 15 and
P=0.46+0. 1 result from independent fits to the different
diffraction orders of truncation rods shown. The fit here
is to the peak intensity along the ridge of the rod (as op-
posed to the integrated intensity); nevertheless the agree-
ment is still very good„although the quoted values of P
may be artificially reduced by TDS contamination of the
data, which has not been subtracted. TDS has a basic q
dependence given by the functional form of Eq. (2), but
the variation of scale factor would be very different from
that of the truncation rod, for reasons given above. It is
clear in both the InSb(111) and W(100) cases that Eq. (3)
is a much better fit to the observations than Eq. (2), and
consequently that a roughened description of the surface
is more suitable than a perfectly sharp one.

Contrasting behavior is seen, however, for Si(111) in
Fig. 4. The data are not as accurate as our previous ex-
amples, but are fit reasonably well by Eq. (2), or
equivalently by Eq. (3) with P=O. An error bar of +0.3
accounts for the range of P over which Eq. (3) describes
the data. Thus we have one example of a surface which is
truly flat over the 2500 A coherence length of the x-ray
soul ce used.

The model of roughness shown in Fig. 5 was chosen for
simplicity, rather than for any physical reason. The dis-
tribution of layer occupancy was chosen to be exponential
and was found to work quite well. Other distributions
would give different functional forms for Eq. (3) but
would all have the same qualitative behavior of concen-
trating the (sin —,'qa) intensity [Eq. (2)) towards the
Bragg points and away from the zone center. It is not
clear that different detailed models of roughness could be
distinguished at this level of accuracy. One central con-
cept to all descriptions of crystal truncation rods, howev-
er, is the continuation of the crystal lattice into the
roughened region. All these measurements were made at
large momentum transfer, far from the small-angle re-
gion; we therefore strictly limit the description of rough-
ness to that of an envelope function applied to a well-
defined lattice. These measurements are therefore com-
pletely insensitive to the presence of any liquid or disor-
dered layers on the surface of the crystal.

We should be careful to distinguish between roughness
measured at zero and nonzero momentum transfer. Devi-
ations from the Fresnel reflectivity curve close to zero
momentum transfer are also interpreted in terms of sur-
face roughness. These roughness values, however, relate
to the electron density boundary averaged over both in-
plane directions and projected onto the surface normal. It
is possible to conceive of both extreme situations where
one measurement would show a perfectly sharp boundary
while the other indicated a rough one: a perfectly truncat-
ed crystal covered with "rough" liquid, or a rough lattice
(as in Fig. 5) which is "filled in" with amorphous material
of the same density until its physical surface is smooth.

The lattice occupancy description is very general in one
sense: the "occupancy" could refer to a static situation of
random vacancies and adatoms on the surface or to a dis-
tribution of steps bounding terraces, as Fig. 5 suggests. It
could, however, also describe the dynamic situation of a
correlated liquid layer in which otherwise mobile atoms
spend periods of time attached to lattice sites on the sur-
face of a crystal. A third, more realistic manifestation of
roughness would be that of surface enhanced vibration.
Here the effective occupancy AJ of the jth layer would be
given by an individual Debye-Wailer factor for the layer

-2l~ I'&
(4)

where q is the momentum transfer and (ut ) is the mean-
square vibration amplitude of the atoms in the layers. If
(uj ) were to increase uniformly towards the surface then
the distribution of occupancies would indeed be exponen-
tial. This description is readily tested because of the
predicted q dependence of the roughness parameter P.
Our W(100) data have independent P values for the first-
and second-order truncation rods, but the difference be-
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TABLE I. Comparison of the four surfaces studied. Roughness p is taken from Figs. 1—4. o, is calculated from Eq. (5). The
roughness length scale is the inverse width of the Crystal truncation rods measured in the plane of the surface. The reconstruction
domain size is the inverse width of fractional-order reflections, when present.

Surface

Pt.{111)
InSb(111)
%'(100)
Si(111)

Roughness

0.65+0. 1

0.40%0.05
0.50+0.01
0.0+0.03

Interplanar
distance
dg (A)

2.27
3.74
1.58
3.14

roughness
cr, (A)

5.2
3.9
2.2
0

Roughness
length scale

(A)

150
1000

150
2500

Reconstruction
domain size

(A)

1000
~ 100
2000

Instrumental
coherence length

(A)

150
6000

150
2500

tween them is much too small for Debye-Wailer effects to
be the dominant contribution to roughness: if the first-
order rod has pi ——0.54, then the second-order would have

p2 ——(0.54}"=0.09 according to the description above; we
find p2 ——0.46.

It is conventional to express surface roughness as a
root-mean-square elevation of the surface contour, o~,.
We can convert the p values into cr, by calculating the
second moment of the rigid lattice partial occupancy
description of Fig. 5,

pl /2

orms
(1 p)

dl (5)

where di is the lattice spacing perpendicular to the sur-
face. This formula is specific to the model and will give
an inaccurate measure of the surface contour if there are
significant components of vibration or disorder. It should
still be a useful parameter to represent the ordered com-
ponent of the roughness on a length scale. Values of o
are given for the four surfaces examined in Table I.

The lateral length scale over which the roughness is
measured is also listed in Table I. This scale is given ei-
ther by the coherence of the beam or by the lateral
domain size of the crystal surface. In either case, it is
measured by the width of the crystal truncation rod. This
length is not necessarily related to the size of the recon-
structed domains on the surface, also listed in Table I
were appropriate, which is derived from the width of the
fractional order peaks. It is reasonable that the crystal
truncation rods are always seen to have characteristic
lengths greater than or equal to the reconstruction domain
size, because a reconstructed domain is presumably flat
(see below). What is less clear, considering the description
of Fig. 5, is how the roughness length scale can ever be
less than the bulk domain size (resolution limited in each
of our cases}: InSb(111) shows a very large difference.
The width of diffraction rods from terraced structures has
been considered previously and shown to oscillate as a
function of the perpendicular momentum transfer. We
believe that this effect, which is ultimately due to imper-
fect crystal orientation during polishing, is the explana-
tion of our rod widths.

Roughness values are not believed to be fundamental
properties of surfaces, and are more likely strongly related
to the preparation conditions. This assumption was not
tested here by variation of preparation, but has been
demonstrated previously. ' It should nevertheless prove
interesting to apply this technique to systems in which
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FIG. 6. The reciprocal lattice of a 2X2 reconstructed (111)
face of a face centered cubic or diamond lattice crystal. The
section shown is parallel to the face. A hierarchical classifica-
tion of the reflections is shown. Reflections are indexed accord-
ing to the bulk scheme; in the conventional definition of a sur-
face reciprocal lattice (corresponding to a primitive hexagonal
surface layer) the 3 {422) position becomes the hexagonal (10)
basis vector. The crystal truncation rods appear at the integer
order positions in this hexagonal frame.

roughenlng ph~ transitions are 1 own to occur. 11 ~e
can make certain general remarks on the cr, values in
Table I. Firstly, the roughest surface, Pt(111), was the
only sample not prepared using ultrahigh-vacuum proto-
cols; and suggests that atmospheric chemical preparation
methods may not be as efficient as UHV ones from the
point of view of roughness. Secondly, the smoothest sur-

face, Si(111), which is within error of perfect flatness on
the scale of 2500 A, is well known to have extremely long
coherence lengths of its reconstructed regions. ' More-
over, since steps in this surface are seen directly in tunnel-

ling microscope experiments' to interrupt the coherence
between reconstructed regions on adjacent terraces, we
know from the widths of the fractional-order reflections
that these regions have to be flat over such distances.

Surface truncation rods must be considered in measure-
ments of two-dimensional structure factors for surface
structure determination. The main difficulty is their pres-
ence at positions that correspond to "1X1" surface peaks
as Fig. 6 shows. The measured surface structure factor
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amplitude therefore has components both from the sur-

face structure itself and from truncation of the bulk. Use
of the measured amplitude in a Fourier calculation is fur-
ther restricted because the truncation rod comes from the
entire illuminated surface, while the corresponding sur-
face structure component has contributions only from the
ordered regions of the surface, which depend upon the
level of contamination. In fact, very different time depen-
dence (assumed to be due to contamination) of the intensi-
ties of integer-order and fractional-order peaks was ob-
served in the case of the InSb(111)2X2 reconstructed sur-
face. All successful x-ray structure determinations of
surfaces reported to date have omitted use of integer-order
data. ' '4

In principle, integer-order data can be used to great ad-
vantage, since Fourier amplitudes from the surface struc-
ture and the truncation rod would interfere with each oth-
er. The simplest case to consider is a substrate-overlayer
system: fractional-order diffraction data from the over-
layer alone can determine its internal structure but pro-
vides no information about its registry on the substrate;
thus important information concerning the choice of site
(e.g., hollow or atop) would not be available. Inclusion of
the integer-order data could resolve that problem; the
fraction of the surface area that is ordered would have to
be included as an occupancy parameter in the analysis.
Integer-order data could also play an important role in
solving "registry" questions in reconstructed surface anal-
yses. The structural analysis of InSb(111)2X2 left the re-

gistry question open, s the analyses of Au(110)1X2 and
Ge(100)2X1 (Ref. 1) as well as Si(111)7X7 (Ref. 4) used
heuristic determination of registry of the reconstructed

layers on the bulk.
Finally, we would like to consider the possibility of us-

ing the crystal truncation rods for crystallographic phase
determination. In most surface problems, an unknown
surface structure lies on a face of a known bulk crystal
structure. The ideal truncation rod structure factor can
therefore be readily calculated both in amplitude and
phase. The sign of the amplitude differences between the
observed integer-order reflections and the values calculat-
ed from the bulk then relates to the size of the phase
differences: if the surface and bulk add constructively
(phase difference &90') then the observed amplitude is
greater than that calculated for the bulk, and uice uersa.
This method is formally analogous to the single isomor-
phous replacement method' or, equivalently, to the tech-
nique of holographic imaging. It could be used to obtain
starting phase information as a precursor to model-
independent structural refinement.
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