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NpSn;, with a paramagnetic electronic specific-heat coefficient v, of 242 mJ/mol K2, undergoes
an antiferromagnetic phase transition at 9.5 K with a resultant drop in ¥ to 88 mJ/mol K2 This
behavior of y (reduction by 64%) is typical of the “heavier” fermion antiferromagnets U,Zn;,,
UCd,;, and CePb;. Self-consistent linear-augmented-plane-wave calculations within the local-
density approximation have been performed for both phases to study this effect. The calculations
include both spin-orbit and magnetic coupling on the same level throughout the self-consistency pro-
cess. An electronic specific-heat coefficient of 102 mJ/molK? is found for the paramagnetic
phase—the largest value ever reported from a band-structure calculation. This large value implies
that large enhancements observed in other heavy-fermion materials are not present in NpSn;. A
specific-heat coefficient of 39.7 mJ/mol K? was found for the antiferromagnetic phase, yielding a
calculated 61% reduction in ¥ as a consequence of undergoing the phase transition. A total moment
of 0.21u5 was obtained (—0.18 spin, 0.39 orbital) indicating the itinerant nature of the magnetism.
An analysis of the dramatic reduction in electronic specific heat through the transition, as well as
the temperature dependence of C/T in the paramagnetic phase, is presented along with a discussion
of the implications for the other heavy-fermion antiferromagnets.
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I. INTRODUCTION

There is much recent interest in the electronic proper-
ties of the so-called heavy-fermion compounds—those
compounds which possess abnormally large electronic
specific heats (for a good review, see Ref. 1). Most atten-
tion has been focused on the superconducting compounds,
while relatively little attention has been given to the com-
pounds which order antiferromagnetically. The first ex-
ample of this latter class to be discovered was NpSnj.’
This compound exhibits an electronic specific-heat coeffi-
cient ¥ of 242 mJ/molK? in the paramagnetic phase
above an antiferromagnetic phase transition which occurs
at 9.5 K. This transition to an antiferromagnetic phase
results in a reduction of ¥ to 88 mJ/mol K? (a 64% drop).
More recently, similar behavior has been found for several
compounds with much larger values for ¥ such as U,Z,;
(Ref. 3) (63% reduction) and UCd;; (Ref. 4) (70% reduc-
tion). Trainor et al.? initially observed that the specific-
heat curve for NpSn; agreed with predictions for itinerant
electron antiferromagnets® and this was further supported
by the low hyperfine field found for NpSn;. Using a
correlation for Np compounds of Dunlap and Lander® be-
tween hyperfine field and ordered moment, a moment
value of 0.28up was suggested.? This value is suspect,
however, because the correlation utilized was derived
from Np compounds with a localized moment. Still, the
resulting very low value indicates an itinerant nature of
the moment. The hyperfine structure also indicates that
one of the Sn sites is polarized while the other two are
not.2 The simplest assumption exhibiting these properties
is that all Np moments in (001) planes order in the same
direction with the stacking of alternately ordered planes.
It would be reasonable to assume that this is related to a
generalized Jahn-Teller-like distortion where the transfor-
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mation to the antiferromagnetic state is the symmetry-
lowering transformation that splits the high density of
states at the Fermi energy (analogous to the degenerate
highest occupied level of the molecular problem). This
should be energetically favorable as it has previously been
found’ that the Stoner criterion is much exceeded with
IN(Ep)~8.5. In the configuration assumed for NpSnj,
the magnetic unit cell is now twice the paramagnetic unit
cell with the corresponding reduction of the Brillouin
zone by a factor of 2. Figure 1 shows this, assuming the
configuration we will utilize: alternating planes of polari-
zation along the z axis.

The essence of the Jahn-Teller effect is that given a de-
generacy at the Fermi energy, the system can lower its (to-
tal) energy by undergoing a symmetry-breaking transition
since it is of necessity the occupied levels that will move
down in energy, and it costs no energy in the ground state
to move up the unoccupied levels. This effect makes it
difficult to explain how heavy-fermion systems like CeAl,
could be stable if the driving mechanism is only that of
the existence of a narrow band at the Fermi energy. Our
working hypothesis has been that the localization of the f
orbitals produces a narrow band,® but that this is only a
small part of the observed effect, the remainder arising
from the enhancement effects of many additional low-
lying excitations. However, the antiferromagnetic materi-
als behave more normally by actually undergoing a
symmetry-lowering transition and should be more amen-
able to a standard band-structure calculation.

There is another difficulty that occurs when one consid-
ers the actual application. To test the assumed hy-
pothesis, it is necessary to perform calculations with full
lattice symmetry both before and after the transition. To-
day, this necessitates utilizing a density-functional formu-
lation of the problem within the local-density approxima-
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FIG. 1. (a) Assumed unit-cell geometry for the antiferromag-
netic state and (b) resultant modification of the Brillouin zone.
NpSn; is a CujAu structure which is based on a fcc lattice with
the Sn (shown as crosshatched circles) occupying the face-
centered sites and the Np (open circles) occupying the corner
sites. The magnetic structure doubles the unit-cell dimension in
the z direction, forming alternately polarized layers of Np (with
Sn weakly and oppositely polarized in the plane) separated by
unpolarized Sn layers. This reduces the size of the Brillouin
zone as shown with the two individual points of the simple-
cubic zone differing by (0,0,7/a) being mapped into the same
point in the reduced zone. The antiferromagnetic structure is
then affected by a mixing of the wave functions from these two
points as described in the text.

tion (LDA). It is well known that the local-density ap-
proximation begins to break down with increasing locali-
zation. This is primarily due to the replacement of the
Fock exchange operator by a local operator (Coulomb
correlations are present within the LDA in an average
sense). Still, the range of validity of the LDA is much
larger than one would expect, and in fact does not do too
badly even for free atoms. One of the best examples of
this is the case of mixed valent CeSn; (y =73 mJ/mol K?)
(Ref. 9), which has the same structure as NpSn;. Ther-
modynamic data for CeSn; seem to be in good agreement
for those predicted of a Kondo metal,'? yet the Fermi sur-
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face predicted from a LDA calculation'! agrees well with
de Haas—van Alphen data.!” Such agreement is not by
chance since the Fermi surface topology is different from
that of isostructural LaSn;. CeSn; is actually an example
of a strongly exchange-enhanced compound since the cy-
clotron masses are about a factor of 6 larger than the band
masses. This is thought to be due to spin fluctuation ef-
fects’ which are not included in the ground-state calcula-
tion. Such spin-fluctuation effects, though, can be ex-
pressed with a density-functional formalism,!* but unfor-
tunately the resulting equations are very computationally
intensive. How far this approach would go in explaining
the discrepancies between experiment and LDA band
masses for heavy-fermion compounds is still unknown.
The point to be gained is that the LDA appears to be giv-
ing a good description for the f electrons in the ground
state of CeSn;, at least in an average sense, even though
thermal effects are not fully described by the standard
procedure. This leads to some hope that the LDA will be
adequate for those compounds where ¥ is not too high.
Clearly, one has greater hope that such is the case for
NpSn; than for the higher ¥ compounds like U,Zn,; and

In the next section the calculational techniques used are
presented. These are dealt with in a cursory fashion ex-
cept where we are extending common practice. In Sec. III
the results are presented and analyzed. Some care has
been taken to analyze the temperature dependences and it
is found that the simplest model of “fixed” band sampled
by a broadening Fermi occupation factor works well for
NpSn;. Finally, we offer a somewhat more speculative
discussion of the results in Sec. IV.

II. CALCULATIONAL PROCEDURE

Previous band-structure calculations on the paramag-
netic phase of NpSn; (as well as CeSn; and USn;) have
been briefly discussed.” The method employed is the self-
consistent warped-muffin-tin-linear-augmented-plane-
wave technique. (By warped muffin tin, we mean that the
potential is spherically averaged within the muffin tins
but allowed to have a general shape in the interstitial re-
gion.) Such an approximation works well for these
CuzAu structured compounds since the rare earth or ac-
tinide is at a site of cubic symmetry where nonspherical
terms start at /=4 and the tins are at sites of D4, symme-
try where / =2 also enters. The tin bands are quite broad
and dominated at the Fermi energy by their interaction
with the f electrons. As mentioned above, the local-
density approximation is used. We employ the exchange-
correlation (XC) potential of von Barth and Hedin.!* The
choice of XC potential is not crucial since the direct
Coulomb interactions with the f orbitals dominate.’

Although very delicate and tedious because of the sensi-
tivity implied by the very narrow features in the density
of states at the Fermi energy, the paramagnetic case is
otherwise straightforward and is considered first. NpSn;
crystallizes in the CujAu structure with a simple-cubic
Brillouin zone (Fig. 1). We use a lattice constant of 8.74
a.u. with equal muffin-tin radii for the Np and Sn sites.
The number of plane-wave basis functions in the intersti-
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tial region was chosen to make the muffin-tin radius times
the longest reciprocal vector equal to 8.3. This results in
203 basis functions at the zone center (this number is typi-
cal, although it is larger for other points in the zone). A
grid of 56 points (7/5a mesh) in the irreducible wedge
(s5th) of the zone is used during the self-consistently pro-
cess of the paramagnetic system, a tetrahedron scheme be-
ing used to find the Fermi energy and weighting. At the
conclusion of the self-consistent-field (SCF) calculation,
eigenvalues at an additional 99 points (the centers of 64
tetrahedron and 35 extra points from a displaced grid)
were generated for further analysis. A Fourier-series
spline fit!* utilizing 331 star functions is then obtained on
the full 155 points. This fit is constrained to pass through
all data points and the remaining coefficients obtained
from conditions of smoothness. The fit is then used to
generate a density of states (DOS) utilizing 4096 tetrahe-
dra in the irreducible wedge.

The question of relativistic effects is very important for
actinide compounds and merits some discussion. A stan-
dard techni(éue used is to perform a scalar relativistic SCF
calculation'® (i.e., ignore spin-orbit effects) and then in-
clude spin orbit via a second variational step'® only after
the SCF calculation. Our experience has been that this
does not work well for many actinide materials because it
does not keep the strong Coulomb interactions in balance
that are, in many cases, pinning a peak in the density of
states to the Fermi energy. NpSn; provides an excellent
example of just such a case. This deficiency is readily
repaired by moving the second variational step that in-
cludes the spin-orbit effects into the self-consistency cycle.
This will work well for those materials that do not have
relativistic valence p states.!” (Note that all core states are
treated as fully relativistic and nonfrozen in an overlap-
ping core model.'®) The advantages of this procedure are
twofold: (i) computational time is reduced by about a fac-
tor of 5 over solving the full Dirac equation, and (ii) the
inclusion of magnetic coupling is facilitated, as will be
seen when the antiferromagnetic case is considered. Be-
cause we have also been performing fully relativistic cal-
culations, the quality of this approximation is easy to
check specifically for the case of NpSn;. Upon com-
pletion of the scalar relativistic plus spin-orbit SCF calcu-
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lations, the resultant density and potential were put into
the fully relativistic version and a self-consistency cycle
performed. We observed no significant change. This was
most heartening as it implies that attention can be fully
turned to the antiferromagnetic case with confidence that
it will not be flawed by an inadequate account of the rela-
tivistic effects.

The antiferromagnetic case presents another difficult
problem. The inclusion of both spin orbit and spin effects
within the same calculation is a difficult problem which is
not well handled in most cases. It is here that the small-
ness of the moment in NpSn; can be exploited and the ad-
vantage of treating spin orbit in a second variational step
now becomes clear. A basis set is first step up by solving
a scalar relativistic paramagnetic problem with the aver-
age potential (i.e., omitting the magnetic splittings). Next,
this basis set is used in the second variational calculation'®
to include both the spin orbit and the magnetic effects.
The approximation is, of course, that the spin-orbit ma-
trix elements are determined using the average moment-
less potential rather than the actual one. This is definitely
a second-order effect and, in light of the small moment,
its omission is an excellent approximation. We assume
that the moments point along one of the cubic axes with
the direction alternating for successive (001) planes, as im-
plied by the Mdssbauer data,? as shown in Fig 1. We also
assume a minimal lowering of symmetry by placing the
spin polarization along the z direction. This could be
determined by calculation, but as the major effect is the
reduction of symmetry by the g vector, it is not appropri-
ate at this time. The reduced symmetry of the spin-
dependent potential couples states differing by (0,0,7/a),
which affects the folding of the larger cubic Brillouin
zone into the smaller tetragonal zone. It is precisely the
coupling of these different (in the cubic zone) k vectors
that provides the mechanism for the wave function in the
antiferromagnetic state to have different amplitudes on
the two magnetically inequivalent sites. The new basis set
is twice as large as for the paramagnetic case since one
has not only the scalar relativistic wave functions with
spin up and spin down as basis functions, but also the
same set for the coupled k vector. The secular matrix
then has the form

(Ey+Hij+V) 147 Hij 0
Vi (Ep+H3}+V5) 0 HY
—Hii* 0 (Ey+Hi" +Vi) —Vh ’
0 —H}* —V3 (Ep+HY +V5)

where the matrix has been written in terms of matrices
whose sizes are determined by the number of bands used
at each of the two k points to set up the second variation.
E; are the diagonal matrices of the eigenvalues of the sca-
lar relativistic paramagnetic problem solved to determine
the basis set. H;' and H}' are the matrices of spin-orbit
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matrix elements'” and Vi=(AV}+AV})/2 and V}
=(AV}—AV;)/2. AV'(AV?) is the difference between
the local spin-density exchange-correlation up (down) spin
potential and the unpolarized LDA XC potential. The
numerical index (1 or 2) refers to the choice of the two
contributing k points of the cubic cell. The basis set is



3806

orthonormal, so one need not deal with the generalized
eigenvalue problem, but merely a diagonalization. The
scalar relativistic problem was solved on a w/4a cubic
mesh (35 inequivalent points). Performing the appropri-
ate rotations, it was thus possible to set up the required
pairs of k points for the 7/4a mesh in the tetragonal lat-
tice. In this case, although the zone was shorter in the z
direction, the loss of symmetry resulted in the mesh hav-
ing 45 inequivalent points in the irreducible (¢ th) wedge.

The resulting second variational eigenvectors are then
input into the density-potential part of the cycle. The in-
dividual spin densities are then calculated to determine V'
and V*. This is easily done, as the scalar relativistic wave
functions used to form the basis set possess a definite
spin. The problem separates nicely since the cubic k diag-
onal part only contributes to the cubically symmetric den-
sity and not at all to the magnetization density. This can
be exploited to simplify the construction of the density.
As a final step in the preparation for the next cycle, the
tin densities are averaged in a two-to-one ratio to deter-
mine a cubic potential for the scalar relativistic calcula-
tion (the densities on the “magnetic” and ‘“‘nonmagnetic”
tin sites do not differ much).

The spin and orbital moments were calculated
throughout the self-consistency process. These moments
were a sensitive test of the convergence since they were
the least stable property of the system. It thus took a
large number of self-consistent iterations to converge both
moments properly. Because the basis functions have a de-
finite spin, the spin moment is easily calculated and re-
quires no special comment. The orbital moment is a diffi-
cult problem that requires some attention. A full treat-
ment of the orbital moment induced through the spin-
orbit coupling should include the zone surface terms dis-
cussed in the context of susceptibility calculations.?’
However, as the major contribution is from the Np f orbi-
tals and these are almost completely contained inside the
muffin-tin spheres, it is a good approximation to use a
linear-combination of atomic orbitals (LCAO)-like for-
malism with the atomic orbitals replaced by the radial
functions of the solid.?® Brooks and Kelley*' have used
this approximation very successfully for UN with the
slight improvement that they extend out to an atomic
sphere (Wigner-Seitz) radius. It is quite encouraging for
our analysis of NpSn; that they obtain excellent results
for UN which has a moment at least three times that of
NpSn3.

Upon the completion of the self-consistency process, re-
sults were obtained at an additional 90 inequivalent
points. A Fourier-series spline fit was then obtained for
the resulting 135-point data set using a total of 396 star
functions. The density of states was obtained using the
linear tetrahedron method breaking the irreducible (5 th)
wedge into 6144 tetrahedra.

III. RESULTS

In Figs. 2 and 3 the bands and density of states are
shown for paramagnetic NpSn; in the vicinity of the Fer-
mi energy (Er). Three bands (8, 9, and 10) are seen to be
virtually degenerate very near Er over a large part of the
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FIG. 2. Energy bands near the Fermi energy for NpSn; in
the paramagnetic state. The small waves in the bands are
caused by the finite spacing of the plot mesh as well as the na-
ture of the spinning procedure.

zone. This results in a huge, narrow DOS peak at Er cor-
responding to a bare band electronic specific-heat coeffi-
cient of 101.6 mJ/mol K%, making it the largest ever re-
ported from a band-structure calculation. The numerical
reliability of such a value may be questioned. To test the
sensitivity of the self-consistent process to the presence of
such a narrow peak, we reconverged the calculation of
Ref. 7 with a finer (by a factor of 4) energy grid for the
DOS in the self-consistent code and obtained no change.
When comparing spline fits involving 120 points as op-
posed to 155 points, we determined that the change in the
v value was less than 1%, indicating the level of sensitivi-
ty to the Fourier-spline-fit procedure. Thus, the result
would appear to be reasonably precise within the frame-
work of our particular calculation.
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FIG. 3. Density of states near the Fermi energy for NpSn; in
the paramagnetic state.
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FIG. 4. Energy bands near the Fermi energy for NpSn; in
the antiferromagnetic state.

The bands and density of states for the antiferromag-
netic case are shown in Figs. 4 and 5. The density of
states at the Fermi energy yields a bare band electronic
specific-heat coefficient of 39.7 mJ/molK2 This is a
61% reduction of y through the phase transition, in rath-
er amazing agreement with the experimental value of
64%.

The origin of this reduction becomes clear from an ex-
amination of the bands in the vicinity of the Fermi ener-
gy. In the paramagnetic phase, three nearly degenerate
bands (8,9, and 10) cross Er as shown in Fig. 3. Bands 8
and 9 form small hole pockets at R which contribute little
to the density of states. The huge contribution is from
band 10 which forms two surfaces. The first is a ball net-
work centered at R with the balls being so large that they
interpenetrate. Inside those balls is a topologically com-
plex surface, also centered at R, which provides the main
contribution to the high specific heat (its exact structure
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FIG. 5. Density of states near the Fermi energy for NpSn; in
the antiferromagnetic state.
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could not be determined because of the high masses in-
volved). In the antiferromagnetic phase, each of the pre-
vious paramagnetic bands splits into two. As can be seen
in Fig. 5, the four bands which correspond to paramagnet-
ic bands 8 and 9 have been pushed below the Fermi ener-
gy. More importantly, the two bands arising from band
10 have split, with the lower one being pushed down so
that the only part of the Fermi surface it forms is a simi-
lar ball network as before, but centered at M this time
(i.e., it is a fold back of the paramagnetic surface). The
large-mass part of this band has been pushed below the
Fermi energy. The upper band still forms two surfaces, a
ball network centered at A (tetragonal A4 is halfway be-
tween M and cubic R) interconnected by short tubes this
time, and a large-mass complicated surface running be-
tween M and A, this being the dominant contribution to
the bare band electronic specific heat. This is clearly the
mechanism described in the introduction as a generalized
Jahn-Teller-type distortion.

The antiferromagnetic calculation yielded a total mo-
ment of 0.212u 5 on the Np site (with 0.391up for the or-
bital contribution and —0.179 for the spin) which came
almost exclusively from the f orbitals. These moments
were determined using the Fermi energy from the 135-
point spline fit, the moment being extremely sensitive to
the location of the Fermi energy. The magnetic Sn sites
in the (001) plane had a moment of —0.005up (the non-
magnetic Sn-site moments were over an order of magni-
tude smaller). The experimental value for the total mo-
ment is 0.28u5,% a bit higher than what is predicted here,
but as mentioned in the Introduction, that value is found
by extrapolating from a correlation found by Dunlap and
Lander® between the hyperfine field and ordered moment
for local-moment Np compounds. The significant result
at present is that a small antiferromagnetic moment
(within 25% of experiment) is predicted by the itinerant
calculation. This is accomplished while maintaining a
delicate charge balance: Precisely 3.92 electron charges of
f character are found within the muffin-tin sphere of ra-
dius 3.08 a.u. in both the paramagnetic and the antifer-
romagnetic calculations. Clearly the direct Coulomb in-
teractions are very dominant in this material with the
magnetic distortion serving as only a very weak perturba-
tion.

A discussion of the temperature dependence of the
specific heat is very instructive. The data of Ref. 2 indi-
cate that the electronic specific heat y=C, /T is constant
above the transition. This is in sharp contradiction to the
band-structure calculation which shows that C,/T drops
dramatically with temperature. The experimental evalua-
tion of C,/T was obtained by subtracting off the phonon
specific heat for isostructural USn;, with the USn; pho-
non specific heat obtained by subtracting the zero-
temperature ¥ value (171 mJ/mol K?) from the total C /T,
assuming that C, /T is constant. Bader and co-workers??
however, have shown that C,/T actually drops dramati-
cally from 171 to ~20 mJ/molK? by ~80 K.
(Parenthetically, the band-structure calculation for USn;
indicates the C,/T is i)ractically constant and is actually
equal to 22 mJ/mol K*. This indicates that the enhance-
ment factor, presumably due to spin fluctuations, is
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strongly temperature dependent. Since the area under the
experimental C,/T curve, after subtracting off the 20-
mJ/mol K2 background, is ~R In2, the assumed spin
fluctuations must be local in nature.) Based on these ob-
servations, it is clear that the phonon subtraction used for
NpSn; needs to be reconsidered. To do this, a reference
material that has an approximately constant C,/T is
needed and this is provided by UGe;?2 The phonon
specific heat can be expressed by a temperature-dependent
Debye temperature. When this is done, the resulting
functional form of ® for UGe; (Ref. 22) is similar to
those found for other compounds® in that it drops from
T =0 to a minimum at ~0.1T/0®, and then rises to ® ,
and stays flat (®_, is determined from the high-
temperature specific heat). Note that this phonon specific
heat implicitly includes electron-phonon effects. To ob-
tain the value for USn;, the UGe; curve is scaled by the
ratio of the two ® , values. The resulting phonon specific
heat is larger than the total C at intermediate tempera-
tures. If the dip in the Debye-temperature curve is ap-
propriately narrowed, however, and the resulting phonon
heat subtracted from the USn; specific-heat curve, the re-
sulting C, /T curve varies smoothly from 171 to 20 as T
is increased. The phonon specific-heat curve thus ob-
tained is now subtracted from the experimental C/T
curve for NpSn; (Ref. 2) in the range of 3—30 K. This re-
sult is shown in Fig. 6, along with the results from the
band-structure calculation. The latter was normalized by
the ratio of the experimental and theoretical specific heats
in the antiferromagnetic phase at T=0. The agreement
between the two is striking (the upturn in the experimen-
tal curve at ~15 K marks the onset of the phase transi-
tion which is presumably broadened by fluctuations). The
important point to be garnered here is that there is now a
strong temperature dependence of the experimental C, /T
curve which is in essential agreement with the band-
structure results.

One learns far less from the temperature dependence of
the susceptibility. The temperature dependence of the
susceptibility for NpSn; is shown in Ref. 24. Basically,
the value is ~0.0016 emu/mol near T =0, rises to a max-
imum of 0.0020 emu/mol at ~ 18 K, and then slowly de-
creases with temperature. The susceptibility is
anomalously low and also has a weak temperature depen-
dence. The band spin susceptibility can be written in the
local-spin-density approximation (LSDA) as®*

X(T)=Xo(T)/[1-IxcN(T)],

where
— af
N(T)= fdeN(e)de

and f is the Fermi function. Ixc is a Fermi surface aver-
age of the spin-spin response function in the LSDA. The
LSDA estimate for X in NpSn; is predicted to diverge up
to 100 K. If one adjusts Ixc to match X with the experi-
mental value at 20 K, the resulting Ixc is over an order of
magnitude smaller than the LSDA estimate. Moreover,
the temperature dependence of even the bare theoretical X
is more rapid than the experimental dependence. Clearly,
the omission of the spin-orbit interaction implied in the
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FIG. 6. Temperature dependence of the experimental (dashed
curve) and theoretical (solid curve) paramagnetic electronic
specific-heat coefficients C,/T. The former was obtained as
described in the text. The upturn at ~15 K in the experimental
curve marks the onset of the transition (which is broadened by
fluctuations). The theoretical curve was normalized by a ratio
equal to the ratio of the experimental and theoretical specific
heats in the antiferromagnetic phase at T =0.

utilization of the LSDA formalism is a serious limitation
since the f orbitals are more nearly j states than Is states.
The orbital moment is larger than, and opposed to, the
spin moment so that the LSDA 1is not directly applicable
to this situation, and a formal theory is not available for
the case with orbital effects.

IV. DISCUSSION

Two observations appear crucial to ascertaining the na-
ture of the f states in NpSnj: (i) the f charge is identical
in both the paramagnetic and the antiferromagnetic states,
and (ii) the implied enhancements are quite modest and
very nearly the same in the two states. From these obser-
vations one can assert that the direct Coulomb interaction
is the dominant interaction—which is no great surprise;
that the nature of the f states has not changed in going
through the transition, and that there are no large dynam-
ic effects occurring. The phase transition is not “exotic”
but involves a simple Jahn-Teller-like distortion to lower
the energy of the system. This is in contrast to other
XSn; materials such as CeSnj (enhancement of 4.5—4.9)
and USn; (enhancement of ~6.5) where large enhance-
ments are observed.” The crucial difference is most likely
that the large density of unoccupied f states found just
above the Fermi energy in CeSn; and USn; (Ref. 7) has
been pulled below the Fermi energy in NpSn; such that
the phase space available for spin-fluctuation scattering is
greatly reduced. This would cause a reduction in the mass
enhancements as seen in Pd.2® Further evidence that the
electronic structure is not behaving in an exotic fashion is
the simple behavior of the electronic contribution to the



specific heat. The temperature dependence of the elec-
tronic specific heat is well described by the effect of the
thermal width of the Fermi occupation factor. The
electron-phonon enhancement is small and there is no
need to assume dehybridization or spin-fluctuation
enhancements in this case. (Though the rise in C, /T be-
tween 15—10 K could be due to spin fluctuations.) The
magnetic response is complicated by the strength of the
spin-orbit coupling for the f orbitals such that much less
can be said from further analysis of that data.

Based on this discussion, we can offer some specula-
tions concerning the nature of the heavier antiferromag-
nets such as U,Zn,, UCd,;, and CePb;. The similarity of
the thermodynamic data for these compounds to that for
NpSn; (Ref. 1) suggests that the mechanisms discussed
above occur also in these compounds. In other words,
when the temperature is low enough, it is energetically
favorable for the system to lower its free energy and rid it-
self of the high density of states at the chemical potential
by undergoing a symmetry-lowering transition. Since the
resulting magnetic perturbation is small, the moment is
small, but the small splitting is sufficient to cause the
large reduction seen in the electronic specific heat. The
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sensitivity of such a magnetic state has recently been
dramatically demonstrated by Willis et al.?” who have
shown that 2% Cu substitution for Zn in U,Zn;; will des-
troy the magnetism. This is consistent with a coherent
state caused by a weak magnetic perturbation being des-
troyed by hybridization disruption. These arguments are
quite general and independent of whether the local-density
approximation works or not for these compounds.
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