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We report self-consistent density-functional calculations of the total energy of arsenic as a func-
tion of volume in the simple-cubic and the distorted a-arsenic (A47) structures. We find the stable
structure to be the A7, with parameters which are close to experiment at zero pressure. The
simple-cubic structure is found not to be a minimum in the total energy at any pressure because of
an instability to 47-symmetry phonon displacements of the atoms. For the stable structure the cal-
culated electronic band structure is reported and shown to have the semimetallic character known

for As.

INTRODUCTION

The typical structure of group-V elements in the a-
arsenic or A7 structure. It is the common crystal phase
of As, Sb, and Bi, and can be obtained in P under pres-
sure.! The A7 structure may be derived from simple cu-
bic (sc) by the application of two separate distortions, a
rhombohedral shear and a relative displacement along the
[111] direction of the two fcc lattices into which a sc lat-
tice can be resolved."? The resulting lattice, which has
trigonal symmetry and two atoms in the unit cell, is illus-
trated in Fig. 1 and described in the Appendix. Under
these distortions the six nearest neighbors of each atom of
the sc structure distort to become three nearest and three
next-nearest neighbors. This can be understood in terms
of chemical bonds, since the group-V elements preferen-
tially form three bonds.""> Furthermore, the fact that the
bond angles are close to 90° suggests that they are
predominantly p-bonding orbitals.

In view of the relationship between the A7 and sc struc-
tures and the general tendency of solids at compressed
volumes to form more symmetric structures with higher
coordination, we might expect that with the application of
pressure the distortion would decrease. This is indeed the
case. Not only do the structural parameters of the A7
structures go towards their sc values under pressure,>* but
in P (Refs. 5 and 6) and Sb (Ref. 7) a sc phase itself has
been observed. To our knowledge there has been no obser-
vation of a sc phase in As.

There is a parallel between the structures of the group-
V elements and the IV-VI compounds such as PbTe and
SnTe.>® This family of materials can exist in the cubic
NaCl structure, with a tendency for the two types of
atoms in the unit cell can be displaced relative to each
other, forming a trigonal structure which is ferroelectric.
The A7 structures of the group-V elements may then be
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generated exactly by making the two atoms in the unit cell
identical. The group-V elements are simpler in that they
have a center of inversion in both structures, but more
complex in that they are semimetallic. We will consider
only the group-V elements here and we point out that an
ab initio investigation of the IV-VI compounds has recent-
ly been reported by Rabe and Joannopoulos.’

There have been several previous theoretical studies of
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FIG. 1. A7 structure. The eight solid circles from a distorted
primitive cube. The structure consists of pairs of planes stacked
in the ¢ direction.
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the group-V elements.'"~ ' In particular, Weaire and Wil-
liams!© carried out an investigation of the structural ener-
gies using a second-order perturbation expansion for the
total energy and the Lin-Falicov!® pseudopotential. They
found an energy minimum at an A7 structure close to the
experimental one but also a slightly lower minimum at a
simple rhombohedral structure. They concluded that the
second-order “metallic” part of the bonding was impor-
tant in stabilizing the A7 structure, but that there are also
important “covalent” contributions which are beyond
second order in a perturbation expansion. Later work of
Abe et al.!! extended the calculations of Weaire and Wil-
liams to third order, which destroyed the good agreement
with experiment obtained in the second-order calculation.
Abe et al. considered that this situation was due to the
use of the Lin-Falicov pseudopotential, which is truncated
at large wave vectors, and in a later paper'? they repeated
the calculations employing a Topp-Hopfield pseudopoten-
tial'* which was not truncated. In these calculations a
stable A7 phase was not found in second-order calcula-
tions, but the inclusion of third-order corrections resulted
in a stable A7 phase in agreement with experiment. They
concluded that the inclusion of covalent effects was vital
in the stabilization of the 47 structures of group-V ele-
ments.

In this paper we present an ab initio investigation of the
stability and properties of the A7 structure and the nature
of the instabilities of sc for As. We utilize the methods
which have recently been successful in calculating the
structures and phase transitions of many group-IV ele-
ments and III-V and II-VI compounds, including their
high-pressure metallic phases.'” The calculations are done
using the same methods as in Refs. 16—18 to solve the
self-consistent local-density equations for the electronic
states. Of course, in this work the structural energies are
calculated to all orders in the potentials, i.e., there is no
perturbation expansion. We have chosen to carry out cal-
culations for the element As, for which the experimentally
established properties provide exacting tests of our results.
The related group-V elements are not considered in detail
here because less is known about P in the A7 structure
and the heavier elements Sb and Bi present the added
complexity of the increasing importance of spin orbit and
other relativistic effects. In future work we will report
calculations for phosphorus as well as for nitrogen at ex-
tremely high pressure.!®

LOCAL-DENSITY-FUNCTIONAL
PSEUDOPOTENTIAL CALCULATIONS

We have performed self-consistent local-density-
functional calculations on sc and A7 arsenic, using the
norm-conserving pseudopotential of Ref. 20, but without
spin-orbit interactions. For the local-density approxima-
tion to the exchange and correlation (xc) energy of the
homogeneous electron gas, we used the Ceperely-Alder
form as parametrized by Perdew and Zunger.?! Within
the local-density approximation to the exchange and
coxl‘gezlzation energy, the total energy E of a crystal is given
by >

E=3 onen—4mQ Y |[p(G)|%/|G|?
nk G (0)

=0 p*(G)[px(G)—&x(G) ]+ VEwaa+2Z . (1
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Here the eigenvalues of the local-density equations are
denoted by €,;, with weighting factors w,) described
below, where n,k are the band and wave-vector indices of
the states,  is the cell volume, p is the electronic charge
density, €,.(G) is the Fourier transform of the local-
density functional ¢,.(p(7)); pu,(G) is the Fourier
transform of the xc contribution to the effective potential
Lxe=d(pes(p))/dp, VEwaua is the energy of the point ions
in a uniform background, and the final term aZ is the
non-Coulombic interaction of the ions with the average
electronic charge density. The reciprocal-space form is
appropriate for pseudopotentials sufficiently smooth that
the wave functions and charge density can be expanded in
plane waves. This is particularly advantageous for low-
symmetry problems such as the A7 structure because the
basis functions are independent of the structure and the
expressions for energy,'®?? as well as for forces!®?? and
stresses,'® are given by simple universal forms.

The Schrodinger equation was solved at 17 points in the
irreducible part of the A7 Brillouin zone (BC) and the BZ
integration was performed by the special-points method.?
To deal with the Fermi surface we have used the Gaussian
smearing technique of Fu and Ho.?* In this scheme,
states are smeared out into Gaussians and the Fermi level
Eyp is placed so that the correct amount of charge is
present. The occupation w,y of a state is determined by
the area of its Gaussian which is below Ef,

2
Onk= AV
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where A determines the width of the Gaussian. The total
energy is insensitive to the value of A and a value of 0.25
eV was used. Our method differs slightly from the origi-
nal version of Fu and Ho who calculated the charge densi-
ty using the weighting factor of Eq. (2) but then calculat-
ed the total band energy E.,,q by integrating over a
smeared density of states:

Epana= 3, ——Z‘/: fEF dE E exp[ —(E —g,)* /0] . (3)
nk AV —®

Taking the variation with respect to the wave functions of
the total energy calculated using this form does not result
in the Schrodinger equation that is actually solved.
Furthermore, the forces and stress that we calculate are
the derivatives of the total energy calculated using Egs. (1)
and (2) and not the band energy of Eq. (3).

We have calculated of total energy, the forces on the
ions, and the stress for each crystal structure. The use of
stress and force is extremely helpful in finding the
minimum-energy structure of a complex crystal.!”!®
Since the forces are the derivatives of the total energy
with respect to the atomic positions in the unit cell and
the stress is the derivative with respect to strains (i.e., the
volume and shape of the unit cell), we calculate the total
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energy and its first derivatives with respect to all the pa-
rameters that determine the crystal structure. The calcu-
lation of forces and stress greatly facilitates the deter-
mination of the equilibrium structure of crystals such as
the A7 (in which there are two free parameters at fixed
volume). If we consider a crystal with N structural pa-
rameters and we assume that the energy as a function of
the parameters is parabolic near the minimum, then we
must calculate the total energy for N2/2+43N/2+1
structures to determine the parameters at the minimum.
On the other hand, if we calculate all derivatives of the
energy with respect to these N parameters, we require
only (N +3)/2 calculations. Thus, at each volume of the
A7 crystal we perform three preliminary calculations on
structures close to the minimum in energy in order to cal-
culate the parameters of the minimum-energy structure.
Furthermore, we find that the energy minimum may be
located with greater accuracy using the analytic deriva-
tives of the total energy.

In our calculations the wave functions and potential are
described by a finite number of plane waves. The truncat-
ed basis set introduces errors into the calculation, which
we wish to make as small as possible. If we include all
waves up to some fixed-energy cutoff in the basis set for
calculations at two different cell volumes, then approxi-
mately the same truncation of the pseudopotential and a
similar resolution of wave functions occur at each volume
so that much of the basis-set truncation error will cancel
when we compare the two calculations. However, the size
of the basis set changes when the volume is altered and we
found that this caused unphysically large charge flow be-
tween states close to the Fermi level of sc As when the
volume was altered. This problem was overcome by keep-
ing the number of plane waves constant for different
volume, consequently introducing a larger but smoothly
varying volume-dependent error. We then adopted a
correction procedure to reduce this error. Two calcula-
tions were performed on sc As at volumes of 18.5 and 21
A3 per atom, sampling a large number (35) of k points in
the irreducible part of the BZ and using a very large basis
set including plane waves up to 24 Ry in energy. From
these calculations we obtain corrections to the total energy
and pressure to linear order in the volume which may be
applied to calculations performed with smaller basis sets.

For the calculations on the sc structure we used a
constant-size basis set fixed by a calculation at a volume
of 20 A3 per atom treating plane waves up to 8 Ry in en-
ergy exactly and further waves up to 14 Ry in second-
order perturbation theory. For the three preliminary cal-
culations at each volume on the A7 structure used to
determine the minimum-energy structure at that volume,
we used a basis set of plane waves up to 8 Ry in energy
which were treated exactly, and further waves up to 12 Ry
in energy treated in second-order perturbation theory.
The calculations on the predicted minimum energy A7
structure were performed with the same basis-set energy
cutoffs as the sc structure at that volume. The same
volume-dependent corrections were then applied to both
the sc and minimum-energy A7 calculations. We feel that
this procedure is justified, as the 47 structures considered
were reasonably small distortions of sc.
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TOTAL ENERGY AND STABILITY OF THE 47
AND sc STRUCTURES

The total energies of the sc and calculated minimum-
energy A7 structures are plotted in Fig. 2. We finds that
at zero pressure the A7 phase is ~0.12 eV per atom lower
than the simple cubic. Thus, the 47 phase is the more
stable at zero pressure. This is already a crucial result and
shows the accuracy of the calculations, since the total en-
ergies involve cancellations between large numbers, which
are sensitive to the detailed way the integrals are carried
out for the occupied states below the Fermi energy. This
is especially difficult for the comparison of the metallic sc
and the semimetallic A7 phases.

An important contribution to the total energy is the
Coulomb energy of the ions and the surrounding electron
gas. In order to understand this complex quantity we fur-
ther divide it into a large term consisting of the electro-
static energy of point charges of + 5e in a uniform back-
ground of negative charge preserving charge neutrality
and a smaller term due to the inhomogeneity of the elec-
tron gas. The former term, known as the Ewald energy, is
“universal,” whereas the latter term must come from full
calculations of the electronic structure of the crystal such
as those described in this paper. The Ewald energy of the
experimental A7 As structure is 2.3 eV per atom higher
than a sc structure of the same volume. The occurrence
of the A7 phase can be understood in terms of a Peierl’s
instability associated with the displacement of the atoms
of the sc lattice together in pairs along the [111] direction
which opens up a gap at the Femi level and lowers the
band contribution to the total energy. In fact, the transi-
tion is from metallic to semimetallic as the 47 phases of
As, Sb, and Bi all have small valence—conduction-band
overlaps.
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FIG. 2. Total energy of the sc and 47 phases of As. The
points indicate calculated energies and the solid lines are fits to
Murnaghan’s equation of state.
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We have tested the stability of the sc structure against
the zone-center optic-phonon displacement which gives an
A7 structure and against the simple rhombohedral shears
which correspond to stretching and compressing the prim-
itive cube along the [111] direction. If one considers only
the electrostatic Ewald contribution to the total energy,
the sc structure is unstable to simple rhombohedral distor-
tions which take sc towards fcc or becc. However, it is
stable with respect to the A7-symmetry phonon displace-
ment. The present stability tests were performed by car-
rying out the full self-consistent calculations for the forces
on the atoms and the stresses'® when small atomic dis-
placements and strains of the unit cell were applied. At
all volumes we found that the sc phase was unstable with
respect to the phonon displacement, i.e., the electronic
contributions to the forces overcome the Ewald terms to
destabilize the cubic structure. However, the sc phase was
found to be stable against both positive and negative
rhombohedral shears at all volumes down to the smallest
volume for which calculations were performed of 10 A3
per atom. At some even smaller volume we expect the sc
phase to become unstable to rhombohedral shears because
at sufficiently small volumes the Ewald term must dom-
inate the electronic structure terms. The stability towards
rhombohedral shears contradicts earlier total-energy cal-
culations.!®!:12 The second-order perturbation calcula-
tions of Weaire and Williams'® and of Abe et al.!! showed
instabilities of sc As to rhombohedral shears, while the
third-order perturbation calculations of Morita et al.!?
gave an mstablhty to negative rhombohedral shears at a
volume of ~18 A3 per atom.

It has been reported that at pressures > 120—150 kbars,
As transforms to a phase which is superconducting and
has a tetragonal structure with many atoms in the unit
cell.”® Because of the existence of other As phases at pres-
sures where we still find sc As to be unstable to the 47
distortion, we conclude that sc As will not exist as a stable
intermediate phase between the 47 and superconducting
tetragonal phases.

The total energies were fitted to Murnaghan’s equation
of states.”® For the sc structure we found a good fit
which was not significantly altered by including data
points far from the zero-pressure volume, giving a bulk
modulus B =1.04 Mbar, the pressure derivative of the
bulk modulus dB/dP =4.4 and a zero-pressure volume
Vo=19.4 A3 per atom. Fitting the total energies of the
A7 structure to Murnaghan’s equation of state gave pa-
rameters which depended significantly on how many data
points were included in the fit. However, by fitting the
calculated pressures of structures close to the zero-
pressure volume or the derivative of Murnaghan’s equa-
tion of state, we obtained reliable values of the bulk
modulus and zero-pressure volume. We find B =0.43
Mbar compared to the experimental value of 0.394 Mbar?!
and Vo=20 95 A3 3per atom compared to the experimen-
tal value® of 21.3 A %.

PROPERTIES OF THE A7 PHASE

The predicted structural parameters for the experimen-
tal zero-pressure volume of 21.3 A3 per atom can be ob-

tained by linear interpolation between the calculated
values of 21 and 21.5 A3, We find u=0.230 and
£=0.056 to be compared with the experimental values of
u =0.2276 and £=0.08194.! The internal parameter u
agrees well with experiment but € is 30% too small. The
calculations have shown that ¢ is very sensitive to the de-
tails of the semimetallic Fermi surface, whereas u is not.
We conclude that (i) the distortion u is determined by the
overall bonding involving all the electrons, not primarily
those at the Fermi surface, (ii) the predicted values of u
are given accurately by the calculations described in the
previous section, (iii) the strain € is greatly affected by the
Fermi surface and vice versa, and (iv) the predicted values
of € may not be accurately determined because of the
large amount of computer time that would be required to
eliminate all numerical uncertainties.

In Fig. 3 the shear of the unit cell € and internal param-
eter u are plotted for the calculated equilibrium A7 struc-
tures for different volumes. As the volume decreases the
structure goes towards sc but is still considerably distorted
from it at the lowest volume for which calculations were
performed of 17 A3 per atom. The trends in the calculat-
ed values of the pressure dependence of the structural pa-
rameters agree reasonably well with the experimental re-
sults of Morosin and Schriber® but in detail the numerical
agreement is not good. Morosin and Schriber carried out
x-ray diffraction experiments at ambient pressure and at
3.1 kbar. They obtained dIn(a)/dP=—1.1+0.4Xx10*
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FIG. 3. Shear in the unit cell € and internal parameter u for
different volumes. The sc structure corresponds to €=0.0 and
u =0.25. The volumes correspond to those of Fig. 2, with the
largest volume having the greatest distortion from sc. The solid
curve represents the experimental low-temperature structure
(Ref. 1) and the arrow gives the trajectory in e-u space of the
structure with applied pressure (from the room-temperature
measurements of Ref. 3).
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kbar~!, dlIn(c)/dP=—23.9+0.9x10™* kbar~!, and
dIn(u)/dP=12+2Xx10~* kbar~!. Using the experimen-
tal value of the bulk modulus of As of 0.394 Mbar,?’
we can convert these to dimensionless quan-
tities: d In(a)/d In(¥V)=+0.0431+0.016, dIn(c)/d In(V)
=+0.942+0.036, and d In(u)/dIn(V)=—0.47310.079.
From our calculations we have d In(a)/d In(V)=+0.21,
dIn(c)/d In(V)=+0.58, and d In(u)/d In(V)= —0.18.

The internal motion of the atoms under compression is
most clearly illustrated by the plot of the distance between
the planes of the A7 structure in Fig. 4. The larger dis-
tance v between the pairs of planes decreases rapidly with
increasing pressure, while the shorter distance w between
members of a pair increases slightly. This is interpreted
in terms of the different kinds of bonding in the A7 crys-
tal. Strong covalent bonds exist between the members of a
pair of planes, while the bonding between neighboring
pairs is weak. Over the 21% volume charge considered,
the nearest-neighbor distance decreased by only 3% and
the As—As bond angle changed from 97.3° to 93.9°
These small changes indicate strong bonding between the
nearest neighbors. The weak bonds between pairs of
planes are easily compressed; the separation v decreases by
20% over this volume range.

The phonon frequency of the zone-center I'; optic
mode (the mode associated with the sc to 47 distortion,
i.e., the parameter u) was calculated for the theoretical
equilibrium A7 structures and is shown in Fig. 5. The
mode is already quite soft at the experimental zero-
pressure volume with a frequency of ~250 cm™!. With
increasing pressure the mode softens but within the calcu-
lated volume range it does not go to zero. The zero-
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FIG. 4. Distance between pairs of planes v and between
members of a pair w plotted against volume. The solid circles
represent the experimental low-temperature structure and the
arrows show the volume dependence of v and w from the
room-temperature measurements of Ref. 3.
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FIG. 5. Phonon frequency of the zone-center I'; optic mode
of the A7 structure as a function of volume.
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FIG. 6. Band structures of sc and A7 As. The symmetry
points are labeled according to the notation of Cohen, Ref. 29.
(a) sc at a volume V'=21.52 A per atom. (b) A7 As with the
room-temperature experimental structure of ¥ =21.52 A per
atom with ¥ =0.2271 and €=0.08823. Note that the apparent-
ly equal energies of some bands are accident. In the distorted
structure no true degeneracies exist at the L point.
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pressure phonon frequency agrees well with the data of
Richter et al.*® who measured up to 7 kbars and found
~254 cm ™! at zero pressure.

We have also calculated the electronic bands in the
local-density approximation for the experimental room-
temperature A7 structure and for sc As as the same
volume, as shown in Figs. 6(a) and 6(b). Here we have
used the symmetry notations of Ref. 29. Plane waves up
to 10 Ry in energy were treated exactly and further waves
up to 15 Ry were incorporated in second-order perturba-
tion theory. The Schrddinger equation was solved at 44
special points in the irreducible part of the 47 BZ to pro-
duce the self-consistent potential for the band-structure
calculations. To facilitate comparison we have plotted the
sc band structure folded into the BZ of an undistorted 47
structure. Firstly, we note the low-lying s band whose
contribution to the bonding is small. We see the dramatic
effect of the doubling of the periodicity on the A7 band
structure. A gap opens at the Fermi level and only a
small Fermi surface remains. There is a pocket of holes
close to the T point and a pocket of electrons at the L
point. In detail, the agreement with the pseudopotential
calculations of Falicov and Golin®® and the
orthogonalized-plane-wave calculations of Golin®! is quite
good. But we find only one band crossing the Fermi level
near L and not two as in the calculations of Refs. 29 and
30. This present result is in agreement with a recent ex-
perimental study of Tokailin e al.3? using angle-resolved
photoemission and with the empirical pseudopotential cal-
culations reported in the same paper.

CONCLUSION

We have performed total-energy calculations on a fami-
ly of structures of As. We find that the lowest-energy
structure is an A7 structure with internal parameters,
equilibrium volume, and bulk modulus in good agreement
with experiment. The correct trends in the pressure
dependence of these parameters is given by our calcula-
tion, but in detail, numerical values are poor.

We find that sc As has a Peierl’s instability to an A7
distortion at all volumes for which calculations were per-
formed. Under pressure the 47 distortion is diminished,
but a stable sc phase is not reached before a transition to
another structure occurs.

APPENDIX: THE A7 CRYSTAL
STRUCTURE OF As

The A7 structure can be viewed as a distortion of sim-
ple cubic. An A7 structure can be obtained from sc by a
strain of the unit cell along the [111] direction and a
simultaneous displacement of the atoms of the basis to-
wards each other in pairs along the same direction. The

distortion from simple cubic in As is large enough that
the structure is layerlike.

The shape of the rhombohedral unit cell is commonly
described in any one of three ways. We may define the
rhombohedral angle a or the ¢ /a ratio or the shear of the
unit cell €. The c/a ratio and rhombohedral angle a are
related by

c/a=V3ZL (A1)
sinp
where
sinp= —-‘/2—3—sin—;— . (A2)

The rhombohedral angle a and shear parameter € are re-
lated by
142
24¢€
In this paper we use both the c/a ratio and the shear to
describe the shape of the cell as dictated by simplicity or
comparison with published work.
Defining translation vectors a,, a,, and a; are

a,=(a/Vv3,0,c/3),

cosa (A3)

ay=(—a/2v3—a/2,c/3), (A4)
a;=(—a/2V3,a/2,c/3),

the positions of the two atoms of the basis are
+u(0,0,c) . (AS)

The sc structure is given by u =0.25 and ¢/a=V'6 or
€=0 or a=60°. The low-temperature A7 structure of As

has! % =0.2276, c¢/a=2.7774, £=0.08194, and
a=54.55".
The volume V per atom is given by
V=a%/4V73 . (A6)

At low temperature As has' ¥ =21.3 A3. The nearest-
neighbor distance a,, is given by
apn=a/V3[1+5(6u —1)c/a)*]'?. (A7)
The structure consists of planes stacked in pairs along
the direction of a; +a;+a3. The nearest neighbors are in

adjacent planes of a pair which are separated by a distance
w:

w=0Q2u—3) . (A8)
The pairs of planes are separated by a larger distance v:

v=(3—2u)c . (A9)
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