
PHYSICAL REVIE%' 8 VOLUME 33, NUMBER 6 15 MARCH 1986

Theory of second-harmonic generation by small metal spheres
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A small metal sphere interacting with an incident electromagnetic wave will produce second-
harmonic radiation in a quadrupolar mode. A hydrodynamical model fox the electron gas is em-

ployed and a Green-function formalism is used to solve for the cross section for producing second-
harmonic generation. Numerical results are obtained for aluminum and silver.

I. INTRODVCTION

Ever since intense sources of electromagnetic radiation
have become available, interest in the nonlinear optical
properties of matter has persisted. One of the most ele-
mentary manifestations of such a nonlinear property is
second-harmonic generation (SHG). First-principles cal-
culations of the effect in bulk matter have been carried
out by numerous researchers. Adler' discussed the gen-
eral symmetry properties of nonlinear media and outlined
a formalism to compute the nonlinear polarization
currents in polarization theory. Early theoretical studies
of the nonlinear optical behavior of metallic surfaces were
conducted by Jha and co-workers. 5 Experiments on
media with inversion symmetry confirmed, to within an
order of magnitude, these theoretical models. In more re-
cent years attention has turned to rough surfaces primari-
ly because of the observation of surface-enhanced Raman
scattering. Agarwal and Jha have studied the surface
enhancement of second-harmonic generation at a metal
grating using a perturbation expansion based on an expan-
sion in terms of the surface roughness parameter. Chen
et al. have studied the interconnection between SHG and
Raman scattering. Arya has developed a Green's-
function formalism for treating SHG from rough metal
surfaces. Boyd et al. made a detailed study of the local-
field enhancement of various solids using SHG as a probe.
Recently, Keller' emphasized the need for including non-
local electronic transport effects in describing SHG.

In a somewhat unrelated developxrient there has also
developed in recent years an interest in the properties of
small particles. A variety of techniques have become
available to prepare small particles ranging in size from
what may be called just clusters of atoms to particles mi-
crometers in size. An extensive body of work has been de-
voted to the study of the linear optical properties of such
particles" but not much work has centered on their non-
linear optical properties. Agarwal and Jha studied the
nonlinear optical properties of spherical particles in the
context of a dielectric model for the limiting case of the
particle size being much smaller than the wavelength of
light. In this paper we will extend their work in two
directions. First we will use what is analogous to a full
Mie theory and develop a formalism which is valid for all
particle sizes, although for computational reasons we will
restrict our attention to particles of moderate size but

where E and 8 are the electric and magnetic fields and a
and p are simply related to the properties of an electron.
Based on simple symmetry considerations and Maxwell's
equations, it is possible to extend this formula and develop
simple formulas for the multipolar tnoments of a small
particle in terms of the incident fields. We restrict our
attention to SHG and let p, m, Q, and X denote the elec-
tric dipole moment, the magnetic dipole moment, the elec-
tric quadrupole moment, and the magnetic quadrupole
moment, respectively. Note that p and 7 are even under

parity reversals, while m and Q are odd. Also note that p,
and Q are even under time reversal while m and g are
odd. Thus, in a truncated hierarchy,

Is(2~)=pE VE'+FEE VE+SEVB. '+eEB VB, .
(1.2a)

m(2to)= pMEx(VxB)+ystBx(VXE)+&stE; VB;

+@MB;VE;+ vstE VB+tTMB VE, (1.2b)

Q(2to) =ag(E I—3EE)+pg(B I—3BB), (1.2c)

smaller than the wavelength of light in vacuum. Second-
ly, we will base our study on a more microscopic model of
the particle, rather than employ simply dielectric theory.
This will allow us to include screening effects, both at the
level of the linear theory and the nonlinear theory. Our
attention will be restricted to the study of SHG from a
spherical metallic particle.

At first sight the production of SHG seems difficult, at
least for centrosymmetric materials, due to the fact that
symmetry considerations outlaw dipolar radiation at the
second-harmonic frequency for a spatially uniform field.
However, it is well known, that as the particle grows in
size, higher multipolar scattering becomes more and more
important. Thus, we may envisage a range of particle
sizes for which quadrupolar (and higher multipolar)
higher-harmonic generation becomes significant. Thus,
the observation of higher-harmonic radiation could pro-
vide us with a new set of experimental techniques to help
characterize and probe the properties of small particles.

In Jha's early work2 it was found that the nonlinear po-
larization responsible for SHG could be written in the
form

33 3756



33 THEORY OF SECOND-HARMONIC GENERATION BY SMALL METAL SPHERES 3757

X(2a)) =yIE B+5KB+5'BE, (1 2d) ed. Thus, let

where a,g, y, 5, . . . are coefficients which depend on the
nature of the particle's composition.

In this paper we will consider an incident electromag-
netic field which is a circularly polarized plane wave.
Then, as we shall see, symmetry further requires that
p(2') and m(2') vanish. We start by developing formu-
las describing the linear response of the system. These are
used as driving terms to generate the nonlinear response.
What we will ultimately obtain are formulas for the cross
section for producing second-harmonic generation.

n —np ——nL+nS+

V=VL+VS+ '

E=EL+ES+

L+BS

(2.5a)

(2.5b)

(2.5c)

(2.5d)

where the subscripts denote the particular harmonic in
question (I.=linear, S =second harmonic, . . .). By as-

sumption, ( ns
~

&&
~

nz
~

&&no, etc. Noting that the
chemical potential is nonlinear in the electron density, we
obtain

II. THEORY

A. The model

P I '0++D L +~ons+~lnL +2

where the expansion constants are

(2.6)

V E=4mp.,

V B=O,

(2.1a)

(2.1b)

Consider a metallic sphere of radius a interacting with
an incident plane electromagnetic wave. In our previous
work' we introduced a model in which both the electrons
and iona were modeled as interacting hydrodynamic and
elastic systems. For the case of SHG, however, we are
likely to be concerned with photon frequencies sufficiently
high that the ionic contribution will not be of significant
size to warrant its inclusion in the model. Thus, we con-
sider an electronic fluid moving in the presence of a uni-
form jellium background. Our goal is to solve Maxwell's
equations:

(iiikF )
p

(i}ikF)2

Xp-
3nom

2
— -k
7r

e2xFo

%3&no

(2.7a)

(2.7b)

PoXj-
9np

(2.7c)

and kF ——(3ir no)' . Carrying out similar expansions for
p and J and the various terms of Eq. (2.2) leads to a re-
vised set of equations which may be separated into first-
and second-order equations:

VXE+—1
C

8 =0,
t

(2.1c)
V EL —— 4menl, —,
V BL=O

(2.8a)

(2.8b)
1 BE 4m.

c dt c
(2.1d} le

VXEL —— BL,
C

(2.8c)

together with the hydrodynamical equation for the elec-
trons

l 67VXBI ——— EL-
C

4m.en 0
VL (2.8d)

dV V V
M +—= —e E+—XB —Vp.

t C
(2.2) 1

m ice+ ——vL ———e EL XOVni—, (2.8e)

p= —e(n —no),

J=—nev,

(2.3a)

(2.3b)

where n is the electron density and no is the ion density.
At the level of Thomas-Fermi-Dirac theory,

' 1/3
3'p= —e (2.4)

Here, p and J are the charge and current densities, e and
m are the charge and mass of the electron, ~ is the elec-
tron relaxation time, v is the electron velocity, and p is
the chemical potential. Thus,

V Es= 4mens, —

V Bs——0,
2l QlVXEs= Bs

C

2l 63 4&eVXBs ——— Es (no—vs+nl vL ),
C C

1
Pl —2l67+ VS+ Pl VL 'VVL

(2.9a)

(2.9b}

(2.9c}

(2.9d)

where k~ ——(3n n)' is the Fermi wave vector.
We shall derive our description of SHG from perturba-

tion theory. The first-order response will be at the in-
cident frequency co, while the second-order response in-
cludes, in principle, contributions from both 2' and dc ef-
fects. The latter are of no interest here so will be neglect-

e Es+ vL X&L —&o«s —&i~nL
1 2

C
(2.9e)

Note that the first-order equations are homogeneous equa-
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tions, whereas the second-order equations are inhomo-
geneous with the first-order variables acting as source
terms .The incident field for the linear equations enters
through the boundary conditions.

l (l + 1)

—[l(l+1)]'~' [rji(pr)]ll+1 r r

B. Solution of the first-order equations

(V +k )nl ——0,

(V'+p )EL —— (p k—)VnL,

(V +p )BL ——0,
where we have introduced the plasma frequency,

(2.10a)

(2.10b)

(2.10c)

Wave equations for nL, El, and BL follow directly
from Eqs. (2.8):

4~e+ 2 Cbn PXXbnk'

Bc.(r)=—PRI jI(pr)Yi (r),1

O'T I

1

& I, m

(2.13c)

(2.13d)

1 8 r XXI+ iRi — [rj I (pr) ] [1(l+1)]'"
a), =(4mnoe'/m)'",

the Thomas-Fermi screening constant,

A, =a)r [m /(Xono)]'

(2.11a)

(2.11b)

(2.11c)

EL (r) ='&EL,,(r) +EL,(r),
SI (r)=rBL,(r)+SL,,(r),

(2.14a)

(2.14b)

(2.13e)

where the fields are expressed as radial and tangential
fields

where q is the wave vector of the photon in free space,
q =co/c, and

k =A[e/(1 —e)]'~~,

and t. is the Drude dielectric constant

e= 1 co&/[—co(co+i /w)] .

(2.11d)

(2.11e)

l 67
Q'YL = 771

&0
(2.12)

The solutions to Eqs. (2.10) which apply inside the sphere
(r &a) are

and Xi are the vector spherical harmonics defined by

XI
L

[l(l+1)] ~ YI (r),

where

(2.15a)

L= —irXV . (2.15b)

The coefficients Ci, FI, and Ri are to be determined
by matching boundary conditions on the surface of the
sphere.

Let us focus our attention on an incident circularly po-
larized plane wave

The solutions to Eqs. (2.10) which apply inside the sphere
(r &a}are

E=EO(i+ j)e'e',

8=+iE,
(2.16a)

(2.16b)

nL ——g Ci ji(kr) Yi (r), (2.13a)

(2.13b)

EL„(r)=—g Fbj~(pr)+CI z krji(kr) Yi~(f),
1 4me
l' kr

where Eo is the.amplitude of the electric field. For the
linear fields the general solution for elliptically polarized
light may be obtained by superposition, but for the non-
linear fields simple superposition does not apply and a
more extensive analysis will be needed.

The fields outside the sphere (r & a) are'

E(Lr)= E+o5 +,i'&4~(2l+1) [ji(qr)+ ,'ai hi"'(qr)]X—(~+—IVX[ji(qr)XI~]+ —,'pl VX[h,"'(qr)Xi ]]
I, m

(2.17a)

BL (r) = Eo g 5~ +ii'+' v'4—n(21 +1} VX [Ji(qr)Xlm]+ —
aim V X [hi(qr)Xi~ ]+[jI(qr)+ —,

' pi~hi"'(qr)]Xi~
I,m

(2.17b)

Again the coefficients al~ and Pi~ are to be determined by matching boundary conditions.
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In the present model we have explicitly taken into account all dielectric effects in the charge and current densities, so
the boundary conditions are such that El„El„BI„and SL, be continuous at r =a. This leads to

a( —— [zj((x)jj(z} xj—((z)j j(x)],
1

~ 1+1
R(~ ——Eo5~ ~ j [4(r(21 + 1)(l + 1)l]'

(2.18a}

(2.18b)

where

D( xj(——(z)h(" (x) zh—(' '(x)j j(z), (2.18c)2, x[xjj(x)]'—Jj(x)
I z

[zj((z}l' x l(1+1) jj(y}1—
jj(z) j (jy)

(2.19a)

kEo 5 X
C( ——+ ' i'+ &4m(2l+1)l(1+1) 1—

4@ex b, jjj'(y) Z'
(2.19b)

where

qEo m, +i .j+z &4(r(21+ 1)l(l+1)
p'»

(2.19c)

~ r 2

d [ h "j( )]' h("( )
x [ J( ] x l(l+1) Jj(y)

j((z) z y J'j'(y)
(2.19d)

and x =qa, y =ka, and z =pa. Note that the coefficients

P(~ and aj refer to the electric and magnetic multipoles
of the sphere, respectively. The coefficients Cj are relat-
ed to the charge-density fluctuations. In the present
model the boundary condition UL, (a) =0 is automatically
satisfied, as would be expected for a problem in which the
electrons are confined to the interior of the sphere.

In summary, Eqs. (2.13}and (2.17), in combination with
Eqs. (2.18) and (2.19) provide an analytic solution to the
linear problem.

C. Second-harmonic generation

In order to solve Eq. (2.9) let us introduce two auxiliary
vectors

2
COp

e2 ——1—
2m(2o(+i /~)

'

and let

k, =A[e, /(1 —e,)]'"

2 (e )1/2

The source terms appearing in Eq. (2.21) are

4n'e
V ~

j~p VXV(
c ce 2ct7+ j /0

(2.22a)

(2.22b)

(2.22c)

(2.23a)

(2.23b)

LVL

e 2ri= —jn VL VVL — VL XBL X(VnL-
C

(2.20a}

(2.20b)

e

+So V ri.iA, Vg
1 —e2

(2.23c)

Then the wave equations for the second-harmonic fields
become

The radial components of Ez and 82 obey

(V'+p,')rB„=r T (2.24a)

(V'+ki)ns(r) =&(r),

(V +pz)Bs(r)=T(r),

(2.21a) and

(2.21b) (V'+p,')rE,„= 8~en, +r U—
"2

P2+%re
2

8g—1 r
Bl'

(2.24b)
pz

k2
—1 Vns+U(r),(V +p2)Es(r) =4ne (2.21c)

Equations (2.2la) and (2.24) may be solved by using the
Green's function G„(r,r'} which satisfies

(V +p )G„(r,r')= —5(r—r') . (2.25)
where we have introduced a second-harmonic Drude
dielectric constant
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In free space we have

~~ l» —»'Ie
G~(r, r ) =

BY]](r) Y]](r)
ut. ~(r) =u, (r) +U3(r)

Be sin8
(2.27g)

=]PXJ](Pr&)i]]"(Pr& }g~(~(r')Y]~(».

nL (r) =n](r) Y]](f),

Bg„(r)=81(r)Y]](r),
Y]](r) BY„(r)

Bie(r) =83(r) . +83(r)
Sl]18

(2.27a)

(2.27b)

(2.27c)

In order to obtain solutions that are not overly involved
let us simplify matters by making two assumptions now:
(a) the incident plane wave has positive helicity, i.e.,
m =+1 and (b) the linear dipole response is assumed to
be much more important than higher-order multipole
responses, i.e., the wavelength is not too short. In this
case the subscripts l, m may be restricted to take the value
1,1 when considering the linear fields. Let

n](r) =C],j,(kr),
~118](r) = j ] (pr),
qr

2$

R» li(p}]
2qr r

COC11
u](r) = j](kr)+ . j](pr),—

m (co+i /~) r

(2.28a)

(2.28b)

(2.28c)

(2.28d)

(2.28e}

(2.28f)

(2.28g)

eR ]]
2m(a)+i /~)

Jl(pr) ~

1 B
u3(r) =

3 j,(kr)+ lrj](pr)] .
nok2r 2m(co+i/r) r Br

BY„(r) Y„(r)
BI&(r)=i Bz(r) +83(r)

sln8

VL, (r) = —iu](r) Y»(r),

Y]](r) BY]](9)
uL]](r) = i v3(—r) . +v3(r)

sin8

(2.27d)

(2.27e)

(2.27f)
where

Also we write

r U=m(r) Yzz(r),

r T=p(r)Yzz(f),

S=o(r) Yzz(f),

(2.29a)

(2.29b)

(2.29c)

m(r}= 3
' 1/2

Sea)e e2 —1
rn](r)u] —(2q}3

C2 e

Bv] 2 2 er Bn]
m rU] +U]V3+U3 V3 + (U283 U382)+21]rn]

Br C r

(2.30a)

p(r) = 3 12me 3COp BU3 U]U3
n1U2+ U1 +

C ce(2V3+i /r) Br r
2 e

U3V3 +——(u]83 u38] )— (2.30b)

1/2
3 A, 1o(r) =

1(hr 2e 1 —e2

n1V3 n] Q) 2—U1 + n1
Br no

1 3

Xo 1(hr

1/2
BU]

' Pn —U1
Br Br

2
Bv] 4 V2

U1 + U1U3 —2
r Br r

'2 2
U3 4U] BU3

+r r ()r

U3 BU] 2U3 BU3 2 BU3+ + U3r Br r Br r 3r
e 2 BU3 B83+ (U283 U38$)+83 +u2c r Br Br

~U3 &2 3—83 —V3 +—(U]8$ —U$8] )
Br Br r

'2
Bn ]+ 271 n1 2n1+ +

3r
2n1 Bn

& —3
r Br

(2.30c)

Expressed in terms of m(r), p(r), and cr(r), the solutions for nz, r.Bs, and r Es are
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ns ——[Czzjz(kzr)+ v(r)] Yzz(r),

1r Bs —— rzzjz(Pzr)+Z(r) Yzz(r),
2$

r.Es ——[fzzjz(Pzr)+k (r)+CzzI(r)] Yzz(r),

where

v(r)= ik—z f dr'r' jz(kzr()hz"(kzr) }cr(r'),

z(r)= ipz—f dr'r' jz(pzr&)hz"(pzr& )p(r'),

k(r)= —iPz f dr'r' jz(Pzr )hz" (Pzr ) 8ne—v(r')+4ne

I(r)= —iPz f dr'r' jz(Pzr& )hz"(Pzr& ) 8wejz—(kzr')+4ne

5'2

kz

5'2

k2

—1 r', +n(r'), Bv(r')
r'

'2
—1 kzr'jz(kzr')

(2.31a)

(2.31b)

(2.31c)

(2.32a)

(2.32b)

(2.32c)

(2.32d)

To obtain the tangential components of Es and Bs let us
write z4 (r) = &s.+— [r4(r)]

ive 1 a
2q r " r dr

(2.34c)

Es =Es Yz2 (9)+f (r )Xzz + IP( r )P XX22

B,=Bs„Yzz(r)+u (r)Xzz+v(r)PXXzz,

r Bs,

(2.33a)

(2.33b)

(2.34a)

v(r) = 28s +r Bs.v6 ' ar
(2.34d)

P(r) =— 4rrerv(r)+4meCzzrj z(kzr)

+ 2Es. +r Es.r
(2.34b)

There are three coefficients, rzz, Czz, and fzz, to be
determined by matching boundary conditions. The fields
outside the sphere are given by formulas analogous to
those of Eq. (2.17) but without an incident field at fre-
quency 2' being present. Thus, for r & a,

Es(r) = (Sm )
' a—zzh z"(2qr)Xzz+ h z"(2qr) Yzz(r)+ — [rh z" (2qr) p XXzz

2$ T r dr

lBs(r)= — ~XEs«) .
2$

(2.35a)

(2.35b)

Again 9 Es, r Bs, Es„and Bs, must be continuous at
r =a. We find, after some lengthy algebra, that

jz(pza) 6 jz(kza}
1+pza . — n(a)

jz(pza) kza jz(kza)

where

2q

p,'a&36n.
(2.36)

4neaI3(a) I4(a }
+ 2 +

(kza) jz(pza} apz(pza)

4

24m eaIz(a)

(kza)
(2.39a)

I~(a) = f dr(pzr) j z(pzr)p(r),

5=2qajz(pza)h z
' (2qa) —pzah z"(2qa)jz(pza),

&22=
2~q

v'3O

where

(2.37a}

(2.37b)

(2.38)

—hz (2qa) ~
(1) 2q [Pzajz(Pza }]'

Iz(Pza}
2

+ 1- 'q
P2 kza j z(kza)

(2.39b)

~z=pz [2qahz" (2qa}]'
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I jz(kzr}
Iz(a) = dr(p2r } e(r),

j2(k2a)
a

13«)=, «(p2 )'[p2rj2(p2r ) +j2(p2 ) ]~(
0

2 ~

I4(a) = dr(p2r) jz(pzr}m(r) .

The integrals I
&

to I4 are evaluated numerically.

(2.39c)

(2.39d)

(2.39e)

III. RESULTS AND DISCUSSION

In the preceding section we have derived expressions for
the linear and nonlinear electric and magnetic fields both
inside and outside a small metallic spherical particle il-
luminated by an incident electromagnetic wave. The
sources of the nonlinearity included the Lorentz force, the
convection of electron velocity, nonlinear contributions to
the electron current, and nonlinear chemical potential
terms. In order to be able to compare these expressions
with laboratory measurements, let us compute the cross
section for SHG and compare it with the corresponding
linear cross section. We define the SHG cross section as
the ratio between the radiated SHG power at frequency
2(o and the incident intensity at frequency co. Thus, put-
ting in the atomic units explicitly,

2'2
5K 2 EO~0

e sHo=, (
I a2z I +

I b22 I
) Q0 ~

sq e
(3.1)

where e is the electron charge and ao is the Bohr radius.
The cross section is proportional to the square of the in-
cident electric field. It includes contributions from both
the electric and magnetic quadrupole terms. The corre-
sponding linear cross section may be written as a mul-
tipole series

&I=,g (21 +1)(
I &ll I

'+
I Pl I I

'» (3.2)

where, in the dipole approximation, only the terms with
I =1 are retained. This cross section will be denoted by
0').

In order to compare our results with those of Agarwal
and Jha, let us start by writing expressions for the general
solution for the linear internal electric fields given by Eqs.
(3.13b) and (2.13c) in the limit in which the wavelength is
much larger than the particle size both inside and outside
the particle (pa &&1 and qa »1) and the screening length
is much less than the particle size (ka »1). Then our
formulas reduce to that given by dielectric theory and we
get the formula quoted in Ref. 5 for the internal field

1——rX(qXEO) .
6+2 2

(3.3)

However, for the cases of interest in this paper the above
limits are not satisfied. Thus, at the resonance frequen-
cy for Al, for example, qa=0. 43 for a =100 A and
qa =0.74 for a =200 A. Typical values of pa for
a 100-A sphere are in the range 0.6 to 0.8 and typical
values of ka are around 200. The fact that the values qa
and pa are not too small, points to the need for using the
full Mie theory in evaluating the cross sections.

Another point of comparison between our theory and
the standard Mie theory involves evaluating Eq. (2.19a)
explicitly. We do this for the linear theory because there
it is simpler to write analytic expressions than it is to do
so for the nonlinear theory. Analogous considerations
hold, of course, for the nonlinear coefficient given by Eq.
(2.38). The general expression for Pi is

x [zjl«)]' x l(l +1) j)(y}[xji(x)]'—ji(x) — + 1—
JI'(y)

[ 1, (i)( )] 1, (i)( )
x [ J~ ]

1
x 1(1+1}J) y

z ji(x) z y J)'(y)

(3.4)

[xji(x)]'—ji(x)(x /z)
ji(z)

[xhi" '(x )]'—hi( "(x)(x /z)
j)(z)

(3.5)

In Fig. 1 we plot the quantity osHol(na Eo) for alumi-
num as a function of the dimensionless parameter
x =qa =coaic. Graphs are presented for several values
of the sphere radius varying from 50 to 200 A. Several
features are worthy of note. At low values of x, corre-

In the strong screening limit (y —+ 00) this result reduces
to the Mie formula

Ie(co)+1+1+2
C

(I + 1)(21+ 1)
1(21—1)(21+3)

The dipole plasmon is excited for / =1 and the quadru-
pole plasmon for I =2. Since we are concerned with

sponding to low frequencies, the cross sections rise rapidly
with frequency, as would be expected for a sphere of finite
conductivity. The bulk plasma frequency for Al corre-
sponds to mz ——2.4 X 10' rad/sec. In each case we see two
resonance peaks. The low-frequency peak corresponds to
the quadrupolar plasmon resonance frequency, while the
higher-frequency peak occurs at the dipole plasmon reso-
nance. In Mie theory these occur at frequencies given by
the condition
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FIG. 1. Cross sections for scattering of electromagnetic radi-
ation by aluminum spheres in units of the geometric cross sec-
tion for spheres of 50, 100, 150, and 200 A radii. Abscissa
denotes the dimensionless parameter x =coa/c, where co is the
radian frequency, a is the sphere radius, and c is the speed of
light. The set of curves give second-harmonic-generation cross
sections corresponding to an incident electric field strength of 1

a.u. (Eo ——e/ao).

values for a which are reasonably large, the approxima-
tion le(co)+1+1=0 is not appropriate for determining
the position of the resonances.

In Fig. 2 we plot, for comparison purposes, the linear
dipole and linear quadrupole cross sections as a function
of x =qa for spheres of the same size as in Fig. 1 (100 A).
We note that the linear quadrupole cross section is several
orders of magnitude smaller than the linear dipole cross
section. These results, including the screening effects, are
in good agreement with the Mie scattering formulas.

In Fig. 3 curves similar to those of Fig. 1 are presented,

FIG. 3. Same as Fig. 1 but for silver spheres.

but this time for Ag spheres ranging in size from 50 to
200 A. Again the nonlinear cross section displays the
pronounced dipolar and quadrupolar resonances. One
would naturally expect these linear resonances to play a
role in the nonlinear quadrupole resonance because the
nonlinear quadrupole is generated by the mixing of two
dipole excitations in the field and the production of a
quadrupole outgoing field.

We have not shown the differential cross sections for
SHG explicitly, but these may be obtained from the total
cross sections by noting that the fields have an angular
dependence associated with F22(r). Thus a standard
quadrupole pattern is to be expected.

In Fig. 4 we compare our calculations with the calcula-
tions of Agarwal and Jha for Al spheres of two sizes:
a =50 and 100 A. We see that for small spheres the
agreement is good, whereas for large spheres there is con-
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l
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FIG. 2. Linear cross sections for dipole (electric and magnet-
ic) and quadrupole interaction for spheres of various radii (50,
100, 150, and 200 A).

FIG. 4. Comparison of the second-harmonic cross sections as
computed in this paper (solid curves) with those given by Ref. 5
(dashed curves). Curves are given for a =50 and 100 A.
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siderable disagreement. For larger spheres the need for a
full Mie theory accounts for a considerable amount of the
disagreement. Then the wavelength of the light inside the
sphere becomes smaller than the radius and different parts
of the sphere begin to destructively interfere in the pro-
duction of both a dipole in the in field and a quadrupole
in the out field. This leads to a diminished cross section.

In Fig. 5 we plot the linear dipole cross section o i/m. a
and the cross section for second-harmonic generation
osHG/na as a function of sphere radius a for two fixed
values of the frequency to =5.0X 10' rad/sec and
to= 1.0X10' rad/sec. The curves are plotted for alumi-
num particles. The SHG cross section is plotted for an
incident electric field strength corresponding to 1 a.u.
(e/ao). Values for other fiel strengths may be obtained

by multiplying by (Eoao/e) . For low values of a the
cross section rises rapidly vnth size but tends to saturate
when the dimensionless parameter becomes of the order of
unity. For values of x larger than 1, we know that
higher-order linear multipoles begin playing a more im-
portant role in scattering. Presumably the same thing will
occur in the nonlinear scattering, but we have not com-
puted higher multiples as of yet.

I.et us estimate the rate of generation of SHG photons
for a hypothetical experimental arrangement. Suppose we
prepare a smoke of 100-A Al particles with a concentra-
tion of 10' cm . For an incident intensity of 10'
W/cm we have a field strength Eo ——8.4 X 109

esu cm =2.9X10 a.u. For the ~uadrupolar reso-
nance frequency in Fig. 1, co=1.3X10' rad/sec, the flux
of incident photons is 7.4X10 9 cm ~sec '. The cross
section for second-harmonic generation is 6.4X10 ' cm

10

0
I

200 400
+(A)

600

FIG. 5. Linear dipolar cross section (dashed curves) and
second-harmonic cross section (solid curves) as a function of
sphere radius for Al spheres. Graphs for two frequencies are
given, co=5X10' and 1.0X10' rad/sec.

as compared with the cross section for linear dipole
scattering which 6.3X10 " cm . Thus, 4.7X10" pho-
tons per second will be produced by frequency 2to per
sphere. Taking an illuminated volume of 10 cm we
would have 10 spheres contributing, for a net rate of
4.7X10 photons per second. This number may be in-
creased by increasing the illumination volume, the concen-
tration of the spheres, or the intensity of the radiation.
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