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Two approaches are used to discuss the collective excitations of a two-dimensional electron gas in
a perpendicular magnetic field B, which occur at energies near fiw, =#eB /mc. The first approach,
a time-dependent Hartree-Fock approximation, becomes exact at integral Landau-level filling in the
strong-field limit. The second approach, a generalized single-mode approximation, incorporates the
strong correlations among electrons in a partially filled Landau level and is more reliable but can be
conveniently implemented only in the strong-field limit. Both approaches predict the existence of
poles in the density response function at finite wave vector for @ =w,., which may lead to anomalies

in the cyclotron-resonance line shape.

I. INTRODUCTION

It is well known? that a two-dimensional (2D) electron
gas can support charge-density-wave oscillations with the
plasma frequency given, at long wavelength, by
172
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These collective excitation energies can be determined by
locating the poles of the density response function

_ Il(q,w) @)
X(q,w) I ViQliqa) ’
where Il(q,w) 1is the proper polarizability and

V(q)=2me?/q is the 2D Fourier transform for the
Coulomb interaction. Frequently, I1(q,®) is approximat-
ed by the polarizability of a noninteracting system (the
random-phase approximation,’ or RPA), but higher-order
corrections have been studied by some workers.*~% In this
paper we study the long-wavelength density oscillations of
a 2D electron gas in a perpendicular magnetic field (B)
where, because of the Landau quantization of the energy
levels, excitation modes occur close to integral multiples
of w.. At long wavelength the lowest of these modes is
plasmonlike and is frequently referred to as the magneto-
plasmon mode. While modes appearing near other multi-
ples of w, can be treated as easily, we explicitly discuss
only this case. The magnetoplasmons have been studied
previously in the RPA (Refs. 7 and 8) and, more recently,
in the Hartree-Fock approximation (HFA) (Refs. 9—12).
The previous studies have been restricted to integral fil-
ling factors and, for the most part, to the strong-
magnetic-field limit. Here we consider the case of nonin-
tegral filling factors and find that a pole occurs in the
density response function for finite wave vector at @ =w,.
The associated mode is primarily of spin-wave character
but has a partial density-wave character. We suggest that
the existence of these modes may be the reason for the as
yet unexplained anomalies which sometimes occur in the
cyclotron-resonance line shape.!>~!3

We will discuss two agproaches to the case of fractional
filling factor v: v=2ma;n where n is the electron density
and a; =(#ic /eB)'/%. In Sec. II we use finite temperatures
to introduce the possibility of fractional filling factors in
the HFA. (The RPA may be obtained as a simplification
of the HFA.) Numerical results following from this ap-
proximation are reported on in Sec. III (the effect of finite
temperature) and Sec. IV (the filling factor dependence of
resonance frequency). Although fractional filling factors
do not cause any formal difficulty in the finite-
temperature HFA, the approximation does not describe
the strong correlations between electrons associated with
the macroscopic degeneracy which occurs when any Lan-
dau level is fractionally occupied. In Sec. V we employ
the generalized single-mode approximation (GSMA),!6!7
which is readily implemented only in the strong-field lim-
it, to include these correlations in the estimation of the
resonant frequencies. The GSMA does not describe the
broadening of the collective modes, but is reliable for
wave vectors smaller than ~a; !, where these modes are
expected to be well defined.'®!” Both approaches show
that the spin-wave-like mode which has an extremum for
o <o, produces a pole in the density response function.
We conclude in Sec. VI with a discussion of the possible
connection between these modes and the cyclotron-
resonance line shape.

II. FINITE-TEMPERATURE HARTREE-FOCK
APPROXIMATION

We consider an interacting 2D electron gas which is
perturbed by a spin-dependent external potential
(Ve'9T=%Y) where o denotes the spin variable. The
collective excitation modes are determined, as mentioned
earlier, by the poles of the density response function
X(q,®), which in this case is related to the (linear)
response §p°(q,w) by

Sp"(q,a))z zxa,a’(q’m)V‘;t . (3)
p

One approach for calculating X(q,®) is to apply the stan-
dard perturbation theory using the quite general many-
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body techniques in which one ends up summing a certain  equation of motion for the single-particle wave functions
class of diagrams.’ The class considered in Ref. 9 is

equivalent to a self-consistent Hartree-Fock approxima- % 9Y,(r,1)
tion so that one can alternately use a perturbation theory ! ot

in terms of the single-particle wave functions,'"!® which

is the approach we follow here. The starting point is the ~ Where

|

=H (t),(1,1), (4)

2
H(thpe(r,t)=

1 e
>m p+CA +Hex,(t),1/1a(r,t)

+2np sa)fdr = [V (0, O (2, (1, 8) — P, (1, ) (1, 1) ] . (5)

Once y,(r,t) is known, the charge-density which is given by

p(r,0)=8p(r,t)+po(r,t)=—e 3, Ya(r,0Ys(r,ng(e,) (6)

can be calculated. In Eq. (5),
ng(ey)={exp[(eg—p)/kgT]+1} !

is the equilibrium Fermi function and ¢, is the energy eigenvalue in the absence of the external perturbation.

Application of the standard time-dependent perturbation theory within the single-particle picture,'® as describe in de-
tail in Refs. 11 and 18, leads to the following results in the presence of a perpendicular magnetic field:

8p°(q,0)=(2ma;) ‘ZSA,, 2(Q0)F, ,(—q), 7

where 8A7. ,(q,w) satisfies the equation

ﬁ_l[nF(En,a)_nF(En’,a)]

SAS. (q,w)= V3 Fy ol +——— H(n,m;n',m’;q) S 8A% ,0)
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- — 2 X (n,m;n',m’;q)8A7, n(q,0) (8)
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and the Hartree-Fock energy for the nth Landau level, €, ,, is

1 1
n4+—-+-—- Ug—-—

mo =" 2 ' 4

- znp Emo)X (n,m;n,m;q=0) . 9)
ar m

In Eq. (9) o= *1, for up and down spins, respectively, g is the effective g factor, and m /my, is the ratio of the effective
electron mass to the bare mass. The terms which involve H (n,m,n’,m’;q) and X (n,m,n'm’;q) in Eq. (8) originate from
electron-electron interactions in the Hartree-Fock approximation where the Coulomb local field is determined by

H(nym;n',m';q) = ——Fy o(@Fmom(—a) , (10
qar

and the exchange local field by

@© 2w 1 . ' ' ’ ’
X(n,m;n',m';q)= fo dg'a; fo d()—z;exp[zaf(qu,—qqu)]F,,,,,.(q Y ad —q') . (11
r
The function F, ,(q) appearing here is given by Numerical results following from this approximation
20 . n'—n are reported in the following two sections. Examination
n! (igx —gylar of Eq. (8) makes its connection with other approximations

Fp n(q)=

n't V2 apparent. One obtains the well-known lowest-order ex-
5 2 pression for X(q,»)=11%q,®) by substituting Eq. (8) into

—q‘a w—n, 2.2 Eq. (7) with e?=0. The finite-temperature RPA follows

X exp Ln ~Ng7ar/2), (12) if the Coulomb local fields are retained but the exchange

local fields are set to zero. The relationship between the
where LZ(x) is a generalized Laguerre polynomial. present approach and the diagrammatic method has al-
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ready been pointed out in Ref. 11, for the zero-
temperature case where it was noted that in the limit
(e*/ea; ) /#iw, << 1 the present approximation reduces to
the same result obtained by Kallin and Halperin.” In the
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diagram language, the density response function in the
Hartree-Fock approximation as determined by Egs. (3),
(7), and (8) would correspond to summing the set of dia-
grams shown in Fig. 1.

III. TEMPERATURE DEPENDENCE OF RESONANT FREQUENCIES

According to Eq. (7), the poles of the function 8Aj ,(q,») determine the magnetoplasmon dispersion relation. To
derive these resonant frequencies, we rewrite Eq. (8) into the form

2 [ﬁwan’,m'an,msa’,a"E(n”n’a;m,’m’a’;q)]aAzﬁm(q:a’)=[nF(En,a)_nF(En’a)]VgxtFn,n'(q) ’ (13)

m,m’,0’
where

E(n',n,U;m',m,U';q)-—-(En',a‘ _en,v)sn',m'an,maa‘,a

2
+[np(e,.,g)—nr<en',a)]f—[H(n,m;n’,m';q)—Ba'aX(n,m;n',m’;q)] . (14)
L

It is clear from the above equations that 8A}, ,,(q,») van-
ishes for w40 if n =n’. Thus the interesting cases are re-
stricted to Landau levels such that nsn’, in which case
the poles of the density response function are obtained, as
readily seen from Eq. (13), by diagonalizing the matrix
given by Eq. (14). This matrix is already diagonal in the
absence of interaction yielding the resonant frequencies
o=(n'"—n)o,. We focus our attention on the dispersion
relations of modes occurring close to the cyclotron fre-
quency w(q)~w, corresponding to | n'—n | =1.

We have diagonalized the matrix, Eq. (14), numerically.
The Hartree-Fock energies €, , [see Eq. (9)] are evaluated
by an iterative process at a given filling factor
v=(eB /hc)~'n, where n is the areal electron density, and
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FIG. 1. General diagrammatic expressions for X(q,w) and
II(q,w) where the last two approximative diagrams, represent-
ing the vertex function I' and Greens function G define the so-
called Hartree-Fock approximation for X(q,w). The wavy line
is the bare interaction potential. The approximations for I"' and
G lead to the same result for X(q,w) obtained by our single-
particle description.

G = o~ +

(w-w.) /w,
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FIG. 2. Shift of the resonant frequencies from the cyclotron
frequency as a function of wave vector for filling factor v=1
and for various values of the (reduced) temperature. The
Coulomb interaction parameter (e?/ea;)/fiw.=1 and in (a)
kT /#iw.=10"% and 10~'. The curves are indistinguishable on
this scale. In (b) we illustrate the dispersion of the modes occur-
ring near o, at the same value of v for k3 T=0.5%w, (see text).
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also for fixed values of the ratios (e?/ea;)/#iw, and
kT /#w.. The numerical procedures followed to ensure
convergence with respect to the order of the truncated
matrix are described more fully in Ref. 11. The minimal
effect of finite temperature on the dispersion relation is
shown in Fig. 2(a), where we plot the magnetoplasmon
dispersion for v=1 and e?/a; =, at kzT /#iw, =107,
10~!. For GaAs parameters #iw. /kz T ~20B[T)/ TIK] so
these values correspond to 7=2 K and T=20 K, respec-
tively, at a magnetic field of 10 T. (The effective g factor
is taken to be 0.49 and the effective mass is 0.068m as
appropriate for the 2D electrons in a GaAs/AlGaAs
heterojunction.) A stronger temperature effect might
have been expected to be present at this filling factor be-
cause of the small spin splitting compared to #iw, Howev-
er, the exchange correlation affects the energy levels in
such a manner that the minority-spin energy levels (spin-
up levels) remain essentially unaltered while the majority-
spin energy levels are significantly lowered. The lowering
of majority-spin energy levels by the exchange interaction
dramatically reduces the occupation of the minority-spin
n=0 Landau level which thermal broadening would oth-
erwise produce. It is not until kp T is several times larger
than g.gfiw, (gg=38m/m) that this gigantic ex-
change enhancement of the spin splittings is quenched. In
Fig. 2(b) we show the dispersion of magnetoplasmon
modes occurring for v=1 at kzT /#iw. =0.5, which corre-
sponds to T=100 K at B=10 T for GaAs. Because both
spins are nearly equally occupied two principle modes
occur. As we discuss in more detail later the higher-
energy mode is primarily of charge-density character

[T T

TT T T T T T

FIG. 3. Filling factor of the majority- and minority-spin
Landau levels, v, and v,, respectively, versus total filling factor
v=v,+v; in the HFA (solid line) and RPA (dashed line) at
ksT /#fiw.=0.05 and (e’/ea;)/fiv.=1. In the RPA thermal
smearing causes nearly equal occupancies for minority and ma-
jority spins. In the HFA exchange lowers the majority-spin en-
ergy compared to the minority-spin energy except as v ap-
proaches 0 and 2 and dramatically reduces the effect of thermal
smearing.

while the lower-energy mode is primarily of spin-density
character. We have also shown in Fig. 2(b) the anticross-
ings between these modes and the corresponding modes
associated with transitions between n=1 and n=2 Lan-
dau levels and between n=2 and n=3 Landau levels.
These modes are relevant here because of the significant
thermal occupation of the n=1 and n=2 Landau levels.

The exchange enhancement of the spin polarization,
mentioned above, is illustrated in Fig. 3 for kT /#iw,
=0.05, which corresponds to T=10 K at B=10 T in
GaAs. At this temperature only the n=0 Landau levels
have significant occupations. In the RPA, i.e., using bare
energies, up- and down-spin occupancies are nearly equal
while in the HFA, i.e., including the effect of exchange on
the energy levels, the spin polarization is nearly complete
forv<l.

IV. FILLING FACTOR DEPENDENCE
OF RESONANT FREQUENCIES

We have performed a series of numerical calculations
using Eq. (13) to determine the dependence of the
resonant frequencies on the total filling factor. We con-
sider the kpT <<fiw. limit which is easily reached in
low-temperature experiments. In the HFA the resonant
frequencies depend smoothly on the filling factor. One
qualitatively new feature enters when fractional filling
factors are considered and, in order to explain it clearly,
we find it useful to consider the high magnetic field limit
(e/ea; <<#iw,) and to discuss in detail the case of filling
factors between O and 2. This allows us to truncate the
secular equation [Eq. (13)] to modes with n =m =0 and

0.4
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FIG. 4. The functions H"%q) (long-dashed) curve and
X"%q) (short-dashed curve), defined by Egs. (16), versus wave
vector. The sum H'%q)+X"%q) (solid curve) is the shift of
the chargelike excitation energy from #iw. at v,=1, v,=0 in the
strong-field limit. At v,=1, v,=1, in the strong-field limit,
©,(9)=2H"%q) + X"%q) and o _(q)=X"%g).
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n'=m'=1. For filling factors between 0 and 1 only the
majority spin need be considered and the resonant fre-
quency is

olQ) =0 +# v, [H" Q)+ X" %], (15)

where we have separated the Hartree contribution to the
shift from .,
H'"%q)=

e2
— |H(0,0;1,1;9)
ar

2.2
—q-ap

2

L ex
2

e2

ar

) (16a)

and the exchange contribution

|

[H"%q)+X"%q))(1—w,)
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2
X1q)= :_[ —-X(0,0;1,1;q)—X(1,0;1,0;q=0)
L

+X(0,0;0,0;,q=0)] . (16b)

In Fig. 4 H"%q), X%q), and H"%q)+X"%q) are plot-
ted versus g. The resonant frequency shift is simply pro-
portional to v, and the previous results are recovered
when v, =1.

More interesting is the region between v=1 and v=2
where the minority-spin Landau level is being filled
(vi=v—1). In this case both spins need to be considered
and the secular equation produces two resonant frequen-
cies:

172

H'"%qQ)+X"%q)
2

0+(q) =0, + (1+v)+

2
+v,H"%q)? 17

2

It is instructive to solve Eq. (13) to determine the residues in the density response, 8p'+8p'=_8p, to a spin-independent

(V'=V"'=V) external potential. The result is

8p(q0 10— 0+) | pew, =A'ax(q)| Fio(q) |’V (2mal)~",

where

1+v, 1+v,

2

2
+ |H"%q) +X"%q)

ai(q)= [

The nature of the two modes can be understood if we
consider two limits. As ¢—0, | X"%q)| << |H"“%q)]|
and we recover the RPA. In this limit o, (¢q)=0,
+vH"(g) and 0_(¢)=0w,, i, w,(q) becomes a pure
charge-density excitation whose frequency shift depends
on the total filling factor and not on its spin decomposi-

S S N G S S B SR R

oo b Ly
0 1 3 3
g L
FIG. 5. a+(q) versus wave vector where a+(q), given by Eq.
(18), is a measure of the CDW component in the resonance.

—V;

1

(18a)
2 2 —-1/2
H(q)+X"%q)(1—v,)
H el R T
(18b)

[

tion while w_(q) is a pure spin-density excitation whose
resonance frequency as ¢—0 is unshifted. On the other
hand, as g— o, | X"%q)| > |H"%g)|. In this limit
we can ignore the direct Coulomb interactions and the ex-
citations in the two spin channels become independent.
[The higher-frequency mode becomes the majority spin
with excitation o,(¢)=w.+X"%g) and the lower-
frequency mode becomes w_(g)=w,+v,X"%g).] The
transition between the two regimes is quite abrupt as we
see in Fig. 5 where we have plotted a(g) versus g for
v,=0.5. [a+(q) is a measure of the charge-density-wave
component in the resonance.] Note that as g—0,
a,(g)—(1+4+v;) and a_(g)—0 while for g— oo,
a,(g)—1and a_(g)—v;.

In Fig. 6 we have plotted the energies of the density-
wave-like mode [w,(q)] and the spin-wave-like mode
[w_(q)] calculated in the HFA for several values of v be-
tween 1 and 2 and for (e?/a; )/#iw.=1. With GaAs pa-
rameters this corresponds to a magnetic field of ~6.1 T
and to a density of ~1.5vx 10! cm~2. From Eq. (17) it
follows that in the strong-field limit [(e2/eay )/#iw, << 1]
w_(q) crosses w, when X'%q)=0, which according to
Fig. 4 occurs at ga; ~1.94, for all values of v,. Compar-
ing Figs. 6 and 4 we see that the minimum in w_(g) tends
to deepen and the wave vector at which w_(q) crosses w,
increases with (e%/a; )/#w,, although the crossing wave
vector is still nearly independent of v,. Nevertheless, the
results illustrated in Figs. 6 are qualitatively identical to
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FIG. 6. Magnetoplasmon excitation curves (cf. Fig. 2) as af-
fected by a variation of the filling factor, 1 <v <2, at a constant
temperature kT /fiw,=5X10"2 The ratio (e?/ea;)/fiw.=1.
As the filling factor is increased or reduced, the curves approach
gradually the results one would obtain for v=2 or v=1, respec-
tively. (a) v=1.1 (solid curve), v=1.2 (dashed curve), and
v=1.4 (dotted curve); (b) v=1.6 (solid curve), v=1.8 (dashed
curve); and v=2 (dotted curve).

those discussed above which hold for the strong-field lim-
it of the HFA and indicate that, as far as these excitation
modes are concerned, the strong-field approximation is
reasonably reliable at realistic magnetic fields and 2D
electron densities.

V. GENERALIZED SINGLE-MODE
APPROXIMATION

For the 2D electron gas in a perpendicular magnetic
field a single-mode approximation (SMA) was used by

3815

Girvin et al.'? to evaluate the intra-Landau-level modes
relevant to the fractional quantum Hall effect,”® and has
been generalized (GSMA) in Ref. 16 to treat other excita-
tions. This approximation is expected to be applicable
whenever the excitations are primarily collective in nature
and is essentially based on the assumption that the excited
state can be constructed by forming density waves in the
ground state. Because of the Landau quantization of the
energy levels, however, these excitations must be grouped
according to the Landau levels involved, i.e., we assume
the relevant excitation can be expanded in the form

) =3, Co (KL o), (19)

n',n,o

where pl is the part of the density operator which
transfers electrons of spin o from the nth to the n’th Lan-
dau level (see Ref. 16). In the strong-field limit (to which
we restrict ourselves in this section) and for v< 1, | ;) is
formed entirely among the majority-spin electrons of spin
o. Then, as discussed by Girvin et al.!”?' for intra-
Landau-level excitations | ) ~py°| 1) and the excita-
tion energy

wolk) ~{ao | p%% [H,o2 01 | %) /<o | p2 21087 | o)

where H is the Hamiltonian for the interacting system.
For v <1, a situation which has been treated in Ref. 16,
the excitations which occur at energies near #iw, are ap-
proximately described by | )~pyl|t). For v>1,
however, both spins must be considered and the details of
the calculation are summarized below.

We use the notation and definition of Ref. 16 where,
for the case of interest here, the approximate excited
states and their excitation energies are determined by solv-
ing the secular equation

3 [E5°°(1,0;1,0;k) — w4 (K)SS"%(1,0;1,0;k)]C7 (k) =0 ,

o

(20a)

where
E;°(1,0,1,0;k)= (9o | p%k o [H,p 3] | %), (20b)
Sp1°%(1,051,05k) = o | p% korpk? | o) (20c)

and |1,) is the ground state in which the majority (down)
spin n=0 Landau level is completely full and the elec-
trons in the partially occupied minority (up) spin n=0
Landau level are highly correlated. The matrix elements
in Egs. (20) can be expressed in terms of the partial corre-
lation functions of the electrons. The calculations leading
to these expressions are very similar to those detailed in
Ref. 16, and we simply quote the result:
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. 2 2 kzaE 1,0

E;°?(1,0;1,0;k) =N exp(—k*aj /2) 3 (8. 0(X[ho,o:k]+0.)+veH (K}, (21a)

where
2 i

X[hyoik]=e> %;rq)-an‘I[ha,(q)[(l—qz/Z)e Ux@: _11q2%ek* 2~k (k —q)/2) (21b)
and

hoo(K)=vy [ dr ra; (844 (r)—1Wo(kr) 21¢)

is the Fourier transform of the partial pair-correlation function for electrons of spin o and Jy(x) is a Bessel function.

Similarly,

S7°°(1,0;1,0;k) =8, ,N ,exp( —k?af /2)k*a; /2 ,

(22)

which when combined with Eqs. (21) and (20) gives the following expression for the magnetoplasmon-mode energies:

HYY(K)(1+v)+X[h,;k]1+X[h,;k]
2

. l lHl»"(k)(1—v,)+X[hu;k]—X[hn;k]

o+(kK)=w.+

2

which can be compared with the corresponding Hartree-
Fock result. Since h,,(k)=—e~**/2, the result for a full
n=0 Landau level, comparing Eq. (21b) with Egs. (11),
(12), and (16b) shows that X [A,,;k]=X"%k). The HFA
is recovered if h,,(k) is replaced by its uncorrelated
values, —v,e ~¥’/2, which would imply that X[h,;k]
=v,X"0k).

In Fig. 7 we have compared the GSMA magneto-
plasmon energies with the HFA energies for the case of
v,=+, where the correlation function of the minority-
spin electrons can be approximated by that of the state
proposed by Laughlin?*%? in connection with the quantum

0.4 LN N L L L B BB L

o
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LRI L L AL B BB
|
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

daa L
FIG. 7. Shift of n excitation energies from fiw, in units of
e2/ea; for chargelike and spinlike magnetoplasmon modes.

The solid lines are for the GSMA and the dashed lines are for
the HFA. The curves are for the case v,=1 and v,= %

2 2
+v,[H"°(k)]2] , (23)

[

Hall effect.”® As k—0 the Hartree local field in Eq. (21a)
dominates and the two approximations yield identical re-
sults. As k— oo the Hartree local field vanishes and the
two-spin channels become independent. For the majority
spin, which has a full Landau level, the two approxima-
tions agree, but for the minority spin the shift of the mode
from w, is underestimated by the HFA. Physically, this
is because the HFA does not reflect the strong correla-
tions among the minority-spin electrons, and therefore un-
derestimates the energy cost of promoting one of these
electrons to the next Landau level. From Eq. (21b) we can
show that

172

—2Eo[hgq] _ Vaez . (4)

Na ar

s
8

Jlim X [hoqk]=

where Ey[h,,] is the contribution to the total energy
from correlations among electrons of spin o. Since

172
T e
Eolh, )=~ ? ‘;Nl
and for the case illustrated (v,=7%), Eqlh]
~—0.4100(e?/a; )N,, 4%
” 12 o2 o2
lim X[h,,(k)]=|— | —=0.627—
ki{f; [ “( )] 8 ay 0627aL (25a)
as in the HFA, while
2
Jim X[hy,(k)]=0.6115— | (25b)

ar

compared to 0.209¢2/a; in the HFA. In Fig. 8 we show
the finite residue in the density response function for the
spin-wave-like mode is not an artifact of the HFA but
rather that the magnitude of the residue is actually in-
creased in the GSMA. In fact, this result should not be
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FIG. 8. Chargelike component in the nominally chargelike
and nominally spinlike magnetoplasmon modes. The solid lines
are for the GSMA and the dashed lines for the HFA. v,=1 and

v,_———;- as in Fig. 7.

surprising since spin and charge degrees of freedom are
not decoupled whenever the system is spin polarized.

VI. DISCUSSION

We conclude this paper with a discussion of the possi-
bility that the partial density-wave character in the spin-
wave-like magnetoplasmon mode may be responsible for
the anomalies which have been observed in cyclotron-
resonance line shape,’>~!° at least when the 2D electron
gas is formed at a GaAs/AlGaAs interface. According to
the data of Schlesinger et al.,'> the anomaly reflects a
crossover from a regime at lower magnetic fields where
the cyclotron resonance is shifted from w, toward lower
frequencies to a regime at higher fields where the reso-
nance is shifted toward higher frequencies. Our argument
is based on the theory of Kallin and Halperin,?® who treat
the mixing of magnetoplasmon modes at different wave
vectors by a disorder potential. In an ideal system the
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cyclotron-resonance mode is the q—0 limit of the charge-
like magnetoplasmon mode. In the presence of disorder
the cyclotron-resonance line shape reflects the broadened
spectral weight of this mode.

For qualitative purposes it is sufficient to focus on the
extrema of the magnetoplasmon dispersions since the den-
sity of modes is infinite at these energies; referring to
Figs. 4—7, the chargelike mode has a maxima of
qar =X(l) and a minima at qa; =X‘f’>X(i’, while the
spinlike mode has a minima at X Dex (41,). If only the
chargelike modes are considered, repulsion between g=0
and finite ¢ modes tends to shift the cyclotron resonance
toward lower frequencies. This is the result obtained by
Kallin and Halperin?® for v=1 and v=2. If, on the other
hand, the spinlike mode dominates, the shift will be to-
ward higher frequencies. Note that the nominally spinlike
mode might be expected to be more weakly coupled to the
q—0 density mode because of its smaller densitylike com-
ponent, but this may be more than compensated for by the
proximity of its energy minima to the bare cyclotron-
resonance energy. A crossover from a negative shift to a
positive shift with increasing field can occur because the
coupling to the densitylike modes near g =X ‘f)a[ ! drops
exponentially as g becomes larger than a~!, where a is
the set-back distance of the remote ionized donors expect-
ed to dominate disorder scattering in these systems
[af '<(B)!/?). In fact, for v=3, the lowest integer value
for which a spin-wave-like mode with some density-wave
character occurs, Kallin and Halperin find a much
broader cyclotron-resonance mode which may be indica-
tive of a crossover behavior. If this mechanism is correct
the anomaly should be, to a good approximation, associat-
ed with a critical value for a/a;. Qualitatively, this is
consistent with the observed dependence of the magnetic
field at which the anomaly occurs on the 2D electron den-
sity. Higher electron densities would tend to be associated
with shorter set-back distances so that the magnetic field
at which a given value of a/a; occurs would increase.
We believe it would be worthwhile to undertake a sys-
tematic experimental test of this picture.
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